Y. Chen, A. Wiesel, Y. Eldar, and A. Hero, Shrinkage Algorithms for MMSE Covariance Estimation, IEEE Transactions on Signal Processing, vol.58, issue.10, pp.5016-5029, 2010.
DOI : 10.1109/TSP.2010.2053029

M. Daszykowski, K. Kaczmarek, Y. V. Heyden, and B. Walczak, Robust statistics in data analysis ??? A review, Chemometrics and Intelligent Laboratory Systems, vol.85, issue.2, pp.203-219, 2007.
DOI : 10.1016/j.chemolab.2006.06.016

R. Dave and R. Krishnapuram, Robust clustering methods: A unified view. Fuzzy Systems, IEEE Transactions on, vol.5, pp.270-293, 1997.

P. Diaconis and D. Freedman, Asymptotics of Graphical Projection Pursuit, The Annals of Statistics, vol.12, issue.3, pp.793-815, 1984.
DOI : 10.1214/aos/1176346703

M. Falangola, J. Jensen, J. Babb, C. Hu, F. Castellanos et al., Age-related non-Gaussian diffusion patterns in the prefrontal brain, Journal of Magnetic Resonance Imaging, vol.16, issue.6, pp.1345-1350, 2008.
DOI : 10.1002/jmri.21604

J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the graphical lasso, Biostatistics, vol.9, issue.3, 2007.
DOI : 10.1093/biostatistics/kxm045

L. Garcia-escudero and A. Gordaliza, Robustness Properties of k Means and Trimmed k Means, Journal of the American Statistical Association, vol.94, issue.447, pp.956-969, 1999.
DOI : 10.2307/2670010

A. Gardner, A. Krieger, G. Vachtsevanos, and B. Litt, One-class novelty detection for seizure analysis from intracranial EEG, J. Mach Learn Res, vol.7, pp.1025-1044, 2006.

W. C. Hamilton, The Revolution in Crystallography: Automation and computers have made x-ray structure determination a routine laboratory tool, Science, vol.169, issue.3941, pp.133-141, 1970.
DOI : 10.1126/science.169.3941.133

J. A. Hanley and B. J. Mcneil, The meaning and use of the area under a receiver operating characteristic (ROC) curve., Radiology, vol.143, issue.1, pp.29-36, 1982.
DOI : 10.1148/radiology.143.1.7063747

J. Hardin and D. M. Rocke, The Distribution of Robust Distances, Journal of Computational and Graphical Statistics, vol.14, issue.4, pp.928-946, 2005.
DOI : 10.1198/106186005X77685

P. J. Huber, M. Hubert, and S. Engelen, Robust PCA and classification in biosciences, Bioinformatics, vol.20, issue.11, pp.1728-1736, 2004.
DOI : 10.1093/bioinformatics/bth158

W. Johnson, J. Lindenstrauss, and G. Schechtman, Extensions of lipschitz maps into Banach spaces, Israel Journal of Mathematics, vol.36, issue.2, pp.129-138, 1986.
DOI : 10.1007/BF02764938

S. Joshi, I. Bowman, A. Toga, and J. Van-horn, Brain pattern analysis of cortical valued distributions, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.1117-1120, 2011.
DOI : 10.1109/ISBI.2011.5872597

F. Kherif, G. Flandin, P. Ciuciu, H. Benali, O. Simon et al., Model Based Spatial and Temporal Similarity Measures between Series of Functional Magnetic Resonance Images, Med Image Comput Comput Assist Interv, pp.509-516, 2002.
DOI : 10.1007/3-540-45787-9_64

URL : https://hal.archives-ouvertes.fr/inria-00615923

O. Ledoit and M. Wolf, A well-conditioned estimator for large-dimensional covariance matrices, Journal of Multivariate Analysis, vol.88, issue.2, pp.365-411, 2004.
DOI : 10.1016/S0047-259X(03)00096-4

S. Mériaux, A. Roche, B. Thirion, and G. Dehaene-lambertz, Robust Statistics for Nonparametric Group Analysis in fMRI, 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, 2006., pp.936-939, 2006.
DOI : 10.1109/ISBI.2006.1625073

J. Mouro-miranda, D. R. Hardoon, T. Hahn, A. F. Marquand, S. C. Williams et al., Patient classification as an outlier detection problem: An application of the One-Class Support Vector Machine, NeuroImage, vol.58, issue.3, pp.793-804, 2011.
DOI : 10.1016/j.neuroimage.2011.06.042

L. Najman and M. Schmitt, Watershed of a continuous function, Signal Processing, vol.38, issue.1, pp.99-112, 1994.
DOI : 10.1016/0165-1684(94)90059-0

URL : https://hal.archives-ouvertes.fr/hal-00622129

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

W. D. Penny, J. Kilner, and F. Blankenburg, Robust Bayesian general linear models, NeuroImage, vol.36, issue.3, pp.661-671, 2007.
DOI : 10.1016/j.neuroimage.2007.01.058

D. Pea and F. J. Prieto, Multivariate outlier detection and robust covariance matrix estimation, Technometrics, vol.43, pp.286-310, 2001.

P. Pinel, S. Dehaene, D. Rivì-ere, and D. Lebihan, Modulation of Parietal Activation by Semantic Distance in a Number Comparison Task, NeuroImage, vol.14, issue.5, pp.1013-1026, 2001.
DOI : 10.1006/nimg.2001.0913

URL : https://hal.archives-ouvertes.fr/hal-00349725

P. J. Rousseeuw, Least Median of Squares Regression, Journal of the American Statistical Association, vol.53, issue.388, pp.871-880, 1984.
DOI : 10.1214/aos/1176345451

P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection, pp.4-5, 2005.
DOI : 10.1002/0471725382

P. J. Rousseeuw and K. Van-driessen, A Fast Algorithm for the Minimum Covariance Determinant Estimator, Technometrics, vol.35, issue.3, pp.212-223, 1999.
DOI : 10.1080/01621459.1994.10476821

N. L. Roux and F. Bach, Local component analysis, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00617965

B. Schölkopf, J. C. Platt, J. C. Shawe-taylor, A. J. Smola, and R. C. Williamson, Estimating the Support of a High-Dimensional Distribution, Neural Computation, vol.6, issue.1, pp.1443-1471, 2001.
DOI : 10.1214/aos/1069362732

S. Seabold and J. Perktold, Statsmodels: Econometric and statistical modeling with python, Proceedings of the 9th Python in Science Conference, pp.57-61, 2010.

N. Segata and E. Blanzieri, Fast and scalable local kernel machines, J. Mach Learn Res, vol.11, pp.1883-1926, 2009.

S. S. Shapiro and M. B. Wilk, An analysis of variance test for normality (complete samples), 1965.

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society, Series B, vol.58, pp.267-288, 1994.

A. Upadhyaya, J. Rieu, J. Glazier, and Y. Sawada, Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates, Physica A: Statistical Mechanics and its Applications, pp.549-558, 2001.
DOI : 10.1016/S0378-4371(01)00009-7

G. Varoquaux, S. Sadaghiani, P. Pinel, A. Kleinschmidt, J. Poline et al., A group model for stable multi-subject ICA on fMRI datasets, NeuroImage, vol.51, issue.1, pp.288-299, 2010.
DOI : 10.1016/j.neuroimage.2010.02.010

URL : https://hal.archives-ouvertes.fr/hal-00489507

J. Wang, V. Saligrama, and D. A. Castañón, Structural similarity and distance in learning, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2011.
DOI : 10.1109/Allerton.2011.6120242

S. G. Wetzel, G. Johnson, A. G. Tan, S. Cha, E. A. Knopp et al., Three-dimensional, t1-weighted gradient-echo imaging of the brain with a volumetric interpolated examination, American Journal of Neuroradiology, vol.23, pp.995-1002, 2002.

M. Woolrich, Robust group analysis using outlier inference, NeuroImage, vol.41, issue.2, pp.286-301, 2008.
DOI : 10.1016/j.neuroimage.2008.02.042

M. Zweig and G. Campbell, Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine, Clin Chem, vol.39, pp.561-577, 1993.