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1 Introduction and motivation

Reed-Solomon (RS) codes form an important and well-studied family of codes. They were first proposed
in 1960 by Reed and Solomon in their original paper [RS60]. They are widely used in practice [WB99]. RS
codes can be efficiently unique decoded [Gao02] and [Jus76]. Sudan’s 1997 breakthrough on list decoding
of RS codes [Sud97], further improved by Guruswami and Sudan in [GS98], showed that RS codes are
list decodable up to the Johnson bound in polynomial time. DECODING is a C library whose main goal
is to implement as efficiently as possible the Guruswami-Sudan algorithm. It is written in C89 and is
stand-alone.

1.1 The Guruswami-Sudan algorithm

The DECODING library is devoted to algorithms concerning the Guruswami-Sudan list decoding scheme
and does not limit itself to finite fields as it is often the case in coding theory. Let us fix a finite ring with
identity A not necessarily commutative. The Guruswami-Sudan algorithm has two main steps. The first
one (interpolation step) consists in finding a “curve” of equation Q(X,Y) = 0 in A% which passes through
given points with certain multiplicities. The second step (root-finding) finds the roots of Q(X,Y’) seen in
(AXD[Y].

The interpolation step dominates the cost of the whole Guruswami-Sudan algorithm. Many methods
have been proposed but without any available implementations or comparisons to other ones. A few timings
of the Guruswami-Sudan algorithm can be found, but again without the corresponding implementation.

2 The implementation

To the knowledge of the author no implementation of the Guruswami-Sudan algorithm has been proposed.
The only available implementation is constituted by a set of C4++ functions, not directly accessible, inside
PERCY++ [Gol07] whose purpose is not error correction and which does not use fast algorithms for dense
bivariate polynomials.

2.1 The algorithms provided by decoding

The implemented algorithm for interpolation is a variant of the Koetter algorithm [McEO03] in the
include/decoding/algos/koetter.c file. It uses polynomial arithmetic with fast bivariate shifting (com-
putation of Q(X + xo,Y + yo) where (z9,y0) € A2%) in include/decoding/algos/dbpol shift fast.c
and fast univariate shifting (computation of f(X + xg9) where f € A[X] and zp € A) in
include/decoding/algos/upol _shift _fast.c. Specific variants of these algorithms for commutative
rings of characteristic 2 are also present in the same files.
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The second step (root-finding) implemented in the library is a variant of the Roth and Ruckenstein
algorithm [RR98] and the naive algorithm of [BLQ11]. It is in include/decoding/algos/dbpol _Xroots.c.

2.2 The design of decoding

The DECODING library is designed to be easy to use in a C or C4++ program. One of its particularities is to
use the C preprocessor to generate algorithms for a ring (generally a finite field) which must be provided
by the end-user. Therefore efficient libraries like MPFQ [GT06] can be used by the end-user. For the sake
of completeness, some finite fields are provided by default.

Error correcting code are often regarded over finite fields, in particular Fy, together with the classical
Hamming distance. But other distances, like the Lee distance, are better suited for some applications.
Usually the Lee distance is needed for codes over Galois rings. Error correcting codes over the ring of ma-
trices over a finite field or a finite commutative ring are also considered for example in [OSB12|. Therefore
DECODING proposes generic algorithms whenever possible. This flexibility is needed when studying codes
over Galois rings for example where the end-user needs to manipulate codes over a Galois ring and its
residue field at the same time.

Although DECODING proposes certain fast bivariate polynomial algorithms, it is not its goal to propose
fast algorithms for univariate and bivariate polynomial multiplication. In fact, DECODING is designed to
be used in conjunction with other efficient libraries like GMP [Gra9l], NTL [Sho90] or FLINT [Harl0].
For the sake of completeness DECODING provides these algorithms in their “schoolbook” form but it is
recommended, for efficiency, to use external libraries.

A very simple mechanism using the C preprocessor allows one to override the default generic algorithms
proposed by DECODING. For example see at the include/decoding/rings/GF5.c file which implements
the finite field F5. It shows how to replace the univariate polynomial root finding over F5. All C macros
that control this mechanism are in the include/decoding/ring reset.h file.

3 Presentation

The DECODING library is the first library which proposes a flexible and efficient way to implement algorithms
related to the Guruswami-Sudan decoding scheme. It can be used with efficient external libraries to obtain
more efficient implementations of Guruswami-Sudan related algorithms.

I will first present quickly the history of the Guruswami-Sudan algorithm and show that it needs dense
bivariate polynomials only available, not necessarily directly, in computer algebra systems such as MAGMA
[BCPI7] or MATHEMAGIX [H102]. As error correcting codes are often used over binary fields, dedicated
fast algorithms must be used. The bivariate polynomials appearing in the list decoding algorithms can
have large degrees even when RS codes with small parameters are considered. Hence fast algorithms are
needed.

I will then present the flexibility of DECODING, needed to obtain efficient algorithms over several finite
rings and fields.

o It is easy to replace a key algorithm, such as univariate polynomial multiplication or univariate
polynomial root-finding, by a very efficient one provided by an external library such as FLINT or
NTL for example.

e It is easy to choose a finite ring or a finite field, or even to use different rings at the same time in
order to implement algorithms related to RS codes over Galois rings. The DECODING library is not
restricted to mathematical object whose binary representation holds in a single machine word. It
requires no supplementary efforts to use, for example, multiple precision integers from GMP or large
binary fields from MPFQ.
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Finally, I will present the provided algorithms concerning dense bivariate polynomials and their appli-
cations to list decoding.
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