
HAL Id: hal-00700571
https://inria.hal.science/hal-00700571

Submitted on 23 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resilience for Collaborative Applications on Clouds
Toan Nguyen, Jean-Antoine Desideri

To cite this version:
Toan Nguyen, Jean-Antoine Desideri. Resilience for Collaborative Applications on Clouds.
ICCSA2012 - 12th International Conference on Computational Science and Its Applications, Uni-
versidade Federal de Bahia, Jun 2012, Salvador de Bahia, Brazil. pp.418-433. �hal-00700571�

https://inria.hal.science/hal-00700571
https://hal.archives-ouvertes.fr


 

 

Resilience for Collaborative Applications on Clouds 

Fault-Tolerance for distributed HPC applications 

 

Toàn Nguyên and Jean-Antoine Désidéri 

Project OPALE 

INRIA 

38334 Saint-Ismier, France 

{Toan.Nguyen, Jean-Antoine.Desideri}@inria.fr 

 

 

Abstract. Because e-Science applications are data intensive and require long 

execution runs, it is important that they feature fault-tolerance mechanisms. 

Cloud and grid computing infrastructures often support system and network 

fault-tolerance. They repair and prevent communication and software errors. 

They allow also checkpointing of applications, duplication of jobs and data to 

prevent catastrophic hardware failures. However, only preliminary work has 

been done so far on application resilience, i.e., the ability to resume normal ex-

ecution following application errors and abnormal executions. This paper is an 

overview of open issues and solutions for such errors detection and manage-

ment. It also overviews the implementation of a workflow management system 

to design, deploy, execute, monitor, restart and resume distributed HPC applica-

tions on cloud infrastructures in cases of failures. 

Keywords: High-Performance Computing; Cloud Computing; Distributed 

Computing; Scientific Applications; Workflows; Resilience. 

1  Introduction 

Scientific applications are required today to design, simulate, optimize and manu-

facture artifacts, ranging from nanotubes to electronic devices and cruisers to airlin-

ers. 

In order to design quickly these artifacts, long running simulations are executed. 

For example, multi-discipline scenarios are implemented, where hydraulic, thermic, 

fluid and electromagnetic simulation software collaborate for the design of nuclear 

plants. 

Long running executions lasting days and even weeks on large HPC clusters suffer 

from reliability problems concerning the hardware and software infrastructures 



 

 

[15][17]. Fault-tolerance mechanisms are therefore required. They tend to be multi-

level, each aspect corresponding to a different level with its specific sources of errors: 

network communications, distributed middleware, operating systems, collaborating 

application codes.  

The efforts on application errors tend to be the focus of active research today. This 

is due in part to optimization concerns, and to another part for fault-tolerance con-

cerns [16]. 

Optimization concerns target the speed-up of CPU and data intensive demanding 

applications [3]. Parallelization techniques take advantage today of multi-core super-

computers. However the 100K+ multi-core HPC clusters today are error-prone and 

their mean-time between failures is in the order of minutes [13]. Therefore, effective 

and low-overhead fault-tolerance application algorithms and codes are necessary. 

Further, applications misbehavior and errors have multiple origins, which are not 

necessarily programming errors. They might originate in unforeseen data configura-

tions, especially in simulation applications, unexpected data values, unpredictable 

behaviors in case of multiple errors cumulating abnormalities, etc. 

Important efforts are required to handle these complex abnormal application situa-

tions [4][8][14]. 

This paper addresses the management of application errors and abnormal behavior. 

It defines terms (section 2), addresses open issues and solutions for error detection 

(Section 3) and error management (Section 4). It sketches also implementation issues 

using a workflow management system (Section 5). Section 6 is a conclusion. 

A prototype system based on a distributed workflow platform for the design, de-

ployment, execution and monitoring of HPC applications is briefly described. The 

platform features resilience capabilities to address the application runtime errors. 

2 Definitions 

Because many terms are used in the fault-tolerance area, we give in this section a 
definition of various terms used in the domain and pave the way for an ontology of the 
required concepts. 

An interesting definition of errors, faults and failures is given in a system such as 
Apache’s ODE [11], system failures and application faults address different types of 
errors. 

2.1 Errors 

The generic term error is used to characterize abnormal behavior, originating from 

hardware, operating systems and applications that do not follow prescribed protocols 

and algorithms. Errors can be fatal, transient and warnings, depending on their critic-

ity level. Because sophisticated hardware and software stacks are operating on all 

production systems, there is a need to classify the corresponding concepts (Figure 1).  



 

 

2.2 Failures 

 
A failure to resolve a DNS address is different from a process fault, e.g., a bad ex-

pression. Indeed, a system failure does not impact the correct logics of the application 
process at work, and should not be handled by it, but by the system error-handling 
software instead: “failures are non-terminal error conditions that do not affect the nor-
mal flow of the process” [11]. 

2.3 Faults 

However, an activity can be programmed to throw a fault following a system fail-
ure, and the user can choose in such a case to implement a specific application behav-
ior, e.g., a number of activity retries or its termination. 

Application and system software usually raise exceptions when faults and failures 
occur. The exception handling software then handles the faults and failures. This is the 
case for the YAWL workflow management system [19][20], where specific exlets can 
be defined by the users [21]. They are components dedicated to the management of 
abnormal application or system behavior (Figure 2). The extensive use of these exlets 
allows the users to modify the behavior of the applications in real-time, without stop-
ping the running processes. Further, the new behavior is stored as a component work-
flow which incrementally modifies the application specifications. The latter can there-
fore be modified dynamically to handle changes in the user requirements.  

 

 

Fig. 1. Resilience domains and concepts. 

2.4 Fault-tolerance 

Fault-tolerance is a generic term that has long been used to name the ability of sys-
tems and applications to handle errors. Transactional systems for example need to be 
fault-tolerant [9]. Critical business and scientific applications need to be fault-tolerant, 
i.e., to resume consistently in case of internal or external errors. 



 

 

2.5 Checkpoints 

Therefore checkpoints need to be designed at specific intervals to backtrack the ap-
plications to consistent points in the application execution, and restart be enabled from 
there. They form the basis for recovery procedures. 

In the following, we call checkpoint for a particular task the set including task defi-
nition, parameter specifications and data associated to the task, either input data or 
output data and the parameter values.  

This checkpoint definition does not include the tasks execution states or contexts, 
e.g., internal loop counters, current array indices, etc. Therefore, we assume that 
checkpointed tasks are stored stateless. This means that interrupted tasks, whatever the 
reasons and errors, cannot be restarted from their exact execution state immediately 
prior to the errors.  

2.6 Recovery 

We assume therefore that the recovery procedures must restart the failed tasks from 
previously stored elements in the set of existing tasks checkpoints. A consequence is 
that failed tasks cannot be restarted on the fly, following for example a transient non 
fatal error. They must be restarted using previously stored checkpoints. 

 

 

Fig. 2. Error management. 

2.7 Resilience 

Application resilience is the property of software that are able to survive consis-
tently from data and code errors (Figure 2). This area is a major concern for complex 
numeric software that deal with data uncertainties. This is particularly the case for 
simulation applications [7]. 

This is also a primary concern for the applications faced to system and hardware er-
rors. In the following, we include both (application external) fault-tolerance and (inter-
nal) robustness in the generic term resilience [1]. 

Therefore we do not follow here the definition given in [17]: “By definition a fail-
ure is the impact of an error itself caused by a fault.”  



 

 

But we fully adhere to the following observation: “the response to a failure or an 
error depends on the context and the specific sensitivity to faults of the usage scenar-
ios, applications and algorithms” [17]. 

3 Error Detection 

3.1 Error Characterization 

 

We address in this paper application errors, e.g., out of bounds data values, unde-

fined parameters, execution time-outs, result discrepancies and unexpected values. We 

do not address communication, hardware and operating systems errors. We suppose 

that they are handled by the appropriate fault-tolerance sub-systems, which might au-

tomatically correct some of them or take appropriate corrective action, e.g., re-routing 

lost messages. We also suppose that these errors can be signaled to the application-

level software by the appropriate raising of exceptions and posting of signals. Thus, the 

applications can take whatever actions are needed, e.g., re-executing tasks on other 

resources in case of network partition, out-of-memory execution, etc. This can be de-

fined by the application designers and even by the application users at runtime. 

The early characterization of errors is difficult because of the complex software 

stack involved in the execution of multi-discipline and multi-scale applications on 

clouds. The consequence is that errors might be detected long after the root cause that 

initiated them occurred. Also, the error observed might be a complex consequence of 

the root cause, possibly in a different software layer. 

Similarly, the exact tracing and provenance data may be very hard to sort out, be-

cause the occurrence of the original fault may be hidden deep inside the software stack. 

Without explicit data dependency information and real-time tracing of the compo-

nents execution, the impacted components and associated results may be unknown. 

Hence there is a need for explicit dependency information [10]. 

3.2 Error ranking 

The ranking of errors is dependent on the application logic and semantics (e.g., de-

fault values usage). It is also dependent on the logics of each software layer composing 

the software stack. Some errors might be recoverable (unresolved address, resource 

unavailable…), some others not (network partition…). In each case, the actions to 

recover and resume differ: ignore, retry, reassign, suspend, abort... 

In all cases, resilience requires the application to include four components: 

• a monitoring component for (early) error detection, 

• a (effective) decision system, for provenance and impact assessment, 

• a (low overhead) checkpointing mechanism, 

• an effective recovery mechanism. 



 

 

Further, some errors might be undetected and transient. Without explicit data depend-

ency information and real-time tracing of the components execution, the impacted 

components and associated results may be unknown. Hence there is a need for explicit 

dependency information between the component executing instances and between the 

corresponding result data [12]. 
 
 

 

Fig. 3. Resilience sub-system. 

3.3 Resilience Sub-system 

 

A sub-system dedicated to application resilience includes therefore several compo-

nents in charge of specific tasks contributing to the management of errors and consis-

tent resuming of the applications (Figure 3). First, it includes an intelligence engine in 

charge of the application monitoring and of the orchestration of the resilience compo-

nents [5]. This engine runs as a background process in charge of event listening dur-

ing the execution of the applications. It is also in charge of triggering the periodic 

checkpointing mechanism, depending on the policy defined for the applications being 

monitored [22]. It is also in charge of triggering the message-logging component for 

safekeeping the messages exchanged between tasks during their execution. This com-

ponent is however optional, depending on the algorithms implemented, e.g., check-

pointing only or hybrid checkpoint-message logging approaches. Both run as back-

ground processes and should execute without user intervention. Should an error occur, 

an error detection component that is constantly listening to the events published by 

the application tasks and the operating system raises the appropriate exceptions to the 

monitoring component. The following components are then triggered in such error 

cases: an optional provenance component which is in charge of root cause characteri-

zation, whenever possible. An impact assessment component is then triggered to 

evaluate the consequences of the error on the application tasks and data, that may be 

impacted by the error. Next, a recovery component is triggered in charge of restoring 

the impacted tasks and the associated data, in order to re-synchronize the tasks and 

data, and restore the application to a previous consistent state. A resuming component 



 

 

is finally triggered to deploy and rerun the appropriate tasks and data on the comput-

ing resources, in order to resume the application execution. In contrast with ap-

proaches designed for global fault-tolerance systems, e.g., CIFTS [15], this functional 

architecture describes a sub-system dedicated to application resilience. It can be im-

mersed in, or contribute to, a more global fault-tolerance system that includes also the 

management of system and communication errors. 

 

 

Fig. 4. Error detection and assessment. 

4 Error Management 

Many open issues are still the subject of active research concerning application 

resilience. The paradigm ranges from code and data duplication and migration, to the 

monitoring of application behavior, and this includes also quick correctness checks on 

partial data values, the design of error-aware algorithms, as well as hybrid 

checkpointing-message logging features (Figure 3). We focus here only on 

application errors. We do not address hardware, systems and communication errors. 

We suppose that these errors are fully treated by the appropriate system components 

[15][22]. We further suppose that they can be signaled to the applications by some 

exception events. This allows handling the consequences of the errors, e.g., 

communication failures, by the appropriate application resilience sub-system (Section 

3.3). 

 

The baseline is (Figure 4): 

• the early detection of errors 

• root cause characterization 



 

 

• characterization of transient vs. persistent errors 

• the tracing and provenance of faulty data 

• the identification of the impacted components and their associated corrupted 
results 

• the ranking of the errors (warnings, fatal, medium) and associated actions 
(ignore, restart, backtrack) 

• the identification of pending components 

• the identification and purge of transient messages 

• the secured termination of non-faulty components 

• the secure storage of partial and consistent results 

• the quick recovery of faulty and impacted components 

• the re-synchronization of the components and their associated data 

• the properly sequenced restart of the components 
Each of these items needs appropriate implementation and algorithms in order to 

orchestrate the various actions required by the recovery of the faulty application com-
ponents. 

 

 

Fig. 5. Error handler. 

4.1 Detection 

Error Detection. Hardware and system fault-tolerance mechanisms can intercept 

errors [12]. Applications errors however must be explicitly taken into account in the 

code. This impacts severely the programming efforts and needs important design and 

re-programming efforts for existing codes [13]. 

Error Characterization. Similarly, error characterization is heavily dependent on the 

application logics [14]. It allows for error ranking, ranging from warnings to fatal. 

This is necessary to fine tune the fault-tolerance and resilience capabilities to the ap-

plication and user requirements. 

Root Cause Detection. Root cause characterization and provenance information is 

the most difficult part in complex applications and systems. Most of the time, even 



 

 

sophisticated tracing mechanisms will fail to provide an accurate characterization of 

the multiple root causes that provoke errors and abnormal application behavior [17]. 

Impact Assessment. The next important step is the assessment of the error impact. 

This includes the impact on the subsequent tasks, on the data, and the evaluation of 

error propagations. Further, a domino effect is that the errors can impact the messages 

exchanged and in transit between tasks as well as the advent of the pending tasks. 

This is detailed in the following sections (4.2, 4.3). 

4.2 Impacted Tasks and Data 

Impacted Tasks. The application definition provides a detailed dependency relation-

ship between tasks and data. It should therefore be straitghtforward to characterize the 

impacted tasks and data. However, the latency between error occurrence and their 

actual detection makes it difficult to precisely point out the exact time and location 

when an error occurred, particularly in distributed systems. Therefore, impacted tasks 

and data can bearly be defined without an undefined uncertainty. This paves the way 

for drastic backtracking policies and restarts. However, optimized checkpointing 

schemes, e.g., asymmetric [1], multi-level [18] and encoded checkpoints [22], allevi-

ate somehow crude backtracking and checkpointing approaches by reducing their 

overhead, in both CPU and storage terms. 

Corrupted Data. Similarly, corrupted data can originate from application errors and 

from error propagation (Figure 6): 

Application errors. Computation errors on correct data will produce erroneous results, 

e.g., specification, algorithmic, programming erros. They can be spotted and corrected 

with unpredictable delays. Performance and overhead issues are  Performance and 

overhead issues are not necessarily fundamental here because CPU and data demand-

ing tasks might have to be backtracked and re-executed, incurring potentially very 

long delays. 

Error propagation. Correct computations performed on previously polluted data may 

generate random errors on data processed subsequently. Errors cannot in this case be 

pointed out immediately, if at all. Restarting the application componenents from an-

cestor tasks might be a necessary option here. The exact and most accurate restart 

location may in some cases be difficult to characterize. Policy requirements and im-

plementations are in this case the last resort. 

4.3 Impact 

Transient Messages. Transient messages are potentially emitted before a component 

failure. Identifying such data might be very difficult in distributed computing and 

collaborative codes. Indeed, failed tasks might have sent unknown numbers of mes-



 

 

sages and data to a potentially unknown number of descendant tasks, depending on 

the point of failure. Time-outs might here be necessary to consider transient messages 

to reach their destinations. Purging all these messages is necessary to backtrack to a 

previous consistent checkpoint. 

Pending Tasks. Pending tasks are in contrast easily characterized since they are wait-

ing for incoming data or events raised by ancestor tasks. Pause and resuming of such 

tasks is an option, without systematically calling for their cold restart from a previous 

checkpoint. Opportunistic checkpoints might here be interesting to store already pro-

duced data and application state. This is related to asymmetric checkpoints [1], where 

the users define points of interest in the application runs where checkpoints and snap-

shots must be stored in order to prevent potential catastrophic failures later. So, CPU, 

storage and communication demanding tasks will in such cases be saved without the 

need to restart them later in case of application errors. 

 

 

 

Fig. 6. Error impact. 

4.4 Recovery 

Termination of Non-faulty Tasks. As mentionned above, recovery of non-faulty 

tasks is straightforward if they are not directly linked to faulty tasks, or if they are 

explicitly waiting for incoming data or events. If they are directly linked to failed 

tasks, i.e., processing data produced by failed tasks, restarting them with the failed 

tasks may be necessary. Indeed, without a sophisticated control of the data exchanged 



 

 

between tasks, it may be impossible to characterize the subsets of data already proc-

essed correctly by subsequent tasks. This is also the case when using data pipelining 

between tasks. In this case, restarting the tasks from the beginning is necessary. Fur-

ther, resuming the subsequent tasks also requires the ancestor failed tasks to restart at 

their adequate execution locations when failed. This is most of the time impossible in 

current systems. It requires repetitive incremental and partial checkpoints of state dta 

and produced results, which can have an important overhead (Figure 7). 

Secured Storage of Non-faulty Data. The secured storage of non-faulty data is es-

sential for the optimization of the recovery process. Although, if it does not succeed, 

backtracking to a preceding checkpoint in the execution run is an option. 

Restart Selection. There might be several options available for a single coordinated 

restart or local partial restarts (Figure 8). Depending on the situation, ranging from 

warnings to erros and fatal ones, the distributed configuration of the applications 

might render a global coordinated restart unrealistic. Several partial local restarts 

might be preferable, and in all cases, less expensive in terms of CPU and resource 

consumptions (Section “Coordinated Restart”, below). 

 

 

Fig. 7. Error recovery. 

 

Checkpoint Selection. An adequate checkpoint selection mechanism must be de-

vised, which supports local restart in parallel and/or partial restarts from distributed 

and coordinated checkpoints. Here again, the versatility of the checkpointing mecha-

nism, i.e., the support for multi-level checkpoints, is of first importance for reducing 



 

 

the restart overhead (Figure 9). But the cost is of course, the checkpointing overhead, 

both in terms of CPU and storage capacity, incurred. Encoding mechanisms, “shad-

owed” and “cloned” virtual disk images have been proposed to answer these concerns 

[23]. 

 

Coordinated Restart. Coordinated local restarts is a middle term option, between 

global cold restarts and multiple local restarts. As mentioned previously (Section 4.3), 

a global coordinated cold restart is unrealistic in distributed systems because it re-

quires stopping all tasks and restarting the whole application, which might require 

large computing resources and days of CPU time. Coordination is fundamental here 

and related to distributed computations. It follows that coordinated restarts must be 

implemented by a specific mechanism that selects timestamped data and check-

points.Italso requires the careful selection of those checkpoints strictly needed for the 

restart. The latter will execute local restarts with the appropriate checkpoints selected. 

 

 

Fig. 8. Restart. 

5 Implementation 

5.1 Overview 

Several proposals have emerged recently dedicated to resilience and fault manage-

ment in HPC systems [14][15][16]. 

The main components of such sub-systems are dedicated to the management of er-

ror, ranging from early error detections to error assessment, impact characterization, 

healing procedures concerning infected codes and data, choice of appropriate steps 

backwards and effective low overhead restart procedures. 



 

 

General approaches which encompass all these aspects are proposed for Linux sys-

tems, e.g., CIFTS [5]. More dedicated proposals focus on multi-level checkpointing 

and restart procedures to cope with memory hierarchy (RAM, SSD, HDD), hybrid 

CPU-GPU hardware, multi-core hardware topology and data encoding to optimize the 

overhead of checkpointing strategies, e.g., FTI [22]. The goal is to design and imple-

ment low overhead, high frequency and compact checkpointing schemes.  

Also, new approaches take benefit of virtualization technologies to optimize 

checkpointing mechanisms using virtual disks images on cloud computing infrastruc-

tures [23]. 

Two complementary aspects are considered: 

• the detection and management of faults inherent to the hardware and software sys-

tems used 

• the detection and management of faults emanating from the application code itself 

Both aspects are different and imply different system components to react. However, 

unforeseen or incorrectly handled application errors may have undesirable effects on 

the execution of system components. The system and hardware fault management 

components might then have drastic procedure to confine the errors, which can lead to 

the application aborting. This is the case for out of bound parameter and data values, 

incorrect service invocations, if not correctly taken care of in the application codes. 

This raises an important issue in algorithms design. Parallelization of numeric 

codes on HPC platforms is today taken into account in an expanding move towards 

petascale  and future exascale computers. But so far, only limited algorithmic ap-

proaches take into account fault-tolerance from the start. 

5.2 Resilience Sub-system 

Generic system components have been designed and tested for fault-tolerance. They 

include fault-tolerance backpanes [5] and fault-tolerance interfaces [22]. Both target 

general procedures to cope with systematic monitoring of hardware, system and ap-

plications behaviors. Performance consideration limit the design options of such sys-

tems where incremental and multi-level checkpoints become the norm, in order to 

alleviate the overhead incurred by checkpoints storage and CPU usage. These can 

indeed exceed 25% of the total wall time requirements for scientific applications [22]. 

Other proposals take advantage of virtual machines technologies to optimize check-

points storage using incremental (“shadowed” and “cloned”) virtual disks images on 

virtual machines snapshots [23]. 

 



 

 

 

Fig. 9. Checkpoints. 

 

6 Conclusion 

The advent of petascale computers has raised concerns about system fault-

tolerance and application resilience. Because exascale computers are now emerging, 

these concerns become even more stringent.  

Sophisticated and optimized functionalities are therefore required in the upcoming 

hardware, systems and application codes to support effectively error management. 

Large-scale applications also require distributed and heterogeneous environments 

to run collaborative multidiscipline projects. Workflow management systems are 

good candidate to deploy and control these applications because they require high-

level and non-expert level dynamic features, e.g., interactive control and visualization. 



 

 

They also require dynamic reconfiguration capabilities, e.g., in case of task re-

deployment because of hardware and software failures. Overall, they require resil-

ience support because of potential software errors and erratic and unexpected behav-

ior, e.g., because of wrong simulation parameters. 

This paper defines concepts, details current problems and addresses solutions to 

application resilience. This approach is currently implemented and tested on simula-

tion testcases using a distributed platform that operates a workflow management sys-

tem interfaced with a cloud infrastructure. An automotive testcase is presented ad-

dressing a vehicle rear-mirror drag optimization. 

The platform provides functionalities for application specification, deployment, 

execution and monitoring. It features resilience capabilities to handle runtime errors. 

It implements the cloud computing “Platform as a Service” paradigm while using a 

workflow system interface. 
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