N

N

Mancoosi Deliverable D5.4: Report on the international
competition
Pietro Abate, Ralf Treinen

» To cite this version:

Pietro Abate, Ralf Treinen. Mancoosi Deliverable D5.4: Report on the international competition.
[Research Report] 2011. hal-00698967

HAL Id: hal-00698967
https://inria.hal.science/hal-00698967

Submitted on 21 May 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-00698967
https://hal.archives-ouvertes.fr

(MiaNCQOSI

managing software complexity

Report on the international competition
Deliverable 5.4

Nature : Deliverable
Due date : 31.05.2011

Start date of project : 01.02.2008
Duration : 40 months

SEVENTH FRAMEWORK Information Society
PROGRAMME Technologies

Mancaoosl May 24, 2011

Specific Targeted Research Project T SEVENTH FRAMEWORK
Contract no.214898 PROGRAMME
Seventh Framework Programme: FP7-ICT-2007-1
A list of the authors and reviewers

Project acronym Mancoosi

Project full title Managing the Complexity of the Open Source Infrastructure

Project number 214898

Authors list Pietro Abate

Ralf Treinen

Workpackage number WP5

Deliverable number 4

Document type Deliverable

Version 1

Due date 31/05/2011

Actual submission date | 19/05/2011

Distribution Public

Project coordinator Roberto Di Cosmo

Deliverable D5.4 Version 1.0 page 2 of 27

Mancaoosl May 24, 2011

Abstract

The main objective of Workpackage 5 was to organize an international competition of solvers
of package upgradeability problems. This deliverable reports on the organisation of the MISC
2010 competition, the results and the lessons learned, and about the evolution since 2010.

Deliverable D5.4 Version 1.0 page 3 of 27

MancQoslI May 24, 2011

Deliverable D5.4 Version 1.0 page 4 of 27

Contents

1 Introduction
2 Before MISC 2010

3 MISC 2010

3.1 The Rules of MISC 2010 s e
3.1.1 Problem Format e

3.1.2 Optimization Criteria

3.1.3 Ranking of Solutions Lo
3.2 The Execution Environment of MISC 2010

3.3 Requirements on Participating Solvers L.

3.4 Selection of Input roblems

3.5 Results.

3.5.1 The Participants of MISC 2010

3.5.2 Outcome .

4 Since MISC 2010
4.1 MISC-live 3 and 4
4.2 Towards MISC 2011

5 Conclusion

11
11
12
13
16
17
18
18
20
20
20

23
23
23

25

MancQoslI May 24, 2011

Deliverable D5.4 Version 1.0 page 6 of 27

Chapter 1

Introduction

The main objective of Workpackage 5 was to organize an international competition of solvers of
package upgradeability problems. These problems are expressed in the CUDF format developed
by the Mancoosi project [TZ08, TZ09a]. A problem instance expressed in CUDF contains the
metadata of currently installed, as well as of available packages, and a request to install new
packages, remove currently installed packages, or upgrade packages to newer versions. The
metadata of a package is comprised, among others, of name and version of packages, dependency,
conflicts and provided virtual packages.

Problems of this kind are theoretically NP-complete [DCMB™06]. However, if a problem in-
stance is satisfiable then it typically has a huge number of solutions. One of the goals of the
Mancoosi project was to design a language of optimization criteria that would allow a user to
specify what would constitute the best among all the solutions.

Hence, we consider the package upgradeability problem as a combinatorial optimization prob-
lem. The goal of organizing an international competition of solvers for such problems was to
make the research community aware of this problem, and to promote this particular instance of
combinatorial optimization in the different research communities. The competition was designed
to be open to any interested participant, including but not limited to, the solvers developed in
Workpackage 4 of the project.

MancQoslI May 24, 2011

Deliverable D5.4 Version 1.0 page 8 of 27

Chapter 2

Before MISC 2010

Organizing a solver competition is a complex task. Besides organizational issues, the technical
setup of the competition proved to be challenging for the Mancoosi team. For this reason we
decided to prepare the official international MISC competition by some trial runs (MISC-live 1
and MISC-live 2) with the goal of detecting early the problems in the setup, and thus avoiding
them in the first official competition. The first trial run, called at that time Mancoosi internal
Solver Competition (MiSC), was run in January 2010 followed by a second trial run before
the official MISC competition in June 2010. Because of the positive feedback we got from the
community after the first trial run, and because of the benefit to allow solver developers to
continually test their solvers in a formal setting, we decided after MiSC to repeat such trial
runs at irregular intervals in the future, and we baptized these trial runs MISC-live.

The purpose of running an internal competition was two-fold. On one hand it allowed the orga-
nizers of the competition to test their setup in a realistic setting. Since the MISC competition
was the first of its kind the organizers had to experiment with the definition of the rules of the
competition and the technical setup. Experience from the SAT community® proved very helpful
in this regard. However, because of the inherent differences between the two competitions, we
were unable to reuse their infrastructure and we were forced to build the execution and ranking
environment from scratch.

On the other hand, these trial runs were most helpful to the prospective participants of the
official competition. Because of the technical complexity of the CUDF format and its semantic,
we felt that it was necessary to provide a strong support to test and run prospective solvers in a
realistic test environment which is as close as possible to the one used in the official competition.

This internal competition was open to all interested participants, both internal to the Mancoosi
project and external to the project. Participants of this internal competition were :

e apt-pbo: a modified apt tool using pseudo-Boolean-optimization (minisat+ or wbo),
submitted by Mancoosi partner Caixa Magica.

e p2cudf: a solver built on top of the Eclipse Provisioning Platform p2, based on the SAT4J
library and submitted by a team from Université d’Artois and IBM which is not part of
the Mancoosi project.

e inesc-udl: a SAT-based solver using the p2cudf parser (from Eclipse) and the MaxSAT
solver MSUnCore, submitted by Mancoosi partner Inesc-1D.

"http://www.satlive.org/

Mancaoosl May 24, 2011

e unsa: a solver built using ILOG’s CPLEX, submitted by Mancoosi partner Université
Nice/Sophia-Antipolis.

The trial runs proved indeed very useful both for the participants and for the organizers. For
instance, some of the participants found at MISC Live 1 that their solvers failed for some
unexpected but trivial reason, like some mistake in the implementation of the parser for the
input language. The most important lesson for the organizers of MISC Live 1 was that the
initial system of limiting the resources of solver processes, based on the ulimit utility, was not
sufficient since it did not allow to notify the solvers when they were about to overstep their
time limit. As a consequence of this experience, the resource limitation was reimplemented from
scratch, using the runsolver utility due to Olivier Roussel from Sat Live.

Deliverable D5.4 Version 1.0 page 10 of 27

Chapter 3

MISC 2010

The first official international competition, the Mancoosi International Solver Competition
(MISC), was run in the summer of 2010. The competition was announced on various mail-
ing lists and electronic newsletters. The timeline was as follows:

e April 22, 2010: official announcement of the competition.
e May 31, 2010: participants have to declare by email their intention to participate.
e June 13, 2010: deadline for the submission of solvers.

e July 10, 2010: announcement of the results.

The results of the competition were announced at the First International Workshop on Logics
for Component Configuration (LoCoCo 2010). LoCoCo 2010 took place during SAT 2010, the
Thirteenth International Conference on Theory and Applications of Satisfiability Testing. Both
LoCoCo 2010 and SAT 2010 were part of the Federated Logic Conference 2010, which was the
major international event for computational logics in 2010 consisting of 8 main conferences and
about 50 workshops. The FLoC conference is held every three to four years as a federation of
most of the major international conferences on computational logics.

3.1 The Rules of MISC 2010

All problems used in the competition are expressed in the CUDF format developed by the
Mancoosi project [TZ08, TZ09a]. A CUDF document contains a complete abstraction of a
software installation on a user machine plus the user request. It contains the metadata of
currently installed, as well as of available packages, and a request to install new packages,
remove currently installed packages, or upgrade packages to newer version. The metadata of a
package is comprised, among others, of name and version of packages, dependency, conflicts and
provided virtual packages. An overview of the CUDF format is given below in Subsection 3.1.1.

Since, if a solution exists, there exist in general many of them, one also needs a criterion to
distinguish an optimal solution (which is not necessarily unique). We hence proposed a system
to define precisely different complex optimization criteria. The exact definition of this system
is given below in Subsection 3.1.2. For MISC 2010 we had two different tracks, each of them
defined by a different optimization criterion

11

Mancaoosi May 24, 2011

3.1.1 Problem Format

CUDF (for Common Upgradeability Description Format) is a specialized language used to
describe upgrade problem instances, that is presented in detail in [TZ08]. Here we just recall
that it has been designed with the following goals in mind:

Platform independence We want a common format to describe upgrade scenarios coming
from diverse environments. As a consequence, CUDF makes no assumptions on a specific
component model, version schema, dependency formalism, or package manager.

Solver independence In contrast to encodings of inter-component relations which are tar-
geted at specific solver techniques, CUDF stays close to the original problem, in order to preserve
its structure and avoid bias towards specific solvers.

Readability CUDF is a compact plain text format which makes it easy for humans to read
upgrade scenarios, and facilitates interoperability with package managers.

Extensibility Only core component properties that are shared by mainstream platforms and
essential to the meaning of upgrade scenarios are predefined in CUDF. Other auxiliary properties
can be declared and used in CUDF documents, to allow the preservation of relevant information
that can then be used in optimization criteria, e.g. component size, number of bugs, etc.

Formal semantics CUDF comes with a rigorous semantics that allows package managers
and solver developers to agree on the meaning of upgrade scenarios. For example, the fact that
self-conflicts are ignored is not a tacit convention implemented by some obscure line of code,
but a property of the formal semantics.

Figure 3.1 shows an excerpt of a CUDF document in a sample upgrade scenario. A CUDF
document consists in general of three parts:

e A preamble, which in particular may declare additional package properties, together with
their type, that may be used in the package metadata. In the example of Figure 3.1 we
have declared an additional package property called bugs of type int, this property is
optional and the default value is 0.

e A list of package stanzas, each of them started on the keyword package. This list gives
the metadata of all the packages that are currently installed on the system, or available
for future installation.

e A request stanza that defines the problems to be solved. In the example, we require of a
solution that it must contain (have installed) some package called bicycle, and also some
package called gasoline-engine in version 1.

A package stanza is a record consisting of some standard fields, plus additional fields if declared
in the preamble. The most important package fields are package name and version (which
together serve to uniquely identify a package), dependencies and conflicts. The dependency
field of a package p specifies other packages that must be installed together with the given

Deliverable D5.4 Version 1.0 page 12 of 27

Mancaoosi May 24, 2011

preamble:
property: suite: enum(stable,unstable) = "stable"
property: bugs: int = 0

package: car

version: 1

depends: engine, wheel > 4 , door < 7, battery
installed: true

bugs: 183

package: bicycle
version: 7
suite: unstable

package: gasoline-engine
version: 1

depends: turbo

provides: engine
conflicts: engine
installed: true

request:
install: bicycle, gasoline-engine = 1

Figure 3.1: Sample CUDF document.

package p, and the conflicts field is exclusion list of packages that must not be installed
together with p. Dependencies are conjunctions of disjunctions, the elements of which are
package names, probably together with a version constraint.

3.1.2 Optimization Criteria

Two different fixed optimization criteria were used for MISC 2010, each of them defining one
track in the competition. Both criteria are lexicographic combinations of different integer-valued
utility functions to be evaluated w.r.t. a given solution.

Each of these utility functions calculates a value only from the initial installation status and
a given solution. These utility function have therefore a global scope. As a consequence, the
user request is not included the optimization criterion itself. The reason for this is that each
proposed solution must first of all satisfy the user request, and only if this is the case is compared
with other solutions w.r.t. the given optimization criteria. Solutions that do not satisfy the
user request will be discarded and the solver will obtain a penalty value. Only those of the
proposed solutions that actually satisfy the user request will yield a score according to the
ranking function described below in Subsection 3.1.3.

Two tracks were proposed for MISC: the paranoid and the trendy track. The motivation behind
choosing these two criteria was to model the intentions of two different categories of users: the
sysadm - paranoid track - which privileges solutions that change the least number of packages,
and the gamer - trendy track - which prefers the latest version of software installed on the
system, and who does not strongly oppose to installing additional packages on the system.

Deliverable D5.4 Version 1.0 page 13 of 27

Mancaoosi May 24, 2011

We have choosen two fixed criteria for the competition, in contrast to a domain-specific language
allowing for the free definition of functions like MooML [TZ09b], in order to not overburden
participants of the competition with a too complex input language. For the next edition of
MISC, however, we have generalized the choice of optimization criteria (see Section 4).

The first criterion (“paranoid”) uses only standard package properties as defined in the CUDF
standard. For the second criterion (“trendy”) we made use of an extra package property which
is not among the mandatory package properties. This additional property is recommends, that
is expressed as a conjunctions of disjunctions of package, possibly with version constraints (as
the property depends).

The idea is that recommended packages are non-mandatory dependencies. For that reason, the
CUDF documents used as problem instances in the competition contain a specification of that
property in the document preamble, like this:

preamble:
property: recommends: vpkgformula = [true!]

The precise definition of the different utility functions used in the formal definitions of the
criteria are defined as follows. Suppose that a solver tool outputs for the initial universe I (the
set of initially installed packages) a proposed solution S. We write V (X, name) for the set of
versions in which name (the name of a package) is installed in X, where X may be I or S.
That set may be empty (if name is not installed), contain one element (if name is installed in
exactly that version), or even contain multiple elements in case a package is installed in multiple
versions.

We write

e #removed(I,S) is the number of packages removed in the proposed solution S w.r.t. the
original installation I:

#removed(I,S) = #{name | V(I,name) # 0,V (S, name) = 0}

e #new(1,S) is the number of new packages in the proposed solution S w.r.t. the original

installation I:

#new(I,S) = #{name | V(I,name) = 0, V(S,name) # 0}

e #changed(I,S) is the number of packages with a modified (set of) version(s) in the

proposed solution S w.r.t. the original installation I:

#changed(I,S) = #{name | V(I,name) # V (S, name)}

e For the next definition we need the notion of latest version of package: We write latest(name)

for the most recent available version of a package with name name. We define #notuptodate(I,S)
as the number of installed packages but not in the latest available version:

#notuptodate(I,S) = {name | V(S,name) # 0, latest(name) ¢ S}

e #unsatisfied — recommends(I,S) counts the number of disjunctions in Recommends-
fields of installed packages that are not satisfied by S:

#unsatisfied — recommends(I,S) =

{(name,v,c) | v € V(S,name), c € recommends(name,v), S = c}

Deliverable D5.4 Version 1.0 page 14 of 27

Mancaoosi May 24, 2011

In that definition, recommends(name, v) denotes the set of recommendations of the pack-
age with name name and version v. Each such recommendation may be a single package,
possible with a version constraint, or in general a disjunction of these. Such a recommen-
dation ¢ is satisfied by a proposed installation S, written S |= ¢, if at least one of the
elements of the disjunction c is realized by S.

For instance, if package a recommends
bycldle el flg blg h

and if S installs a, e, f, and h, but neither of b, ¢, d, or g , then one would obtain for the
package a alone a value of 3 for #unsatisfied-recommends since the 2nd, 3rd and 5th disjunct
of the recommendation are satisfied, and the others are not. If no other package contains
recommendations then #unsatisfied-recommends(I,S)=3. Note that in any case the value of
#unsatisfied-recommends(I,S) only depends on S but not on I.

The two optimization criteria are now defined as follows:

e paranoid: we want to answer the user request, minimizing the number of packages removed
in the solution, and also the packages changed by the solution. Formally:

lex(min#removed, min#changed)

Hence, two solutions S7 and S5 will be compared as follows:
1. compute, for i € {1,2}:
ri = #Hremoved(l,S;)
¢i = Ftchanged(l,S;)
2. Sy is better than Sy iff 7y < ry or (11 = ry and ¢1 < ¢3).

e trendy: we want to answer the user request, minimizing the number of packages removed
in the solution, minimizing the number of outdated packages in the solution, minimizing
the number of unsatisfied recommendations, and minimizing the number of extra packages
installed. Formally:

lex(min#removed, min#notuptodate, min#unsatis fied — recommends, min#new)

Hence, two solutions S7 and Sy will be compared as follows:
1. compute, for i € {1,2}:

ri = #removed(I,S;)
u; = #notuptodate(l,S;)

ur; = Funsatisfied — recommends(I,S;)
ni = #new(U,S;)

2. S is better than Sy iff 7y < rg or (11 = ry and (u; < ug or (u1 = ug and (ury < urey
or (ury = urg and ny < na))))).

Deliverable D5.4 Version 1.0 page 15 of 27

Mancaoosi May 24, 2011

3.1.3 Ranking of Solutions

All participating solvers were executed on the same set of input problems. The ranking routine
operates in three steps. First, all individual problems are ranked based on the solvers’ output.
Second, all individual solutions are numerically ranked, aggregating problems by track and
problem set. In the end, the aggregate solutions for each track are aggregated together to
determine the winner.

We first define how several participating solvers are ranked on one particular problem instance.

Let m be the number of participating solvers. For each input problem we give points to each
solver, according to whether the participant yields

1. a claimed solution that really is a solution

(\V)

. FAIL (that is, the solver declares that he has not found a solution)
3. ABORT (timeout, segmentation fault, ...)

4. a claimed solution that in reality is not a solution to the problem

Note: After MIC 2010 we found that the difference between FAIL and ABORT is somewhat
artificial. A smart solver might want to respond FAIL whenever it was able to detect a crash or
a timeout. Despite the fact that this might prove the solver unsound, it will be ranked better
then a solver that decided not to declare ABORT as FAIL. For this reason, in further editions
of MISC (see Section 5), the cases FAIL and ABORT will be ranked the same.

The number of points a solver gets on a given input problem is calculated as follows:

1. All solvers in case (1) are ordered according to the optimization criterion (best solution
first), and a participant in case (1) gets the number of points that corresponds to his
position in that list. In case two solvers have found equally good solutions they get the
same number of points. In other words, the number of points obtained be a solver is 1
plus the number of solvers that are strictly better.

To give an example with 4 participating solvers si, so, s3 and s4: If s1 gives the best
solution, followed by ss and s3 giving an equally good solution, and s4 who gives the
worst solution, then s gets 1 point, so and s3 each get 2 points, and s4 get 4 points.

2. A participant in case (2) gets 2 x m points.
3. A participant in case (3) gets 3 * m points.

4. A participant in case (4) gets 4 * m points

Note that it is possible that an input problem indeed doesn’t have a solution. In that case, (1)
above is not possible, so the solvers that correctly say FAIL are ranked best.

The total score of a solver is the sum of the number of points obtained for all problems of the
problem set. The solver with the minimal score wins.

If several solvers obtain the best total score then the winner is determined by choosing among
those having obtained the best total score the one with the minimal total success time. The
total success time of a solver is the sum of execution times of that solvers over all problems in

Deliverable D5.4 Version 1.0 page 16 of 27

Mancaoosi May 24, 2011

case 1 (correct solution), plus f * timeout where f is the number of problems where the result
of that solver is in one of the cases 2 (FAIL) or 3 (abort, timeout,...) or 4 (wrong solution), and
timeout is the time limit defined in the execution environment.

3.2 The Execution Environment of MISC 2010

The solver is executed on a virtual machine that simulates a GNU/Linux host of architecture
x86, 32 bit, single-processor. On the virtual machine are installed:

e A standard POSIX environment. In particular a POSIX-compatible shell, which may
be invoked by /bin/sh, is available, as well as a GNU Bourne-Again SHell (invoked as
/bin/bash).

e A Java Runtime Environment (JRE) 6; the Java application launcher can be invoked as
/usr/bin/java.

e A Python 2.5 environment; the main Python interpreter can be invoked as /usr/bin/python.

No other libraries, for any programming language, can a priori be assumed to be available in
the virtual machine environment. This means:

e Solvers prepared using compilers supporting compilation to ELF must be submitted as
statically linked ELF binaries. No assumptions can be made on available shared libraries
(.s0) in the virtual machine environment.

e Solvers written in some (supported) interpreted language must use the usual shebang lines
(#!/path/to/interpreter) to invoke their interpreter.

e Solvers written in Java must be wrapped by shell scripts invoking the Java application
launcher as needed.

e Solvers needing other kind of support in the virtual machine must make specific arrange-
ments with the competition organizers before the final submission.

The solver execution is additionally constrained by the following limits (as implemented by
ulimit):

e Maximum execution time: 5 minutes

e Maximum memory (RAM): 1 GB

e Maximum file system space: 1 GB (including the solver itself)

The execution time is CPU time, measured in the same way as ulimit -t. About 20 seconds
before the timeout, the signal SIGUSR1 will be sent to the solver process. It is the responsibility
of the solver to catch that signal, produce an output, and terminate normally. The resource
limitation and the notification of the solvers is implemented in the execution environment by
using the runsolver utility due to Olivier Roussel from Sat Live.

Deliverable D5.4 Version 1.0 page 17 of 27

Mancaoosi May 24, 2011

3.3 Requirements on Participating Solvers
The following instructions on how solvers are to be invoked were given to the participants:

e The solver will be executed from within the solver directory.
e Each problem of the competition will be run in a fresh copy of the solver directory.

e The solver will be called with 2 command line arguments: cudfin and cudfout, in this
order. Both arguments are absolute file systems paths.

1. cudfin points to a complete CUDF 2.0 document, describing an upgrade scenario.
The CUDF document is encoded as ASCII plain text, not compressed.

According to the specifications, the document consists of an optional preamble stanza,
followed by several package stanzas, and is terminated by a request stanza.

2. cudfout points to a non-existing file that should be created by the solver to store its
result.

Solvers were expected to yield their solution as follows:

e The solver’s standard output may be used to emit informative messages about what the
solver is doing.

e If the solver is able to find a solution, then it must:

— write to cudfout the solution encoded in CUDF syntax as described in Appendix B
of the CUDF 2.0 specification;

— exit with an exit code of 0.
e If the solver is unable to find a solution, then it must:

— write to cudfout the string "FAIL” (without quotes), possibly followed by an expla-
nation in subsequent lines (lines are separated by newline characters, ASCII 0x0A);

— exit with an exit code of 0.

e All exit codes other than 0 will be considered as indications of unexpected and exceptional
failures not related to the inability to find a solution.

3.4 Selection of Input roblems

The corpus of input problems selected for the MISC competition consists of two kinds of prob-
lems:

e problems originating from real world scenarios that users have encountered, or might
encounter, during the normal evolution of a software distribution,

e purely artificial problems, with the goal to foster the advancement of combinatorial solving
techniques at hand of challenging problems.

Deliverable D5.4 Version 1.0 page 18 of 27

Mancaoosi May 24, 2011

In the first class of problems originating from real-world scenarios, the organizers selected a
number of CUDF documents distilled from the community-submitted DUDF upgrade problem
reports [AGLT10] that were submitted to the central repository at UPD [AT11], namely from
the Debian, Mandriva and Caixa Magica communities.

Other then these submitted problems, we generated a number of artificial problems. The utility
used is called randcudf and it was freely available to all participants to train their solvers.
Despite the name of the utility, the generated problems are not purely random CUDF instances,
but they are based on a common real universe. From this starting point, randcudf is able to
generate random upgrade requests and to disturb the initial installation status according to a
number of configuration parameters. The rationale behind this choice was to provide random
variations of real problems that were increasingly challenging.

Among the parameters of randcudf are:

e the size of the universe: a universe can be composed by the union of all packages coming
from different official releases. This allowed us to simulate the - usual - case where users
mix packages coming from old and new software repositories.

e a list of packages declared as installed in the universe (status). We can associate to the
same universe different installation status effectively changing the nature of the problem.

e the probability of generating install / remove requests with a version constraint. This
parameter controls the CUDF request stanza and permits to adjust the constraints of
individual requests.

e the number of packages declared as installed but whose dependencies might not be satis-
fied. This parameter allows to disturb the given base installation status effectively creating
a completely different problem.

e the number of packages marked as keep and the type of keep (version or package). A
package declared as keep in CUDF adds an additional constraint to be respected by the
solver.

The combination of these variables allowed us to to produce problems of different size and dif-
ferent degree of complexity. For the official competition we generated three problem categories,
with, respectively, a universe size with 30.000 (called easy), 50.000 (called difficult) and 100.000
packages (called impossible).

Moreover, to further control the type of proposed problems, we discarded all problems for which
it is impossible to find a solution.

One last category of artificial problems we used in the competition were obtained by encoding
into CUDF well-known difficult instances of 1-IN-3 SAT, a problem which is known to be NP-
complet [Sch78].

Finally, the following five categories of problems instances were used in both tracks of the MISC
competition :

Deliverable D5.4 Version 1.0 page 19 of 27

Mancaoosi May 24, 2011

Name Description

cudf_set Encoding in cudf of 1-in-3-SAT

debian-dudf Submitted installation problems

Name Base Universe Status RandCudf Parameters

easy Debian unstable desktop installation | 10 install, 10 remove
from unstable

difficult Debian stable, unstable | server installation from | 10 install, 10 remove, 1 up-
stable grade all

impossible | Debian oldstable, sta- | server installation from | 10 install, 10 remove, 1 up-

ble, testing, unstable oldstable grade all

Table 3.1: MISC 2010 Problem Selection
3.5 Results

3.5.1 The Participants of MISC 2010

The following solvers were participating in MISC 2010:

e apt-pbo: apt-get replacement using a PBO solver, submitted by Mancoosi partner Caixa
Magica.

e aspcud: a CUDF-Solver based on Answer Set Programming using Potassco, the Potsdam
Answer Set Solving Collection, submitted by a team from University of Potsdam.

e inesc: a SAT-based solver using the p2cudf parser (from Eclipse) and the MaxSAT solver
MSUnCore, submitted by Mancoosi partner Inesc-1D.

e p2cudf: a family of solvers on top of the Eclipse Provisioning Platform p2, based on the
SAT4J library, submitted by a team from Université d’Artois and IBM.

e ucl: a solver based on graph constraints, submitted by Mancoosi partner Université
Catholique de Louvain,

e unsa: a solver built using ILOG’s CPLEX, submitted by Mancoosi partner Université
Nice/Sophia-Antipolis

3.5.2 QOutcome

The results of the MISC competition highlight the unsa solver from the Université Nice/Sophia-
Antipolis clearly as the overall winner in both categories, and at the same time show that a
clever encoding tailored for a specific category can still win over a general purpose encoding. In
particular, the solver p2cudf is the clear winner of the debian-dudf category, providing high
quality results.

The two tables below summarize the scores obtained by the participants in both categories.
The execution time was measured for each solver execution but is not shown in the tables since
it was not necessary to break any ties. In general, on easy instances, all solvers took between 3
and 30 seconds to complete, while on difficult instances, the entire allotted time was used (300
secs).

Deliverable D5.4 Version 1.0 page 20 of 27

Mancaoosl May 24, 2011

Category apt-pbo | aspcud | inesc | p2cudf | uns
cudf-set 135 93 90 90 107
debian-dudf 211 189 194 39 74
difficult 415 70 101 98 49
easy 410 46 64 61 21
impossible 225 190 220 181 15
Total 1396 588 669 469 266

Table 3.2: Trendy Track Summary

Category apt-pbo | aspcud | inesc | p2cudf | ucl-cprel | uns
cudf-set 162 118 108 108 108 111
debian-dudf 236 222 32 32 216 86
difficult 522 58 92 99 264 55
easy 504 21 63 63 252 21
impossible 300 270 120 120 180 15
Total 1724 689 415 422 1020 288

Table 3.3: Paranoid Track Summary

In addition to this summary, we also published a detailed table of results for each category,
allowing all participants to inspect the solver trace (including stderr and stdout), the pro-
duced solution and the input problem. This information was meant to allow all participant to
reproduce the execution and to further debug their solvers. A screen shot from the competition
website is provided below:

MaNcoos| 7 ®

Tnfarmation Society

b

. MISC 2010 Trendy Track

Home

© Category: cudf_set
Background

- - |
R [Problem [apt-pbo-trendy-1.0.5 [aspcud-trendy-1.2 [inesct-1.0_[p2cudt-drendy-1.6 [uns-trendy.0002
Conte: i

FAIL FAIL
score:10 score:10
trace|stderr| trace|stderr
time:0.62 time:0.76

EDOS project.
small3.cudf

Project structure

FAIL FAIL
score 10 score:10

Waork Packages

Participants Fmall2.cudf trace|stderr trace|stderr
time:0.88 time:1.16
Community FAIL FAIL
score:10 score:li
Blag smalll cudt trace|stderr| trace|stderr
time:0.61 time:0.90
Feople

FAIL FAIL
Contacts \araes cud! score:l0 score:ll
‘arge..cudt trace|stderr trace|stderr
time:1.12 time:1.60
Resources EAIL EAIL
Deliverables & reports large2 .cudf| ﬁgtigrr ﬁ[:t&s”
time:1.13 time:1.53
Papers
FAIL FAIL
score:10 score:10

Software H
lrgel cuaf tracejsterr| trace|stderr
o fime:1 12 time:1 57
FAIL FAIL
MISC Competition el Seamn sl
huged.cudi trace|stderr| trace|stder
CUDF time:2.25 time:3.62

Deliverable D5.4 Version 1.0 page 21 of 27

Mancaoosl May 24, 2011

The complete detailed results of the competition can be found at http://www.mancoosi.
org/misc-2010/results/paranoid/ for the paranoid track, and http://www.mancoosi.org/

misc-2010/results/trendy/ for the trendy track.

Deliverable D5.4 Version 1.0 page 22 of 27

Chapter 4

Since MISC 2010

4.1 MISC-live 3 and 4

After having organized the MISC competition 2010, two more MISC-live competitions were
organized in November 2010 (MISC-live 3) and then in February 2011 (MISC-live 4). These
trial runs were used in particular to test the new third user track which will be used in the
international competition 2011. The novelty of the user track is that one searches for an optimal
solution according to an optimization criterion provided by the user. The criterion is given by
a list of utility functions taken from a fixed list of possible functions, together with a polarity
(“4” for maximize, or “-” for minimize) for each of them. This is a generalization of the first
two tracks “paranoid” end “trendy”, since they can now be seen as special instance of the new
“user” track:

e the paranoid criterion could be written as

—removed, —changed

e the trendy criterion could be written as

—removed, —notuptodate, —unmet_recommends, —new

4.2 Towards MISC 2011

The international competition MISC 2011 will be organized at the LoCoCo 2011 workshop,
which will take place on September 12, 2011, in Perugia, Italy, as a satellite event of the
17th International Conference on Principles and Practice of Constraint Programming. The
preliminary timeline is:

e Participants have to declare their intention to participate by August, 1.

e Deadline for submission for solvers is August, 12.

23

MancQoslI May 24, 2011

Deliverable D5.4 Version 1.0 page 24 of 27

Chapter 5

Conclusion

Running a competition is not as easy as it may seem. Some of the difficulties we encountered
are:

e One has to define a standard environment in which the submitted solvers are executed.
The specification of the environment must be precise enough to prevent that s submitted
solver fails for some trivial reason like non-availability of a library, different version as
expected of a programming language systems or interpreters like perl, python or java, or
too restrictive access rights to directories.

e One has to define precisely the interface of the participating solvers. This does not only
include the syntax and semantics of the command-line arguments used in the competition
to invoke the solver, but also specifying in which way resource restrictions on memory and
cpu time are implemented. For instance, one participant of MISC live 3 was expecting
that only the top-level process of the process group of his solver instance would receive
a SIGUSRI signal shortly before the timeout, where in reality the signal was sent to all
processes. This unexpected signal received by a child process caused the solver to crash,
instead of writing the best solution he had found up to that moment.

e Defining the right rules for electing the winner is tricky. For instance, we had in the MISC
2010 competition four different cases of the outcome of a solver on a particular problem
instance: a solver could (1) give a correct result, (2) declare that he did not find a result,
(3) crash, or (4) propose a solution which is wrong (i.e., a solution which is incoherent or
does not satisfy the request). Only when reviewing the results of MISC 2010 we found
that the distinction between cases (2) and (3) does not make sense since the difference
between the two cases is just catching, or failing to do so, all exceptions that may be
thrown.

Another delicate question was how the running time of solvers should be taken into con-
sideration. The problem is that on the one hand the running time is part of the user
experience and should have some importance when ranking the participants, but that on
the other hand a fast solver that yields bad solutions should never be able to win over a
slow solver that finds very good solutions. We came up with a definition where running
time is only taken into account for breaking ties between participants that have found
equally good solutions in the average.

e Last but not least the results must be reproducible. This implies publishing all the problem
instances used in the competition, instructions to rebuild the execution environment, and

25

Mancaoosl May 24, 2011

source code of all the tools used for verifying and ranking solutions.

We are quite satisfied with the field of participants in the MISC and MISC-live competitions.
In total, we have seen participating solvers from 4 different sites of the Mancoosi project, and
3 different teams who are not part of Mancoosi. Participating solvers are using quite different
combinatorial solving techniques like SAT solving, mixed integer linear programming, pseudo-
Boolean constraints, answer set programming, or graph constraints. Most of the participating
solvers are totally or partly open source (the case where a solver is only partially open source
usually happens when the frontend for encoding CUDF problems is open source but then uses
a solving engine which itself is not open source).

Detailed information about the MISC-live trial runs, the first international MISC competition
2010, and upcoming MISC competitions can be found at the competition web site at http:
//www.mancoosi.org/misc/.

Deliverable D5.4 Version 1.0 page 26 of 27

Bibliography

[AGL*10]

[AT11]

[DCMB*06]

[Sch78]

[TZ08]

[TZ09a]

[TZ09b)]

Pietro Abate, André Guerreiro, Stéphane Lauriere, Ralf Treinen, and Stefano
Zacchiroli. Extension of an existing package manager to produce traces of ugrade-
ability problems in CUDF format. Deliverable 5.2, The Mancoosi Project, August
2010. http://www.mancoosi.org/reports/d5.2.pdf.

Pietro Abate and Ralf Treinen. UPDB infrastructure to collect traces of ugrade-
ability problems in CUDF format. Deliverable 5.3, The Mancoosi Project, Febru-
ary 2011. http://www.mancoosi.org/reports/d5.3.pdf.

Roberto Di Cosmo, Fabio Mancinelli, Jaap Boender, Jerome Vouillon, Berke Du-
rak, Xavier Leroy, David Pinheiro, Paulo Trezentos, Mario Morgado, Tova Milo,
Tal Zur, Rafael Suarez, Marc Lijour, and Ralf Treinen. Report on formal mange-
ment of software dependencies. Technical report, EDOS, 2006.

Thomas J. Schaefer. The complexity of satisfiability problems. In Conference
Record of the Tenth Annual ACM Symposium on Theory of Computing, 1-3 May
1978, San Diego, California, USA, pages 216-226. ACM, 1978.

Ralf Treinen and Stefano Zacchiroli. Description of the CUDF format. Deliv-
erable 5.1, The Mancoosi Project, November 2008. http://www.mancoosi.org/
reports/d5.1.pdf.

Ralf Treinen and Stefano Zacchiroli. Common upgradeability description format
(CUDF) 2.0. Technical Report 3, The Mancoosi Project, November 2009. http:
//www.mancoosi.org/reports/tr3.pdf.

Ralf Treinen and Stefano Zacchiroli. Expressing advanced user preferences in com-
ponent installation. In Roberto Di Cosmo and Paola Inverardi, editors, IWOCE
’09: Proceedings of the 1st international workshop on Open component ecosystems,
pages 31-40. ACM, August 2009.

27

