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Abstract—Feature models are commonly used to specify
variability in software product lines. Several tools support
feature models for variability management at different steps
in the development process. However, tool support for test
configuration generation is currently limited. This test gen-
eration task consists in systematically selecting a set of con-
figurations that represent a relevant sample of the variability
space and that can be used to test the product line. In this
paper we propose PACOGEN to analyze feature models and
automatically generate a set of configurations that cover all
pairwise interactions between features. PACOGEN relies on
constraint programming to generate configurations that satisfy
all constraints imposed by the feature model and to minimize
the set of the tests configurations. This work also proposes
an extensive experiment, based on the state-of-the art SPLOT
feature models repository, showing that PACOGEN scales over
variability spaces with millions of configurations and covers
pairwise with less configurations than other available tools.

I. INTRODUCTION

Feature models (FMs) allow companies to reason over

a large number of variants for their software systems [1].

Several tools exist to manage variability with feature models

[2], debug configurations [3] and to derive specific configu-

rations [4]. However, very few techniques or tool support

the testing activity in software product line engineering.

The size of the variability space is a major challenge for

testing. Realistic feature models can represent millions of

variants, which means that exhaustive testing is impossible

in most cases. For example, the feature model for Arcade

video games in the SPLOT repository [5] is composed of

61 features, but more than 1 million valid products can be

derived from this model.

One challenge consists in selecting a small subset of all

possible configurations for testing. This sample should cover

relevant characteristics of the feature model, while staying as

small as possible. Keeping a small sample is crucial to limit

the effort necessary for testing each selected configuration.

Recent work suggest exploring pairwise coverage [6] to

sample the variability space. The automatic generation of
a minimal set of configurations that cover pairwise interac-
tions faces two challenges: (i) feature models specify depen-
dencies between features which forbid some pairwise feature

interactions; (ii) the generation of a minimal pairwise test
set is a complex optimization problem. Perrouin et al. [7]

and Oster et al. [8] have recently investigated the first issue.

In this work, we explore both issues at the same time

(minimization and dependencies between features).

We propose PACOGEN 1 for the automatic generation of

test configurations that cover all valid pairwise interactions

in a feature model. PACOGEN has two major character-

istics: it processes feature models directly from Eclipse,

the most common IDE for model-driven development; test

generation is based on constraint programming. We choose

constraint programming first because of its flexibility to deal

with dependencies between features for test generation: this

programming paradigm allows us to design a tailor-made

pairwise constraint. Second, unlike SAT-solving, constraint

programming is well suited for optimization problems such

as those related to the minimization of the size of test sets.

PACOGEN users can decide to ask for the smallest test set

that covers pairwise interactions, or they can ask for the

smallest solution that can be found in a given amount of

time (anytime minimization).

The paper presents the following contributions:

1) PACOGEN , a constraint-based testing tool for auto-

matic generation of test configurations that cover all

pairwise interactions in a feature model ;

2) A series of experiment with 69 feature models from

SPLOT 2, one of the largest and up-to-date feature

model repository. The main results show that our

strategy for pairwise generation scales over variability

spaces that specify millions of configurations and that

we can generate less configurations than state of the

art techniques [7], [8].

The rest of the paper is organized as follows. Section

2 presents some background on combinatorial interaction

testing. Section 3 details our constraint-based model of FMs

and how pairwise coverage can be enforced in a set of

test configurations. Section 4 explains how the number of

test configurations can be minimized through the usage of

1http://www.irisa.fr/lande/gotlieb/resources/Pacogen/Pacogen.html
2http://www.splot-research.org/



well-known Constraint Programming techniques. Section 5

presents experiments that compare our approach to other

techniques and that run the generation 69 models from

SPLOT. Finally, Sec. 6 draws some conclusions and per-

spectives of this work.

II. BACKGROUND

This section briefly introduces the metamodel we use to

build feature models. Then, we define pairwise interaction

coverage over a feature model. We also emphasize some

issues that must for the automatic generation of a minimal

test configurations set.

A. Feature models

Perrouin et al. [9] have built a metamodel that formally

captures the definition of a feature model, on the basis of the

work by Schobbens et al. [10]. The metamodel is displayed

in figure 1 and defines the structure of a feature model as

follows:

• A feature model (FEATUREDIAGRAM class) is com-

posed of a set of FEATUREs.

• We distinguish between FEATUREs and PRIMITIVE-

FEATUREs. Our test generation process considers only

interactions between primitive features.

• One parent FEATURE is related to a set of children

features through an OPERATOR or through a binary

constraint. A FEATURE can also have a list of AT-

TRIBUTEs.

• Five different OPERATORs can relate a parent feature

to its children: AND, OR, XOR, OPT, CARD.

• Two CONSTRAINTs can relate features that are not

parent / children: REQUIRE and MUTEX.

Figure 2 displays a small feature model for a car break

system (White et al. [11]). This model conforms to the

metamodel definition. It specifies that a car has a backward

sensor that can associated with a Lateral Range Finder

(LRF) or Forward Range Finder (FRF). A car also has an

optional Automated Driving Controller (ADC). An ADC

must have a Collision Avoidance Breaking (CAB): either

Standard Avoidance (SA) or Enhanced Avoidance (EA). An

ADC also has an option for Parallel Parking (PP). The

feature model specifies two cross-tree constraints: if the PP

option is chosen, then the car must have a LRF; if the EA

is chosen, then the car must have FRF.

B. Pairwise testing for selecting test configurations

Pairwise testing is a particular case of combinatorial
interaction testing (CIT) introduced by Cohen et al. [6]

to sample large test input domains. This test selection

technique focuses on the subset of the input domain that

covers all value combinations for each pair of variables. For

example, the car configuration [ADC, EA, PP, LRF, FRF]

covers the interactions between the following pairs of values:

(ADC,EA); (ADC,PP); (ADC,LRF); (ADC,FRF); (EA,PP);

(EA,LRF); (EA,FRF); (PP,LRF); (PP,FRF); (LRF,FRF).

CIT uses the mathematical structure called a mixed-level

covering array.

Definition 1: A mixed level covering array

MCA(N ; t, k, (v1, v2, ..., vk))

is an N×k array on v symbols, where v =
∑k

i=1 vi, with
the following properties:

1) Each column i (1 ≤ i ≤ k) contains only elements
from a set Di of size vi.

2) The row of each N × t sub-array covers all t-tuples
of values from the t-combination of columns at least
once.

For pairwise testing over feature models, the strength t of

the array is equal to 2, v is the number of primitive features

and all these variables are defined on a domain vi of size 2

(all boolean variables).

A general issue for pairwise test generation is to determine

the number N of necessary lines in the array in order

to cover all interactions between variable pairs. This is a

complex optimization problem that has been tackled mainly

through three types of solutions [12]: algebraic construc-

tions, greedy algorithms and meta-heuristics. However, most

previous solutions consider that all values for all variables

are independent, i.e., all value interactions are possible.

Building a set of pairwise configurations from feature

models requires to think about new generation strategies

because a number of value interactions are forbidden. For

example, the pair (EA = selected, FRF = unselected) is not

a valid pair according to the feature model in figure 2. Thus

the optimization problem we tackle here can be formulated

as follows

Given a feature model we look for the minimum
number of valid configurations that cover all the
authorized interactions between pairs of features.

In the following section we introduce a new constraint

model for feature model that targets both the generation of

valid configurations with respect to the feature model and

the minimization of test configurations to cover pairwise

interactions.

III. FEATURE MODELS AS CONSTRAINTS

Our approach is based on constraint programming through

the mapping of a feature model into a finite domain con-

straint model. This section details our model and the struc-

ture used to generate test configurations for pairwise testing.

We start by recalling what is a global constraint (Sec.III-A).

Then, we detail the constraints generated for modeling

parent/children operators from the feature model and those

generated for handling cross-tree links (Sec.III-B). Finally,

we explain how to enforce pairwise coverage on a set of test

configurations (Sec.III-C). An important contribution of our



Figure 1. A metamodel for Feature Models
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Figure 2. Feature Model of a Car Break System [11]

work is the definition of a new global constraint that enforces

a set of values to be included within a pair of variable

vectors. This constraint was not reported elsewhere, although

the usage of global constraints for handling feature models

was already skeched [13]. The filtering algorithm developed

for this global constraint is a key point of our approach as

it allows pairwise coverage to be enforced within a set of

test configurations.

A. Global constraints

An important feature of constraint programming tech-

niques is their ability to allow users to define new special-

purpose constraints under the form of global constraints.

A global constraint is a relation defined by an interface

(operator’s name and constrained variables), a filtering al-

gorithm and awakening conditions. For example, the global

constraint all different([X1, .., Xn]) constrains the set of

finite domain variables X1, .., Xn to take distinct values

whatever those values. Its filtering algorithm is based on the

matching theory [14] and its awakening conditions may vary

from one implementation to another but often correspond

to the discovery that one of the variables has become

instantiated. In fact, a global constraint is handled as any

primitive constraint by the solver and its filtering algorithm

is launched anytime one of its awakening conditions is

satisfied during constraint propagation.

B. Constraints for feature model links

From a feature model, the problem of generating a

sequence of test configurations enforcing pairwise cover-

age is mainly a constraint modelling problem. The model

includes two sets of constraints: the constraints handling

inheritance links and the constraints handling cross-tree

links. As described above, inheritance links are hierarchical

relations between features (namely, OPT, AND, OR, XOR,

CARD) while cross-tree links are alternative relations among

unrelated features (namely, REQUIRE, MUTEX). Based on

their definition, we have defined dedicated global constraints

to capture these relations. For inheritance links, global

constraints

opt(A, [B,C, ...]), and(A, [B,C, ...]), or(A, [B,C, ...])

xor(A, [B,C, ...], card(A, [B,C, ...], N,M)

holding over two-valued (i.e., 0 and 1) domain variables

are used. These relations express the hierarchical relation

among the feature parent A and his children B,C, .... The

cardinality global constraint existed already in the CP com-

munity [15]. In addition to the A,B,C, ... variables, it takes



two additional variables N and M as inputs for the minimum

and maximum number of children, but these variables are

always instantiated in feature models. For REQUIRE and

MUTEX, we encoded the corresponding logical relations

(implication and mutual exclusion respectively) onto the

two-valued domain variables associated to feature children.

No further details on these relations are necessary as they

are trivial to implement.

C. Enforcing pairwise coverage through constraints

In order to build a sequence of test configurations enforc-

ing pairwise coverage of a given feature model, we defined

a specific data structure that is incrementally filled in. The

data structure is basically a matrix with columns containing

values of all the features and rows representing test configu-

rations. Our framework fills in this matrix in order to find a

sequence of test configurations (the rows of the matrix) that

covers the pairwise criterion. At the begining of the process,

the matrix is filled in with two-valued unknown variables

and its size is positionned to a sufficently large constant3 as

the number of test configurations is unknown (and cannot

be computed from analytical results [16]). At the end of the

process, this matrix encodes a solution of the problem, that

looks like:

Conf.�Feat. A B C ...
1 1 0 0 ...
2 0 1 1 ...
... ...

Enforcing pairwise coverage within this matrix data structure

requires each pair of feature values to be included in the

matrix. This requirement is implemented through the usage

of a new global constraint, also called pairwise. This relation

holds over a variable I representing an unknown line in the

matrix and two vectors of feature values corresponding to

columns of the matrix. The constraint enforces a specific

pair of values (e.g., (1, 1)) to be included in the vectors.

For example, pairwise(I, ([X1, X2, X3], [Y1, Y2, Y3]), (1, 1))
constrains an unknown row I of a 3-rows matrix to contain

the pair (1, 1), meaning that the corresponding features

should be included within the test configuration of rank

I . The domain of I is 1..3 in this example. During the

final labelling step, if I becomes instantiated to 2 then

(X2, Y2) = (1, 1) whereas if X3 is instantiated to 0 then

3 will be removed from the domain of I . In this latter

case, the pair (X3, Y3) cannot be equal to (1, 1) but there

is not enough information to instantiate the variables. The

constraint pairwise will be suspended until more information

becomes available.

The filtering algorithm shown below is used for constraint

pairwise(I, (L1, L2), (v1, v2)), where I is finite domain vari-

able, L1 and L2 are two lists of finite domain variables,

and (v1, v2) is a pair of values. This algorithm is launched

3In practice, we used the value 50

Input: I a finite domain, L1, L2 two lists of finite

domains of the same size and (v1, v2) a pair of

integer values

Output: Fail or pruned domains for (I, L1, L2)

function pairwise(I, (L1, L2), (v1, v2))
I ′ ← I, T1 ← ∅, T2 ← ∅;
foreach i ∈ I do

if (v1 �∈ L1[i]) or (v2 �∈ L2[i]) then
I ′ = I ′\{i}

else
T1 ← T1 ∪ L1[i], L′

1[i]← L1[i];
T2 ← T2 ∪ L2[i], L′

2[i]← L2[i];

if I ′ = {a} then
L′
1[a] = v1; L′

2[a] = v2; return ({a}, L′
1, L

′
2);

else if (I ′ = ∅ or v1 �∈ T1 or v2 �∈ T2) then
return Fail

else
return (I ′, L′

1, L
′
2)

each time at least one of the domains of I ,L1[i] or L2[j]
is pruned (awakening conditions). The underlying idea is to

explore each of the possible values of I and to determine

whether this value is still consistent with the domain of other

variables. The complexity of this algorithm is linear w.r.t. the

domain size of I , as it iterates only on the possible values

of I .

IV. PAIRWISE COVERAGE AS A TIME-CONSTRAINED

MINIMIZATION PROBLEM

As said previously, finding the minimum number of test

configurations covering the pairwise criterion is a challeng-

ing problem. This section explains how this problem can

be addressed using the constraint model described above.

We explain first how to formulate it as an optimization

problem (Sec.IV-A), and second, we solve it using an

anytime labelling search procedure (Sec.IV-B).

A. An optimization problem

Our goal is to find the minimum number of test configu-

rations, i.e., the minimum number of lines to instantiate in

the matrix for covering the pairwise criterion. This can be

achieved by searching the minimum of a cost function f , as

follows:

Find I1, ..., I4n2 such that Min(f)
And ∀i, j in 1..n,
pairwise(Ik, (CA, CB), (1, 1)),
pairwise(Ik+1, (CA, CB), (1, 0)),
pairwise(Ik+2, (CA, CB), (0, 1)),
pairwise(Ik+3, (CA, CB), (0, 0))
where n denotes the number of features while the CA, CB

denote the columns of the matrix representing features A



and B. Each Ik denotes the line of the matrix. Note that

additional constraints implicitly enforce all the CA[i], CB [j]
to be part of the feature model.

Several functions can be considered for minimization. In

our framework, we explored two semantically equivalent

formulations, namely

f1 =
∑

k∈1..4n2 Ik and f2 = Maxk∈1..4n2Ik
Both functions can be used in order to find the minimum

number of values for the Ik, such that pairwise is satisfied in

the matrix. For solving the optimization problem, we used

the well-known branch-and-bound method that explores

feasible solutions while maintaining the cost function as

low as possible. Roughly speaking, at each node of the

search tree, the branch-and-bound method evaluates the cost

function, prunes subtrees for which the cost will be clearly

higher than a current value and selects the subtree that

has the least cost. Several parameters impact the search,

including the way variables and values are selected for

labelling. Another characteristic of the constraint solving

techniques we used is their versatility for addressing feature

models. This has already been reported in the literature [17].

In particular, additional constraints can easily be defined to

take into account extended feature models and several search

heuristics can be exploited to generate test configurations. In

our framework, we selected the variable with the smallest

domain to be enumerated first and from the domain of this

variable, we selected the smallest value first. Other heuristics

may be chosen but our experimental results showed that

these ones are sufficient to handle the largest feature models.

B. Anytime minimization

The constraint solving techniques used in our framework

share an interesting property with anytime algorithms [18]:

they can be stopped at any time or can be given a time or

resource contract. In our framework, we gave a time-contract

to the branch-and-bound method. As a result, as soon as a

first feasible solution has been found, it returns the optimal

number of test configurations enforcing pairwise coverage,

found only in a given amount of time (ranging from a few

seconds to more than three hours). Of course, better feasible

solutions might be found if more time is allocated to the

search. However, allocating a time-contract to the search

permits one to balance advantageously between quality of

the solution w.r.t. time needed to find it.

In our experiments, we observed that the branch-and-
bound method computes good-quality solutions (i.e., near-

optimal solution) in little amount of time and most of

the remaining time is used to prove that no better quality

solutions really exist. Hence, by relaxing the problem to the

finding of near-optimal solutions only, we got a very efficient

way to solve our challenging minimization problem.

V. PACOGEN

In this section, we present our PACOGEN implementation

and we show how it processes a feature model for generating

a set of valid pairwise-covering test configurations (i.e., a

set of configurations that covers all pairwise interactions

between features). PACOGEN has characteristics that make it

suitable for software product line engineering (SPLE). First,

the input Feature Model is interpreted as an instance of the

metamodel of Fig.1. This design decision is meant to include

PACOGEN directly in a modelling environment dedicated

to SPLE. In addition, the processing of Feature Models is

independant from the test configurations generation process

Second, we used constraint programming to develop PACO-

GEN , which is flexible enough to easily customize the test
configurations generation process.

Implementation. The test configurations generation pro-

cess shown in Fig.3 can be explained as follows: first,

PACOGEN transforms the feature model into a constraint

model ; second, it adds all the valid pairs under the form

of pairwise constraints to the constraint model and then it

fills in a special data structure, called constrained matrix,

with constrained variables ; third, all the variables in the

matrix are labelled in order to satisfy pairwise coverage. We

implemented this process within the PACOGEN tool that is

freely available4. PACOGEN contains four main components:
1) FM Analyzer: this component transforms a feature

model into a constraint model, under the form of an
abstract syntax tree. As an example of the concrete
structure generated within PACOGEN , consider the
constraint model generated for the Car Break System
FM example of Fig.2 (called CarFM in the follow-
ing) that is shown below. FList corresponds to the
features, while CList represents the relations, and
solver corresponds to the call to the constraint
solver with a list of parameters.
FList=[CAR,ADC,CAB,SA,EA,PP,BACKSENSOR,LRF,FRF],
CList=[and(CAR,[BACKSENSOR]),opt(CAR,[ADC]),

and(ADC,[CAB],opt(ADC,[PP]),
or(CAB,[SA,EA]),opt(BACKSENSOR,[LRF,FRF]),
require(PP,LRF), require(EA,FRF)]

solver(FList,CList,Size,TimeOut,Minimization).

Size corresponds to an over-estimation of the size

of the matrix. This parameter can be used both for

proving that there is no solution under a given three-

shold or to refine an existing bound. A default value

of 50 is usually a good threeshold to start with, but

note that the minimization process will always try

to find the smallest size within 1 and the parameter

value. TimeOut and Minimization allow the user

to customize the anytime minimization step with its

own values. Default values can be used for those who

have not any requirement on the test configurations
generation time or the size of the test set.

2) Consistency checker: this component evaluates the

FM constraints within the constrained matrix data

4www.irisa.fr/lande/gotlieb/resources/Pacogen/
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Figure 3. The test configurations generation process of PACOGEN

structure. The matrix has size K × n where K is the

number of features while n is an over-estimation of

the number of configurations.
3) Pairwise Constraint Generation: this component

adds the global constraints that enforce pairwise cov-
erage in the test configuration generation process.
For the CarFM example, 103 pairwise constraints are
generated, such as:

PAIRWISE(I1, ((CCAR,CADC), (1, 0)),

PAIRWISE(I2, ((CCAR,CADC), (1, 1)),

PAIRWISE(I3, ((CCAR,CCAB), (1, 1)),

...

where

CCAR =

⎛
⎜⎜⎜⎝

CAR1

CAR2

.

.

.
CARn

⎞
⎟⎟⎟⎠ CADC =

⎛
⎜⎜⎜⎝

ADC1

ADC2

.

.

.
ADCn

⎞
⎟⎟⎟⎠ CCAB = ...

4) Pairwise test configurations generation: this compo-

nent calls the constraint solver and the anytime mini-

mization process. It generates the first-found solution

under the form of an instantiated constrained matrix,

such as the one shown in Fig.4.

Tool validation. In order to validate our tool PACOGEN ,

we implemented some automated analysis and checked our

tool results with published results:

• we computed the total number of valid test configura-

tions with PACOGEN and checked the results with those

provided by the SPLOT repository [5]. On all the cases

but one, PACOGEN gave us the published results. After

investigation, it turned out that the FM for which we

found a difference was due to an interpretation differ-

ence within the cross-tree constraints of SPLOT. We

corrected our constraint model to mimic the semantics

of SPLOT cross-tree constraints ;

• on every SPLOT FM, we checked that all pairwise

interactions were actually covered by 1) generating all

possible pairs of features without cross-tree constraints,

and 2) checking that all pairs uncovered by PACOGEN

were indeed invalid pairs (i.e., pairs that do not satisfy

the cross-tree constraints specified by the FM). The

results showed that PACOGEN behave as expected.

VI. EXPERIMENTAL EVALUATION

This section introduces a series of experiments to evaluate

Pacogen w.r.t. available techniques and tools. We performed

these experiments on the SPLOT repository [5], which

contains more than a hundred FMs. SPLOT has been devel-

oped to support empirical studies on the performance and

scalability of automated techniques for reasoning on FMs.

All the experiments were performed on a standard Intel Core

i7 CPU 2.67GHz with 4GB memory.

A. Experimental results

The goal of our first experiment was to evaluate the

capability of PACOGEN to find the minimum set of test con-
figurations that covers all the pairwise interactions among

features. Although the approach of Oster et al. [8] do not

explicitely target this objective (see below in the related
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Figure 4. A constrained matrix solution covering all pairwise interactions of the CarFM

Feature models #F #N Oster et al. 2010 PACOGEN Gain

crisis management 17 – 15 5 -66.7%
Smart Home 35 1 048 576 11 8 -27.3%
Inventory 37 2 028 096 12 15 +20%
Sienna 38 2 520 24 20 -16.7%
Web portal 43 2 120 800 26 16 -38.5%
Doc generation 44 5.57.107 18 17 -5.5%
Arcade Game 61 3.3.109 25 14 -44.0%
Model Transformation 88 1.65.1013 40 26 -35.0%
Coche Ecologico 94 2.32.107 114 92 -19.3%
Electronic shopping 287 2.26.1049 62 37 -40.3%
Average 74.4 – 34.7 25 -29.2 %

Table I
NUMBER OF TEST CONFIGURATIONS ENFORCING PAIRWISE

work section), its greedy algorithm also aims at minimizing

the number of configurations and it is currently considered

as the most efficient approach for this task [7]. Tab.I shows

the experimental results we got with PACOGEN and how it

compares with the results of [8] on ten FMs from SPLOT.

Tab.I contains the number of features of each FM (#F),

the number of valid configurations (#N) to characterize

the size of the search space, the results of both [8] and

PACOGEN in terms of number of configurations to cover

all the valid pairwise interactions between features, and

finally the gain obtained with PACOGEN . Negative gains

indicate that PACOGEN proposes less configurations than

other approaches, which was the main objective of our work.

The goal of this experiment was to evaluate the minimization

process and thus we did not try to optimize on the test

configuration generation time. In all the cases but one,

the generation time required by PACOGEN was less than a

few minutes. On Electronic shopping, PACOGEN took 12
hours to get an optimal result which remains an acceptable

amount of time for a one-shoot generation. The results

indicate that, in average, our approach requires 28.2% lesser

configurations than the [8] results. In real-world applications,

testing a configuration may be costly because it may require

to build the configuration with physical components, to set

up a dedicated testing environment and to execute a time-

consuming result evaluation process. Depending on the cost

and time required to test a configuration, the improvement

we got with PACOGEN may be crucial. Still, there is an

anormal result for Inventory where PACOGEN selected more

configurations of the results given in [8]. We manually

double-checked the results of PACOGEN without finding

how to get a smaller value than 15 for covering all the

valid pairwise interactions on this example. Apart from this

example, our results show that the PACOGEN approach is

well-suited to find the minimum number of configurations

that cover all the pairwise interactions of features in a FM.

The goal of our second experiment was to evaluate the

anytime minimization process of PACOGEN , which permits

to find the best compromise between generation time and

result quality. We conducted a large-scale experiment over

67 FMs extracted from SPLOT that is reported in Fig.5. We

launched PACOGEN to compute the minimum number of test

configurations by allocating 2 seconds, 10 seconds, 3 min

and 15 min to the anytime minimization process. First, the

curve shows that PACOGEN can provide an optimal solution

(a minimum set of test configurations covering all pairwise

feature interactions) in less than 15min in all the cases.

Second, the anytime minimization process is interesting to

refine the set of configurations in a number of cases. For

almost half of the FMs, the anytime minisation process has

been useful. Third, the number of test configurations that

is refined during this process is usally very small ; there

are ony two cases where the number of configurations is

refined of more than 5 configurations. These results show

that PACOGEN implements a usefull anytime minimization

process that has potential to help finding good compromises

between number of configurations and generation time.



Figure 5. Number of test configurations using various time-allocations

B. Threats to validity

External threats to validity lie on the source of the

empirical data. We have selected our subjects in the SPLOT

repository, which allowed us to experiment over a large set

of models and to compare our results to Oster’s. However,

SPLOT is fed with models that mostly come from academia

and might not perfectly reflect industrial usage of feature

models in terms of number of features and size of the

variability space. The threats to internal validity come from

biases that can be introduced by errors in the prototypes

we used to perform our experiments. In order to limit these

threats, we performed exhaustive unit testing on the transfor-

mations used PACOGEN in addition to the tests mentionned

in Sec. V.

VII. RELATED WORK

Benavides et al. [1] surveyed the various constraint mod-

els that have been proposed in the literature. In particular,

Constraint Satisfaction Problems (CSPs) have been used to

encode automated analyses such as filtering the configu-

rations or checking the consistency of the feature model

(e.g., dead feature, valid product). Recently, Karatas et al.

proposed the usage of global constraints for handling with

extended feature models [19], [13]. Our approach shares

similarities with these works, as our model is also based

on finite domain constraints filtering. However, it differs on

its goals, our approach being targeted to generate pairwise

covering set of configurations, and on its underlying tech-

nology. A key-point of our approach is the development

of a new global constraint (i.e., pairwise) and the usage

of a time-contract optimization labelling procedure, that

both are unavailable elsewhere. Another trend in Software

Product Line Testing is related to the usage of SAT-solving

to generate test configurations [1]. The recent work of

Uzuncaova et al. [20] showed that an extended SAT solver

could be used to incrementally generate test inputs for

each product in a product line. However, one advantage of

Constraint Programming over SAT-solving is its capability

to solve optimization problems, instead of pure satisfiability

problems [21]. The problem we attacked in this paper is

clearly an optimization problem (i.e., to generate the smallest

set of configurations ensuring the coverage of the pairwise

criterion over the possible feature values).

The main related work that share our testing objectives are

the proposals by Perrouin [7] and by Oster [8]. Perrouin et

al. transform feature models in Alloy to select configurations

that are valid with respect to the initial model. This approach

was the first work to propose the adaptation of pairwise

testing in the context of feature modelling, but it faces

scalability issues. First because it uses a generate-and-test
approach to select the valid pairs that must be covered (gen-

erate all possible pairs, then filter all invalid pairs). Second,

the Alloy model needs to be transformed in CNF formulae

before it can be solved by SAT solvers. This additional

step increases the scalability problems. Our approach limits

these problems by adopting a test-and-generate approach

for identifying valid pairs and by transforming the feature

model directly into constraint problem over finite domains.

Oster et al. deal with dependencies between features by

a flattening transformation over the feature model and the

adaptation of the AETG [6] algorithm in order to consider

dependencies between features. The authors do not provide a

detailed description of their transformation process, but their

experimental results are good. Their approach is efficient

and effective: it can select a small number of configurations

over large feature models in very reasonable times. These

work can be seen as an extension of those of Cohen et

al. [22] where a SAT-solver is used to build a greedy ap-

proach tackling the problem of dependencies within highly-

configurable systems. However, nor this approach or Olster’s

or Perrouin’s work tackle the selection of the minimum

number of configurations to cover pairwise interactions.



In our work, we propose a deterministic (as opposed to

“greedy”) approach able to compute the optimal number of

configurations. If necessary, our approach can be relaxed

by using a time-contract process to provide a near-optimal

value. In addition, our work is the first to perform a large

experiment on a significant set of feature models .

VIII. CONCLUSIONS AND PERSPECTIVES

In this work we proposed PACOGEN a tool for generating

a set of test configurations from FM that covers all the

valid pairwise interaction among features. The tool offers an

anytime minimization process that allows the user to define

an objective stipulating the amount of time he allocates to the

generation. Based on Constraint Programming techniques

including a dedicated branch-and-bound algorithm, the tool

returns the minimum number of configurationd found in the

allocated time. We conducted a large-scale experiment over

67 FMs extracted from the SPLOT repository [5] showing

that 1) PACOGEN overcomes the State-Of-the-Art technique

of [8] in terms of number of configurations and 2) the

anytime minimization process is useful in practice. More

precisely, PACOGEN generated 29.2% less configurations

than [8] in average and generated the optimal number of

configurations for the 67 FMs in less than 15 minutes.

On the basis of these promising results we plan first

to continue investigating constraint-based exploration of

variability spaces in future work. In particular, we plan to

include the values of attributes associated to features in the

selection process. For example, if features are associated to

execution times, or energy consumption, it is possible to

reuse our constraint model to optimize quality of service

requirements. Second, we will investigate extensions of our

work to consider the relationships between several variability

spaces. For example, in component-based systems, the con-

figuration of one component can have an impact on the way

another component can be configured. Thus, when sampling

the configuration space for the first component it is necessary

to consider the dependencies with the configuration space of

the second component. This should prevent selecting only

configurations that force the second component to be in a

narrow area of its configuration space.
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