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Figure 1: gold-metallic-paintmaterial from the MERL database. Comparison between measured data (c) and Cook-Torrance
BRDF using (b) Beckmann distribution or (d) SGD distribution. (a) and (e): di� erence measured in Lab color space between
ground truth and (b) and (d) respectively.

Abstract
Material models are essential to the production of photo-realistic images. Measured BRDFs provide accurate
representation with complex visual appearance, but have larger storage cost. Analytical BRDFs such as Cook-
Torrance provide a compact representation but fail to represent the e� ects we observe with measured appearance.
Accurately �tting an analytical BRDF to measured data remains a challenging problem. In this paper we introduce
the SGD micro-facet distribution for Cook-Torrance BRDF. This distribution accurately models the behavior of
most materials. As a consequence, we accurately represent all measured BRDFs using a single lobe. Our �tting
procedure is stable and robust, and does not require manual tweaking of the parameters.

Categories and Subject Descriptors(according to ACM CCS): http://www.acm.org/class/1998/ I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Photorealism in image synthesis depends strongly
on the material representations we use. Measured
BRDFs [MPBM03] provide a high degree of realism,
but have storage issue (33 MB for a single isotropic mate-
rial), making them harder to �t in a rendering pipeline. It is
also di� cult to use them with importance sampling, as they
have no analytical de�nition.

BRDF models such as Phong, Lafortune or Cook-
Torrance are much more compact: 8-10 parameters are
enough to model an isotropic material, and are easy to com-
bine with importance sampling in Monte-Carlo integration.
We would like to compute the parameters of a BRDF model
so that it photo-realistically resembles a measured material.
Nganet al. [NDM05] proved that di� use and glossy materi-

als are well approximated using single lobe Cook-Torrance
or Lafortune BRDFs; the models are less accurate for specu-
lar materials such as metals, metallic paints or shiny plastics.

Adding more lobes to the BRDF model makes it more
accurate, at the expense of the stability of the �tting process.
3 lobes are usually considered to be the limit for automatic
�tting. Highly accurate �tting for all BRDFs, ranging from
di� use to highly specular, is still impractical.

This paper presents accurate and robust �tting for any
BRDF (including metals) with a single lobe (in addition to
the di� use component). We use the Cook-Torrance BRDF
model but with a di� erent micro-facet distribution. The
Cook-Torrance BRDF [TS67] simulates the micro geome-
try of a material as specular micro-facets and derives the
BRDF mathematically from the probability distribution of

c 2012 The Author(s)
Computer Graphics Forumc 2012 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
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micro-facets. Although it is typically used with the Beck-
mann distribution, the model can be used with many other
distributions. Our study of measured BRDFs [MPBM03]
shows that shiny materials do not follow the Beckmann dis-
tribution: micro-facets are more likely to be aligned with the
surface normal, resulting in a sharper peak, consistent with
the smooth appearance.

We introduce the SGD probability distribution function
for micro-facets. This distribution provides a more accu-
rate �tting for all measured materials, comparing to exist-
ing BRDF models, from highly shiny to di� use. We use the
Cook-Torrance BRDF with SGD distribution to approximate
measured materials resulting in a compact and accurate rep-
resentation. Since the SGD distribution approximates mea-
sured data very well, we were able to design a simpler �tting
method. This method converges quickly (2.5 minutes on av-
erage) and it only uses two slices of the measured data to �t
the unknown parameters.

This paper is organized as follows: in the next section, we
review previous work on BRDF models and measurements.
Then we present the Cook-Torrance model and micro-facet
distributions. In section4, we describe the SGD probabil-
ity distribution function, and in section5 our �tting method.
Section6 presents our results and compares them with pre-
vious work. In section7, we conclude and discuss potential
avenues for future work.

2. Previous work

Analytical BRDF models provide a reasonably realistic re-
�ectance behavior at a very low computational and memory
cost [TS67, CT82, War92, LFTG97]. Among these, micro-
facet BRDF models assume that the surface geometry is
made of specular micro-facets and the BRDF model depends
on the facets' slope distribution.

In the Cook-Torrance BRDF model [TS67,CT82], the re-
�ectance is decomposed into a distribution term, a shad-
owing term, accounting for self-masking of the micro-
geometry, and a Fresnel term. For isotropic materials, the
shadowing term is derived from the micro-facet distribu-
tion, through a double inde�nite integration [Smi67,Bro80,
BBS02]. Oren and Nayar [ON94] accounted for inter-
re�ections in the micro-geometry in addition to masking
and shadowing. Ashikhminet al. [APS00] proposed a for-
mulation of micro-facet models that includes reciprocity
and energy conservation. Weidlich and Wilkie proposed
an extension of micro-facet models to multi-layer materi-
als [WW07]. The Trowbridge-Reitz distribution [TR75] has
stronger peak and larger tail than the Beckmann distribution.
It is identical to the GGX distribution [WMLT07]. Low et
al. [LKYU12] introduced a new re�ectance model for glossy
surfaces, with a di� erent distribution, based on the Rayleigh-
Rice theory, but do not include masking e� ects.

The Fresnel term depends on the wavelength, although
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Figure 2: For Cook-Torrance BRDF, the material micro-
geometry is a random distribution of specular micro-facets.
Angles are relative to the normaln of the macro-geometry.

this is often ignored. Schlick [Sch94] approximates the com-
ponents of BRDF models with rational fractions for faster
computations. His approximation of the Fresnel term is
widely used today. Lazanyiet al.[LSK05] introduced a more
accurate approximation of the Fresnel term.

Matusik et al. [MPBM03] measured re�ectance proper-
ties for a large range of materials. We use their data-base for
all our tests. Nganet al. [NDM05] examined how classical
BRDF models such as Lafortune [LFTG97] and Ashikhmin-
Shirley [APS00] can be used to approximate measured re-
�ectances. They showed that Cook-Torrance [CT82] provide
the best �ts, and specular materials are poorly approximated
with a single lobe; the quality of the �tting improves with
multiple lobes, but the �tting process becomes unstable. A
better �tting is recommended by global optimization with
branching and bounding for multi-lobe cases [YSL11].

Ashikhmin and Premoze [AP07] computed the BRDF
model directly from the data using back-scattering: if the in-
put and output directions are equal, the entire BRDF model
collapses into a 1D function, representing the micro-facet
distribution. This function is read from the data and stored
in a compact form. Wanget al. [WRG� 09] used spherical
Gaussians to approximate existing re�ectance models, in-
cluding Cook-Torrance and Lafortune. The convolution of
two spherical Gaussians is another spherical Gaussian, so
BRDF expressed this way are easier to convolve with envi-
ronment maps or normal distributions in the same model.

Romeiroet al.[RVZ08] and Pacanowskiet al.[PSCS� 12]
project measured BRDFs on a two-dimensional space
(� d; � h). Pacanowski approximates this projection with ratio-
nal fractions, compressing the BRDF data down to 200 KB.

3. The Cook-Torrance re�ectance model

The Cook-Torrance BRDF model [CT82] assumes that sur-
faces are made of random specular micro-facets (see Fig-
ure2). The surface normalm follows a probability distribu-
tion functionD. The full BRDF is:

� (i; o) =
� d

�
+

� s

�
F(i � h)D(� h)G(i; o)

cos(� i)cos(� o)
(1)

c 2012 The Author(s)
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wherei is the incoming direction,ois the outgoing direction,
h is the half-vector (h = i + o, normalized).� i , � o and� h are
the respective angles between these vectors and the surface
normaln. � d and� s are the di� use and specular coe� cients,
respectively (see notations on Figure2).

D is the probability distribution function for micro-facet
normals.G is the shadowing and masking coe� cient, ex-
pressing the amount of light that is blocked by other micro-
facets before reaching the point (shadowing), or after re�ec-
tion (masking). For isotropic materials,G is approximated
by a product of one-dimensional functions:

G(i; o) � G1(i)G1(o)

and G1 is computed fromD through a double integra-
tion [Smi67,Bro80,BBS02,WMLT07].

F is the Fresnel term, depending on the refraction index
� of the material. It is usually close to constant at normal
incidence, and increases to unity at grazing angles.

3.1. The normal probability density, D

Given a direction! = (�; � ) and an in�nitesimal solid an-
gle d! centered around this direction, the probability for
the normal of a micro-facet to be inside the cone (!; d! )
is D(! ) (!: n) d! .

In order to be physically plausible,D should follow
several requirements: it should be positive, the projected
area of the micro-facets in a direction should be equal to
the projected area of the macro-surface and in particular,R

D(! ) (!: n)d! = 1. D is usually expressed as:

D(� ) =
� [0; �

2 ](� )

cos4 �
P22

�
tan2 �

�
(2)

whereP22(x) is a positive function of the variablex 2 [0;1 )
and� [0; �

2 ](� ) ensures sidedness: it is equal to 1 if� < �
2 , and

0 otherwise. With this expression,

D(� )cos� d! =
1
2

P22(tan2 � )d(tan2 � ) (3)

Since
R

D(� ) (!: n)d! = 1, we have
R1
0 P22(x)dx = 1=� .

We use this expression for importance sam-
pling [WMLT07]: for a given incoming directioni, we
�rst pick a random micro-facet normalm with probability
D(� m)cos� m, then compute the re�ected directiono so
that m is the half-vector. Finally, we compute the sampling
weight as the BRDF divided by the probability, multiplied
by the Jacobian ofo:

wo =
� (i; o)cos� o

D(� m)cos� m


@!o
@!m



To pick m with the probabilityD(� m)cos� m, we need the
associated Cumulative Distribution FunctionF:

F(� m; � m) =
Z � m

0

Z � m

0
D(� )cos� d! =

� m

2

Z tan2 � m

0
P22(u)du

Beckmann Exponential TR/GGX

P22(x) 1
� � 2 e� x=� 2 1

2�� 2 e�
p

x=� 2 � 2

� (� 2+x)2

Table 1: P22 functions corresponding to classical micro-
facet distributions, with x= tan2 � .

F is separable:F = F� F� , with F� andF� from 0 to 1:

F� (� m) =
� m

2�
(4)

F� (� m) = �
Z tan2 � m

0
P22(u)du (5)

Assuming we have two uniform random variablesu1 andu2
in [0;1), we get the sampling equations:

� m = F � 1
� (u1) = 2� u1

� m = F � 1
� (u2)

For any micro-facet distributionD following Equation2, im-
portance sampling reduces to computing the integral ofP22
and inverting it.

3.2. Shadowing and masking

In early versions of the Cook-Torrance BRDF [TS67] the
shadowing functionG was independent from the micro-
facet distribution. Further research [Smi67, Bro80, BBS02]
proved that we get a more accurate shadowing term by in-
tegration from the micro-facet distributionD. G is approx-
imated as the product of two one-dimensional functions:
G(i; o) � G1(� i)G1(� o). G1 is computed fromD through a
double integration:

P2(r) =
Z 1

�1
P22

�
r2 + q2

�
dq (6)

� (� ) =
Z 1

1
tan�

(r tan� v � 1)P2(r)dr

G1(� ) =
� [0; �

2 ](� )

1+ � (� )

For further details, please refer to the original papers or
the short summary in [WMLT07].

3.3. Existing distributions

Table 1 lists the P22 functions corresponding to ex-
isting micro-facet distributions. Beckmann is frequently
used [CT82]; it is a Gaussian in tan� , and is also very
close to the Phong distribution [WMLT07]. The exponen-
tial distribution is mostly used for the propagation of radio
waves [BBS02, Bro80], and has a sharper peak and larger
tails than Beckmann. The Trowbridge-Reitz/GGX distribu-
tion [TR75, WMLT07] has a sharper peak and larger tails
than Beckmann and Exponential distributions.

c 2012 The Author(s)
c 2012 The Eurographics Association and Blackwell Publishing Ltd.
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(b) The SGD distribution

Figure 3: The micro-facet probability distribution for brass extracted from the measured data. The SGD distribution (right) �ts
the data accurately both at the peak and the tail, unlike existing distributions (left)

4. Our re�ectance model

4.1. Data observation

It is hard to compare measured data with BRDF models,
since models depend on position and several functions. For
simple comparisons, we takei = o. As a consequence,h = i:
we get an equation that only depends on� h, with two un-
known functionsD andG1 [AP07]:

� (� h) =
� d

�
+

� s

�
F(0)D(� h)G1(� h)2

cos2(� h)
(7)

For small values of� h and specular materials,G1 is almost
constant, equal to 1 (see Figure5). The measured data varies
only with D, and we can observe directly the micro-facet
distribution.

Figure3 compares the measured distributionD for brass
from the MERL database [MPBM03] with approximations
using di� erent distributions. The peak of the measured dis-
tribution is much sharper than the predictions, while the tail
is larger. If we �t the tail accurately (for example with the
Beckmann distribution,� = 7� 10� 2), then we miss the peak.
On the other hand, if we �t the peak well, we miss the tail.
To �t this data with existing distributions we would need sev-
eral lobes. This observation holds for many materials in the
MERL database: metals, metallic paints and shiny plastics.

At large angles, the measured distribution seem to de-
crease exponentially. But for small angles, the decrease is
sharper than an exponential. Based on this observation, we
suggest a slope inx� p, wherex = tan2 � h andp is a parame-
ter that depends on the model, multiplied by an exponential
factor:

P22(x; �; p) =
K�; pe� x

�

(x+ � 2)p
(8)

whereK�; p is a normalization factor. With this distribution,
we �t the measured data accurately (see Figure3(b)), both at
the peak and the tail.

4.2. The SGD distribution

We compute the normalization factorK�; p so thatR1
0 P22(x)dx = 1=� . The result is a shifted gamma distri-

bution (SGD):

P22(x) =
� p� 1

� (1� p; � )
e� � 2+x

�

�
� 2 + x

� p

D(� m) =
� [0; �

2 ](� m)

� cos4 � m
P22

�
tan2 � m

�

� is the incomplete Gamma function:� (s; x) =
R1
x ts� 1e� t dt

The SGD �ts accurately a large range of materials, from dif-
fuse to specular (see Figures3(b), 4 and the supplemental
material).

4.3. Shadowing and masking

Once we haveD, we can compute the shadowing and mask-
ing function,G1, using Equation6:

P2(r) =
1

p
� � � (1� p; � )

U
 
p; p+

1
2

; � +
r2

�

!
e� � � r2

�

� (� ) =
Z 1

1
tan�

(r tan� � 1)P2(r)dr

G1(� ) =
� [0; �

2 ](� )

1+ � (� )

whereU is the con�uent hyper-geometric function of the
second kind. We do not have a closed form expression for
G1. We either pre-computeG1 using Gauss integration and
store its values for varying� or use the following approxi-
mation:

G1(� ) �
8
><
>:

1+ �
�
1� ec(� � � 0)k �

if � > � 0

1 if � � � 0
(9)

� 0 =
�
2

�

0
BBBBBB@
log

�
1+ 1

�

�

c

1
CCCCCCA

1
k

c 2012 The Author(s)
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(a) Red metallic paint (specular)
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(c) gold-paint (di� use)

Figure 4: The SGD distribution is an accurate �t for a wide range of materials.
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(a) Red metallic paint (specular)
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Figure 5: The shadowing term G1 is expensive for SGD. Our approximation is very accurate; theL2 error is below10� 5.

� 0 ensures thatG1(� =2) = 0. We get the (�; c;k) parameters
by �tting the approximation over the precomputed values,
using Levenberg-Marquadt [Lou04]. This approximation is
a very good �t forG1 for all materials (the L2 error is negli-
gible, mostly below 10� 5, see Figure5).

The choice between using stored values forG1 and the
approximation depends on the processing power, memory
bandwidth and storage capacities. For o� ine rendering,
where storage is not an issue, we use precomputed values.
For GPU rendering, we use the approximation.

4.4. The Fresnel term

Since we have an expression forD andG1, we can express
the Fresnel term using the measured data:

F(i � h) =
�
m(i; o) �

� d

�

� � cos� i cos� o

� sD(� h)G1(� i)G1(� o)
(10)

wherem(i; o) is the measured data. For simplicity, we will
note � d = arccos(i � h). Looking at the data for the Fresnel
term, we make two important observations:

� The measured data behaves strangely at grazing angles.
In theory, the Fresnel term should be increasing with� d
up to 1 when� d = � =2. The Fresnel term extracted from
the measured data starts decreasing after a certain angle
(from 70o to 80o), and is equal to 0 for� d = � =2 (see Fig-
ure6(a)). This is probably caused by the acquisition pro-
cess: at grazing angles, the sensor is saturated by direct

illumination from the light sourcey. We discard data for
� d > 70o.

� For some materials such asgold-paintor nickel, the Fres-
nel term does not behave as predicted by the Schlick ap-
proximation (see Figure6(b)). Instead of a plateau fol-
lowed by a sharp increase, we observe linear slope, fol-
lowed by an increase. To model these materials, we sug-
gest the following generalization of Schlick approxima-
tion:

F(� d) = F0 + (1� F0)(1� cos� d)5 � F1cos� d (11)

For F1 = 0, we get the original approximation.

4.5. Importance sampling

E� cient Monte-Carlo integration requires importance sam-
pling. For this, we need the inverse of the integral ofP22 (see
Equation5). We easily haveF� :

F� = 1�
�

�
1� p; � + tan2 �

�

�

� (1� p; � )

but there is no closed form expression for the inverse for
F� , so we can't use it for exact importance sampling. As
an approximation, we importance sample the GGX distribu-
tion [WMLT07], and compute weights,w, to �t our model:

� m = arctan
 

�
p

u2
p

1� u2

!

y F. Durand, personal communication.

c 2012 The Author(s)
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Figure 6: The Fresnel term extracted from the measured data does not behave as predicted by the theory

(a) Uniform Sampling (b) Importance Sampling
Figure 7: Uniform and importance sampling forspecular-
violet-phenolicwith the same rendering time (6 mn).

� m = 2� u1

m = (cos� msin� m;sin� msin� m;cos� m)

o = 2ji � mj m� i

whereu1 andu2 are realizations of a uniform random vari-
able in [0;1). Our BRDF model contains a di� use and a spec-
ular component. We alternatively sample either component
according to the following probabilities:

pspecular =
� s

� d + � s

pdi� use = 1� pspecular

The importance sampling weights for our distribution is:

wspecular =
4� s

pspecular
F(i � h) D(� h)G(i; o) cos3 � m

(� 2 + tan2 � )2

� 2

wdi� use =
� d

pdi� use

This expression accounts for the jacobian of samplingm in-
stead ofo [WMLT07]. Figure 7 shows the same material
rendered with and without importance sampling.

5. Fitting algorithm

5.1. Fitting RGB channels separately

Fitting BRDF models with measured materials is usually
done in a two-step approach [NDM05]: �rst compute the dif-

fuse and specular colors using a linear least square optimiza-
tion, then compute the BRDF parameters (� , F0) through a
second optimization.

This approach places constraints on the second optimiza-
tion process: the parameters must �t all RGB channels. We
used a di� erent approach: we compute the BRDF param-
eters separately for each channel, red, green and blue. Al-
though we compute and store more data for each material,
the �tting process is faster and more e� cient, as we only �t
real-valued functions, with less constraints for each �tting.

We also get wavelength dependent e� ects. The Fresnel
term should change with the wavelength [LSK05] and we
do �nd di� erent values forF0 andF1 for the red, green and
blue channels, for all materials in the MERL database (see
supplemental material). Often, we get very similar values for
the� andp parameters for the micro-facet distribution.

We do not take any explicit step to conserve the color of
the material, since we treat each channel independently. We
still get BRDF models that match very well the color of the
measured materials (see Figures 1,8, and10and the supple-
mental). We attribute this to the very good match between
our distribution function and the data behavior.

5.2. Non-linear optimization

Given the measured data for a single channel, we �nd the
optimal value for the parameters (� d; � s; �; p;F0;F1) so that
the BRDF model is as close as possible to the measured data.

We could compute theL2 norm of the di� erence between
the BRDF model and the measured BRDF over the whole
hemisphere, as in [NDM05]. But regular sampling in� i and
� o results in under-sampling near the specular peak, resulting
in poor quality �ts. Instead we �t in two steps:

1. We �t the probability distribution parameters (�; p) to the
measured data for varying� h, with � d = 0.

2. We �t the Fresnel term parameters (F0;F1) to the mea-
sured data for varying� d, with � h = 0.

c 2012 The Author(s)
c 2012 The Eurographics Association and Blackwell Publishing Ltd.
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Each step is the �tting of a real-valued function of several pa-
rameters, which is simple and stable. Although we �t the pa-
rameters using only two slices of the measured re�ectance,
we still capture the full behavior of the BRDF.

We de�ne the following quantities:

� m(i; o): the full measured re�ectance, as extracted from
the database,

� mh(� h) = m(h;h): the slice of the BRDF corresponding to
� d = 0,

� md(� d) = m(i;re�ection(i)): the slice of the BRDF corre-
sponding to� h = 0.

In a �rst step, we �t mh(� h) with:

� h(� h) =
� d

�
+

Fr

�

D(� h)G2
1(� h)

cos2(� h)

The function� h depends on 4 parameters:� d, Fr , � and p.
Using Levenberg-Marquadt optimization [Lou04], we �nd
the value of these parameters that minimizes the error func-
tion:

E1(� d;Fr ; �; p) =
X

i

wi (mh(� h) � � h(� h))2 (12)

At the end of this step, we have the value for 3 parameters:
� d, � andp. The last coe� cient,Fr is the product of� s and
the Fresnel term for� d = 0.

In the second step, we �rst extract the specular coe� cient
times the Fresnel term frommd(� d) using the values� d, �
andp we just computed:

� sFD(� d) =
�
md(� d) �

� d

�

� � cos2(� d)

D(0)G2
1(� d)

We �t this function with our Fresnel term approximation
(Equation11), using Levenberg-Marquadt optimization. The
data gives us� sF0 and� sF1. UsingFD(� =2) = 1, we get� s,
F0 andF1.

6. Results and Comparison

6.1. Visual comparison

Figures8 and10shows a side-by-side comparison foraven-
turineandcolonial-maple-223between images rendered us-
ing the measured re�ectance from the MERL database and
several BRDF models: Lafortune and Cook-Torrance with
the Beckmann, TR/GGX and SGD distributions. For each
model, we show the di� erence with the reference image,
measured in Lab space. We chose the Lab color space be-
cause it is perceptually uniform. Qualitatively, our BRDF
model provides the best approximation to the measured data.

In the supplemental material, we provide a similar com-
parison for all 100 materials in the MERL database: ref-
erence image and Cook-Torrance BRDF with Beckmann
and SGD distributions, along with di� erences in Lab space.
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Figure 11: Normalized �tting errors (logarithmic scale) of
the Cook-Torrance model with Beckmann and SGD distribu-
tions. In most cases, SGD provides a much better �t.

For 13 materials in the database, we couldn't �nd the cor-
responding parameters in the supplemental of [NDM05],
so we only provide the comparison between the measured
material and our distribution. Visually, the Cook-Torrance
BRDF with the SGD distribution looks very close to the
measured re�ectance.

6.2. BRDF Lobes comparison

Figures8(j), 10(j) and9, plot the BRDF lobes foraventurine,
colonial-maple-223, hematite, black-obsidian, nickel, and
black-oxidized-steel, with the Beckmann, GGX and SGD
distributions compared to the measurements, for four incom-
ing directions (10� , 30� , 50� , and 70� ).

The SGD distribution closely �ts the measured data, while
the Beckmann distribution either misses the tail by trying
to �t the peak of the lobe, or vice-versa. This is particu-
larly evident forblack-obsidianwhere the Beckmann distri-
bution underestimates the peak. In thehematite, aventurine,
nickel, black-oxidized-steel, andcolonial-maple-223cases,
which are ranging from highly-specular to glossy-specular
and glossy-di� use, the Beckmann distribution signi�cantly
overestimates the lobes. The GGX distribution performs bet-
ter than Beckmann and SGD is very close to the actual shape
of the lobes.

The supplemental material provides the same comparison
for all 100 materials in the MERL database: lobes from the
measured data and lobes from the Cook-Torrance BRDF, us-
ing Beckmann and SGD distributions. For most materials,
the SGD distribution is very close to the measured data.

6.3. Quantitative Error Measure

For each material, we de�ne the �tting error as theL2 norm
of the di� erence between measured data and the Cook-
Torrance BRDF:

E =
 Z

(m(i; o) � � (i; o))2cos� i cos� od! i

! 1
2

c 2012 The Author(s)
c 2012 The Eurographics Association and Blackwell Publishing Ltd.
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(a) Lafortune (b) Beckmann (c) TR/GGX (d) SGD (ours) (e) Ground truth

(f) Lafortune Lab error (g) Beckmann Lab error (h) TR/GGX Lab error (i) SGD Lab error (ours)
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(j) BRDF Lobes

Figure 8: Comparison between the Cook-Torrance model with Beckmann, TR/GGX and SGD distributions, Lafortune and
ground truth foraventurinefrom the MERL database (spelledaventurninein [NDM05]).
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(a) hematite
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(b) black-obsidian
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(c) nickel
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(d) black-oxidized-steel
Figure 9: BRDF lobes (cubic root applied) with Beckmann, GGX and SGD distributions forhematite, black-obsidian, nickel,
andblack-oxidized-steel. The SGD distribution provides a much closer �t to measured re�ectance than the Beckmann and GGX
distribution.

To ensure a fair comparison between bright and dark mate-
rials, we normalize this error by dividing it with the max-
imum albedo of the BRDF, as in [NDM05] (the supple-
mental has the un-normalized error value). Figure11 com-
pares the �tting errors for the Cook-Torrance BRDF using
the SGD and Beckmann distributions (parameters for Beck-
mann from [NDM05]). We sorted the materials by increas-
ing � roughness, going from highly specular to di� use. For
all but 3 of the materials (black-fabric, yellow-matte-plastic,
andwhite-paint), the SGD distribution provides the best ap-
proximation. For many materials, we improve the accuracy
by one order of magnitude, and for some, such ashematite,
by two orders of magnitude.

For the materials where we do not improve over Beck-
mann distribution, we think that the problem comes from
the �tting algorithm rather than the SGD distribution. Man-

ually setting the parameters for these materials improves the
accuracy (all the parameters we use in this paper were com-
puted in a single run of our optimization process, without
any tweaking for speci�c materials).

To evaluate our �tting method, we used it to compute pa-
rameters for the Beckmann and TR/GGX distributions, and
reported the error for each material in Figure11. For almost
all materials, the error is higher than with Beckmann dis-
tribution and parameters from [NDM05]. Our �tting method
works better if the shape of the distribution matches the mea-
sured data.

Figure12provides a pixel-by-pixel comparison for a hor-
izontal scanline of rendered image between: measured re-
�ectance, Cook-Torrance with Beckmann distribution and
SGD distribution, with and without importance sampling.
The Beckmann distribution overestimates specular lobes;

c 2012 The Author(s)
c 2012 The Eurographics Association and Blackwell Publishing Ltd.



M. Bagher, C. Soler& N. Holzschuch/ Accurate �tting of measured re�ectances using a Shifted Gamma micro-facet distribution

(a) Lafortune (b) Beckmann (c) TR/GGX (d) SGD (ours) (e) Ground truth

(f) Lafortune Lab error (g) Beckmann Lab error (h) TR/GGX Lab error (i) SGD Lab error (ours) (j) BRDF Lobes

Figure 10: Comparison between the Cook-Torrance model with Beckmann, TR/GGX and SGD distributions, Lafortune and
ground truth forcolonial-maple-223from the MERL database.
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Figure 12: Pixel by pixel comparison between the refer-
ence, Beckmann and SGD (with and without importance
sampling) foraventurinefrom MERL database.

SGD remains very close to the reference. The �gure also
validates that using GGX importance sampling for SGD dis-
tribution gives the same results, but reduces the noise.

6.4. Timings

Since our algorithm only uses two slices of the BRDF mea-
surement for �tting the parameters, it is extremely fast: 2:5
minutes on average to �t all the parameters for a single ma-
terial on a single core 2:57 GHz Intel CPU. For 65 % of the
materials, the �tting process took less than 1 minute.

(a) MERL reference (b) SGD distrib. (c) BRDF lobes (red)

Figure 13: An example of a two-layer material,two-layer-
silver, that requires two lobes for accurate �tting.

We also measured the cost of evaluating our re�ectance
model inside a ray-tracer, using valgrind pro�ling tool. A
single evaluation takes 3044 CPU cycles, compared to 1416
with Beckmann and 551 with Lafortune. Our model is more
expensive because we estimate the BRDF independently for
each color channel.

6.5. Limitations

For some materials in the MERL database, even with the
SGD distribution, we see evidence of a multi-lobe behav-
ior. This is quite obvious fortwo-layer-goldandtwo-layer-
silver (see Figure13), and it appears (but it's less obvious)
for alum-bronze. For these materials, adding a second lobe
would improve the accuracy. However, the number of mate-
rials with multi-lobe behavior is 3 out of 100.

Our �tting method is based on only two slices of the ma-
terial and on the assumption that the material follows the

c 2012 The Author(s)
c 2012 The Eurographics Association and Blackwell Publishing Ltd.
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(a) MERL reference (b) SGD distrib. (c) BRDF lobe (red)

Figure 14: white-paint, a failure case for our �tting algo-
rithm.

Cook-Torrance model. It will miss behavior that are outside
of the model, for examplecolor-changing-paint.

The white-paintmaterial illustrates a failure case of our
�tting algorithm (see Figure14). The error with SGD is
larger than with Beckmann. The di� erence is clearly visible
in the rendered pictures (Figure14(b)). A possible explana-
tion is visible in the lobes (Figure14(c)): the Fresnel term
is almost null at normal incidence, and our �tting algorithm
does not pick the right shape for the specular lobe.

7. Conclusion and Future work

We have presented the SGD micro-facet probability distri-
bution function for the Cook-Torrance BRDF. This distribu-
tion provides an accurate �t for most measured materials.
We have also presented a new �tting algorithm, where we �t
each color channel independently (instead of precomputing
the di� use and specular colors), and we �t using only two
slices of the BRDF. This �tting algorithm is very e� cient
when combined with the SGD distribution, taking 2:5 mn to
compute the parameters for a measured distribution.

In the supplemental, we provide parameters for the SGD
distribution for all materials in the MERL database, as well
as GLSL code. We hope that this will help researchers and
software developpers in using the SGD distribution.

In future work, we want to continue working on micro-
facet distributions, �nding a distribution that provides the
same accurate �t to measured data while being easier to
compute and integrating into nicer functions. We also want
to target material acquisition: we describe an acquired ma-
terial accurately with only 18 coe� cients. Can we use this
property for faster acquisition of new materials?
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