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Détection d’anomalies cachées dans les réseaux de
télécommunications

Résumé : Aujourd’hui 'un des challenges du management des réseaux de télécommunica-
tion est de détecter en temps réel les mauvais fonctionnements, inattendus ou cachés, dans des
environnements extrémement complexes. Dans ce rapport, nous présentons un algorithme en
ligne qui procéde a une analyse de flots de messages. Plus précisément, il est capable de détecter
des comportements cachés anormaux que les méthodes existantes de management de réseaux ne
détecteraient pas. Notre algorithme utilise la notion de courbes de contraintes, introduites par
la théorie du Network Calculus, définissant des fenétres temporelles successives qui bornent le
flot.

Mots-clés : Management de réseau, Management général, Management de fautes, Théorie du
Network Calculus, Prédiction de fautes, Détection d’anomalie cachées, Détection de comporte-
ment anormaux.
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1 Introduction

The all IP convergence in telecommunication networks and the fact that operators always add
new functionality and new services to their network bring a vertical and horizontal multilayer
matrix of data exchange with an extreme complexity of synchronization and correlation. The
emerging of new technologies that ease the network management and improve its efficiency, such
as autonomous networking [12], and proactive care concept [15], will not stop this evolution.

The software implications in this matter of fact are the main factor of issues and malfunc-
tions that affect the network performance. Errors in nodes or services configuration are the most
frequent causes of malfunction, but errors in the code of processes also create hidden and un-
predictable issues that we have to take into account with these new technologies. It is admitted
that the industry average error rate is about 15-50 errors per thousand lines of code (KLOC)
of delivered code [10]; the NASA has a defect density of 0.004 bugs/KLOC but this has a cost
of $850.0/LOC [16]; telecommunication networks are then subject to hidden bugs in their com-
ponents that lead into unpredictable network behavior [I]. Errors like memory unreleased by a
process need a node restart 3 or 4 times per year to fix the resulting issue, will not be investigated
by the management team.

Our assumptions are that hidden anomalies, provided by missed errors in network process
design and coding, cannot be detected by actual management teams and systems. It clearly
appears that new concepts and their associated algorithms are essential to manage this evolution.
Such algorithms will have to face strong operational constraints: real-time computation, multiple
context adaptation, trend setting for proactive or predictive technologies. They also have to
deliver their results to both human and machine interfaces.

In this article, we present an algorithm that will fit such constraints and that can deliver
a stability indicator of the exchanges between the nodes or the processes of the network. Our
algorithm is dedicated to monitor data exchanges flows between processes to detect anomalies
that cannot be explained by the normal behavior of the network. Each flow of data based on
messages exchanges in modern networks is constrained by the design of their original process. An
issue will then be detected if the flow does not respect this design. However, process configuration
changes or occurring issues will influence these exchanges and must be taken into account in such
detection.

Our algorithm uses the Network Calculus theory [2] [7] to define constraint linear curves on
an arrival flow. In the classical Network Calculus, a flow satisfies some minimal and maximal
constraints that frame the flow at all time and are usually given as an assumption of the flow.
Here we carry out the other way round and try to find simple curves that bound a flow. As the
flow is analyzed on the fly and then not known in advance, we allow the constraints to change
to fit its variations. More precisely, the main contribution consists in modeling and predicting
a time-window for the next message of a flow. If it does not belong to that time-window new
constraints are defined. Issues are then detected when the slope and its trend present too
many variations from the theoretical model. Once designed, we confront our algorithm to the
monitoring of OSPF flows captured from a virtualized 17 nodes network testbed. We run several
issues scenario to be detected from basics to malicious cases.

The rest of the paper is organized as follows. In Section [2], we present existing methods for
anomaly detection. Section [3| defines the technical framework, based on constraint curves, of our
algorithm that is described in Section[d] Finally, we give some experimental results based on an
operational testbed in Section [5] before concluding in Section [6]

RR n°® 7979
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2 State of the art

Many approaches have been developed to address the problem of congestion or failure detection.
Here we present an overview of some existing detection techniques.

Methods based on data analysis Among those methods, some are based on a set of data
from which the detection of abnormal behavior is computed. The distributed index management
method (MIND), in [8], is a structure made of two logical components: a set of traffic monitors
distributed and a query system that allows to separate data according to their anomaly class.
Principal Component Analysis (PCA), [6, [14] is a mathematical process that converts a set of
correlated observations in a set of uncorrelated values named principal components (PC). The set
of PC forms the normal subspace, which is smaller than the initial one. PCA aims at detecting
network flows anomalies based on that normal subspace. This method is presented, in [6], as
an efficient way to solve this kind of problem, but [14] shows limitations of PCA application
in anomalies detection: first it can detect a fault that is not one, then large anomalies can
contaminate the normal subspace, and finally most of the time it is difficult to find the initial
point of failure.

Method based on alarm and fault correlation In [3], a method based on the definition of
an alarm-fault causal graph is presented. For each alarm a;, a probability p; ; is assigned with
respect to each fault Fj, which divides alarms in two classes: significant alarms and candidate
alarms. Then if fault F; happens, the set of significant alarms is found in the emitted alarms
set, and the candidate alarms could be found in the emitted alarms set. The problem is that
this method is not utterly automated and alarm management is complex, so an expert has to be
involved to manage networks this way.

Specific method for a particular protocol Many articles have been written on synchro-
nization of a particular protocol. For instance, in [5], the authors focused on the TCP protocol to
evaluate its performance. This work builds a link utilization rate bound to avoid synchronization.

Methods based on statistical analysis These set of methods are mainly based on statistics.
Generalized likelihood Ratio Approach in [17, [I8]) is a method developed for discrete-time linear
stochastic systems that are subjected to abrupt jumps. The objective is to construct an adaptive
filtering that determines changes in the network. To do that, it contains a Kalmann-Bucy filter
to model the dynamic system studied and then instantiate a secondary system that evaluates the
measurements made by the filter. Netscope also uses statistics to characterize network links from
end-to-end path measurement ([4]). It uses a combination of first and second-order moments
plus an end-to-end measurement (classically seen as a system of linear equation). It collects
information about the network with these computations and then uses them to characterize the
minimum set of links which loss rates cannot be accurately computed.

Today, lot of methods exist to detect anomalies in networks. The main difficulty resides in
the capacity of treating a large set of data to drag bad flows behaviors like congestion or failure,
and to react quickly. Obviously, studying the complete set of information is not an option. Thus
some methods developed use powerful mathematical tools but remain too complex for now. Other
methods study a particular protocol, or use statistics. Here, we introduce a reactive method to
detect anomalies in network for all kinds of protocols without using statistics.

Inria
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3 Flows and constraints

In this section, we first present data flows. Then, we introduce the arrival curve functions, that
frame the incoming traffic at a router. The objective is to study the characteristics of flows
arriving at a router.

In today’s protocols, each router transmits information (topology, routers’ health, etc.) to
its neighbors in order to keep them aware of network changes: we define data flows as sequences
of messages. More formally, a flow is a non-decreasing sequence (z,)nen, where N = {0,1,...},
xg = 0 by convention and where z,, is the arrival date of the n-th message of the flow. We
assume that lim,, . x, = 0.

Graphically, this flow can be represented by the graph (P,)nen € (R x N)Y where Vn € N,
P, = (zn,n). This graph represents the cumulative number of incoming messages. An example
of such a graph is represented on Figure [I]

Arrival curve is a fundamental notion in Network calculus ([7], [2]), a theory developed to
compute deterministic performance bounds in networks. Arrival curves determine constraints on
flows by bounding the number of packets that can arrive during any interval of time. We take
here the concept of arrival curve and try to find, given a data flow, the constraints it satisfies.
The definition of a constrained flow adapted to our framework is the following:

Definition 1 (Constrained flow). Let o, : Ry — R be two non-decreasing functions, m < n
be two non-negative integers. The flow (x,) is (o, @)-constrained on the interval [m,n| if Vm <
m' <n' <n,

o oz, — ) <n' —m'; (the flow is lower-constrained)

o a(Ty — Tp) =n' —m' (the flow is upper-constrained).
The flow (x,,) is (a, @)-constrained if it is (o, @)-constrained on the interval [0, +o0].

In this article, we aim at finding constraints for the arrival flows on long intervals. We will use
simple functions: affine for the upper constraints and the maximum of an affine function with
0 for the lower constraints. More precisely we will use the following functions and notations:
Qpo it o+ ptand a,r :t— max(p(t —T),0). The variable p corresponds to the long
term arrival rate of messages, and o represents the maximal burst, which means that at most
o messages can arrive simultaneously. Finally, we define T as the maximal delay between two
messages.

Lemma 1 (Uniqueness). Let (z,)nen be a flow of messages. Then

e cither there exists no p for which there exist o and T such that (v,) is (@, ®@po)-
constrained;

e or there ezists a unique p, there exist o, T such that (z,,) is (o, 7, @) o )-constrained. More-
over, for every o' > o and T" > T, () is (Q, 7/, 0p o )-constrained.

Proof. The last statement is trivial and a proof can be found in [7]. We only have to show that
(zn) cannot be (o, 7, @ps) and (@, 7, @y o)-constrained with p > p. If it were the case, then

one should have Vn € N, p(z, — T) < n < o’ + p'z,, but this cannot hold for z, > ”prp(f/. O

Graphically, a flow (,)nen is @, p-lower constrained (resp. @, ,-upper constrained) if Vn €
N, Vm > n, P, is above a, 1 (resp. below @, ,) drawn from P, (respectively denoted as P, +a,r
and P, +@,).

RR n°® 7979
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Figure 1: Data flow and constraints.

Example 1. Consider the data flow of Figure [I. During 30 seconds, messages arrive every
10 seconds and then every 20 seconds. Consider the curves &1, :t +— 1+ 0.1t and Qo110
t — max(0.1(t — 10),0). The flow is (ag 119, ®0.1,1)-constrained on [0,4] but not on [0,5], since
5-0=5<qag119(®5 — 20) = 6. l

Our aim is to guess arrival rates of the messages. For fixed o and T, if the traffic is very
regular, there exists p, such that (z,,)nen is (@, 1, @), )-constrained, one wishes to find p. If the
traffic is not regular, the aim is to find the successive arrival rates of the messages. For this,
given constraint curves, we need to introduce some messages of interest namely the first outgoing
message and the critical messages.

Definition 2 (First outgoing message). Let (z,) be a data flow, o and @ be lower and upper
constraints curves and n € N. The first outgoing message from n regarding o and & is

o=min{p > n | (z,,) is not (o, @)-constrained on [n,p|}.

We need to detect dates where (x,,) is not constrained any more by the current constraints.

For example, from the definition, checking that (x,) is lower-constrained by a, p implies
testing that for each n and m with m < n, gpyT(xn — &) < n —m. In fact we do not need to
study every element of (z,,) but those giving the strongest constraints. They are called upper
and lower critical messages.

Definition 3 (Critical messages). Let (x,,) be a data flow, p,T,0c € Ry and m < n € N. Suppose
that (v,) is (@, ,@p,o)-constrained on [m,n].

The respective lower and upper critical messages of flow () for message n from m regarding
Qa,  are
=p,T

™ =min{p € [m,n] | max (g —zq) = L. xp} and
q€lp,n] p
¢0™ =min{p € [m,n] | max (z,— g) =z, — ]3}.
q€[p,n] P P

We will note these points: P, = (Taom, e0™) and PO™ = (zgom, cli™).
Note that these critical messages only depend on p and not on T and o.

Example 2. Consider again Figure . For ¢ €{0,1,2,3}, z, — % =0< x4 — % = 10. Then xg
is the upper critical message for ¢ < 3 from 0 and x4 is the upper critical message for 4 from 0.
Graphically, this means that Py + @ is below &. We write 62'1’0 =4.

Inria
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Proposition 1. Given a data flow (x,)nen and p € R, the lower and upper critical messages
from m can be recursively computed by the following formula:

m ifn=m
p,m
=4 n if 5 —an > g"p’l — Tgom
™ otherwise.
The same formula stands for ¢, replacing > by <.
Proof. The proof is straightforward from the definition. O

Now, given a flow that is (a,@)-constrained on [m,n], checking that it is constrained on
[m,n + 1], only requires testing that a (2,11 — zeom) < n+1—ch™ and @(zpq1 — Tzpm) <
n+1—7¢™. Lemma [2| gives a simple relation between critical and first outgoing messages.

Lemma 2. Consider a and @ lower and upper constraint curves with rate p. Let o be the first
outgoing message from m. If the lower constraint is broken, then ¢4™ = o and if the upper
constraint is broken, then ¢5™ = o.

Proof. The two cases are symmetric, so we only consider the first. Let ¢ = ¢}, the upper critical

message just before message 0. Message € is not an outgoing message, so 0 — ¢ < p(x, — zz) and
from Proposition [} 22™ = o. -

Algorithm [1] describes elementary functions that test that the current message (P) satisfies
the current constraints (IsLowerConstrained and IsUpperConstrained) and update the critical
messages (CriticalUpdate). These functions will be used in Algorithm The notations are the
following: P = (z,n) is the current message (on which the constraints are checked), P = (z,,¢c)
and P = (¢,¢) are the respective current lower and upper critical messages.

Algorithm 1: Elementary functions

1 CriticalUpdate(p, P, P,P)

if n < p(x — ;) +¢then P« P;

else if n > p(x — z.) + ¢ then P — P;
IsLowerConstrained(T, p, P, P)

if n > p(x — x, — T) + ¢ then True else False

W N

.S

IsUpperConstrained(o, p, P, P)
7 if n < p(xz — 2z) + o + ¢ then True else False

[

4 Long term behavior computation

In this section, we present our core algorithm, that finds successive curves that constrain a
data flow and its multi-layered version. The first algorithm detects the messages that break
the constraints (outgoing messages) as they arrive and computes a new rate. There might be
frequent outgoing messages, for minor variations of the rate. The multi-layered version of the
algorithm discards those minor variations of the rates and rather computes global behavior and
only detects strong variations.

RR n°® 7979
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4.1 The core algorithm

Let us first focus on the core algorithm (Algorithm , that computes arrival rates of the messages
of a flow. We use the same notations as in Algorithm [I} The parameters o and T are fixed (this
will be discussed in and a flow (inputFlow) is analyzed. Each time a new message is received,
the loop (lines 22-25) is executed, except for the initialization: the initial rate p is defined as the
inverse of the first inter-arrival time, with the convention that message 0 arrives at time 0.

Algorithm 2: Rates computation

Data: T, o, inputFlow.

Result: RatesList, outputFlow.

RateUpdate(T, o, p, P, P, P,, P)

if not IsLowerConstrained(T, p, P, P) then
p— (n—0)/(x—az);

P—P,P—P;

outputFlow « outputFlow :: P;

if not IsLowerConstrained(T, p, P, P,) then

L p—(n—np)/(z—xp);
8 | write(RatesList, (p,2));

N O TR W N =

9 else if not IsUpperConstrained(o, p, P, P) then
0 | p—(n—o/(@—m);

11 P — P; P« P;

12 outputFlow « outputFlow :: P;

13 if not IsUpperConstrained((o, p, P, P,) then
14 || pe (n—my)/(x—ap);

15 | write(RatesList, (p,2));

16 begin

17 P «+ (receiveDate(inputFlow), 1) ;

18 p— 1/x;

19 n«—2;

20 P, — P;

21 while true do

22 P «+ (receiveDate(inputFlow), n);
23 RateUpdate(T, o, p, P, P, P,, P);
24 CriticalUpdate(p, P, P, P);

25 P,—P;n—n+1;

26 end

In line 22, the coordinates of the new message are set (basically, we count the messages as they
arrive). Line 23 calls function RateUpdate (lines 1-15) that checks that the current constraints
(a,r and @, ) are satisfied (lines 2 and 9). If not, then a new rate is computed using the
current message and upper critical message if the lower constraint is broken (lines 3-4) or the
lower critical message if the upper constraint is broken (lines 10-11). Lines 6-7 and 13-14 are
some marginal improvements: if the two last messages do not satisfy the new constraints, then
the rate is updated with those two last messages (the intuition is that the variation in the arrival
rate is potentially sharp). Lines 5, 8, 12, 15 will be useful for the multi-layered version and we

Inria
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will comment on these in the Section Finally, line 24 calls CriticalUpdate to maintain the
critical messages.

Note that if a flow is (v, 1, @) - )-constrained and p has been computed by the algorithm, the
constraints will always be satisfied for all the next messages and no new rate will be computed.
We say that the algorithm has converged in finite time. The remaining of this section is devoted
to study cases where this algorithm converges in finite time. The class of periodic flows can be
easily studied and we focus our study on that class.

Periodic flows In order to get a more precise idea of the behavior of Algorithm [2] let us first
focus on the class of the periodic flows.

Definition 4 (periodic flow). The flow (x,;)nen 48 N-periodic if Vn € N

T4 N — Tntl+N = Tp — Tn41-

Proposition 2. Let (z,,)nen be an N-periodic flow. There ezist p,T,0 € Ry such that (x,) is
(@, 7,0 o)-constrained.

Proof. A straightforward computation with 0 = N, T =z, and p = xx /N leads to the desired
result. O

Proposition 3. Let T,0,p € Ry. If (z,) is a N-periodic, (o, r,@) »)-constrained flow, then
Algorithm [4 with input (T, 0, (z,)) either finds a rate p in finite time (and the rate will not be
updated anymore) or ultimately has a periodical behavior.

Proof. Either there exists a finite time when there is no update anymore in the rate computed:
the algorithm has found a rate p such that (z,) is (a, 1, @, - )-constrained. Or there is no such
finite time. In that case, suppose that the mean arrival rate of messages is p and at some time,
the algorithm finds a slope r < p, then the lower critical message will be updated at least once
every period. Then, when the rate is updated, it is computed as z::;”m for n —m < N. The
situation is symmetric if » > p. Then, the number of rates computed is finite and there is some
k,m,n such that the pairs of messages to update the rate are (m,n) and (m + kN,n + kN).
From there on, the behaviour is periodic. O

One can expect that Algorithm [2] converges after a finite time to the arrival rate of a periodic
flow. Unfortunately, it is not the case, and increasing o and T does not help much, as illustrated
in Example

Example 3. Let us consider a period with 9 messages lasting 180 seconds such that: r; = 15s,
T9 = 358, x3 = 5bs, x4 = 80s, x5 = 100s, xg = 120s, x7 = 140s, xg = 160s, x9 = 180s. This
flow is constrained with p = 0.05, 0 = 1 and T = 10. Algorithm[3 alternatively finds p1 = 0.06667
and ps = 0.04. This computation is represented in Figure @ the first rate computed is p1 = 1/x1.
Then, message 4, arriving at x,, is the first outgoing message and its upper critical message is
message 8 arriving at x.,. The new rate computed is then 1/(x4 —x3) = 0.04. The next outgoing
message is message 10 and its lower critical message is message 9. The rate computed is the
same as the initial rate (one period shift).

Figure [3 shows the behavior of the algorithm when T increases. For example, if T = 20
(plain curve), then the first outgoing message is message 0*° =5 and its upper critical message
is c?0 = 4. The new constraints computed are with p = 0.05 and the algorithm has converged in
finite time. But if T = 60 (dashed curves), the behavior of the algorithm will again be periodical:
the first outgoing message is message 0°0 = 13 and its critical message is message c%° = 12. The
rate computed is still po = 0.04 and the behavior is still periodic.

RR n°® 7979
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Figure 3: Effect of increasing T on Algorithm

Nevertheless, when the rate computed at some point is close enough from the arrival rates of
the messages, Algorithm [2] can converge in finite time.

Theorem 1 (Convergence). Let (z,) be a N-periodic, (o, r/,Qp o )-constrained flow. There
eists € such that if Algorithm[d with inputs (x,,), 0 > o’ andT > T’ can compute r € [p—e, p+e€|,
it converges to rate p in finite time.

Proof. There are two cases to consider: r < p and r > p. As they are similar, we only consider
the case r > p.

AsT >T, py = p% is such that Vr > p;, the constraints will not be broken during the
first period of (z,,) (for all t € [0,2n], @, 7 < ay 1)

The set S = {px,, —n | n € N} is finite. Let ng = min{n | pz,, — n = mingcg s}. We know
that ng < N and ng is found upper critical by the algorithm uses the rates r and p.

Now, let us have a look at the upper critical messages (when the algorithm uses r, since when
it uses p, the critical messages will not be updated anymore). As said before, they are updated
at least once every period, and the new rate is computed between two messages separated by at
most one period. Thus, only a finite number of rates can be found. Take py = min{*2="m | 0 <
m <n < N and #2="= > pl. If p <r < py, then, when the upper critical message is updated,
the rate between the two critical messages is necessarily p (it is necessarily less than p, but it
cannot be strictly less by construction of .S).

But by Lemma 2] we can also conclude that the next rate computed will be exactly p, as it is
the slope between two upper critical messages. So, it suffices to take » < min(pq, p2) to guaranty

Inria
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the convergence. O

Convergence for balanced flows

Definition 5 (Balanced flow). The balanced flow (x,,) with rate p is such that Vn € N,

n
T [p]

This definition is related to that of balanced words: the n-th letter of the word is defined
for each time slot. There is a 0 if no message arrives to skip to the next time slot and k 1s in
a row if k messages arrive at a time slot. More details about those words can be found in [9].
We choose a rational slope so that the flow is periodic. By construction, if p > 1, there can be
several messages with the same arrival time.

The structure of a balanced word with rational slope p is the following: Jaq,...,ar > 0 such
that for each ¢ € {1,...k — 1}, the balanced word can be decomposed into the following pair of
factors: wy = wy* jw;_; and wj = wzglwg_l, with wg = 0 and wj = 1. The periodic pattern of

H T T
the word is wy, = wi* 7wy _4.

number of messages
+
+
+

0001001001000100 S

Figure 4: Example of a balanced flow with a slope p = %

Example 4. Consider the balanced flow represented on Figure [{} Initials factor are wy = 0
and wy, = 1. Then the others factors are w; = 0001, wj = 001 and so we = 0001001 (ay = 1),
why = 001. Finally, the periodic pattern is ws = wh = wew}) = 0001001001 (a3 =1).

|w]y
[wlo

The slope of a finite word is the number of 1 divided by its number of 0: p(w) = , where
|w|, is the number of occurrences of a in w. The slope of a periodic word is the slope of its
periodic patterns: p(w*) = p(w). A simple induction shows that p, = p(we) < p(w}) = pj.

Example 5. Consider again the balanced flow of slope p = % represented on Figure . The slope

of the factors of this periodic pattern are p; = %, Pl = %, then py = %, ph = %, and finally

p3 = ph = %
Lemma 3. Y/, there exist w and v such that w, = wl and w; = wOv.

Proof. This is true for ¢ = 0. Suppose it is true for £ — 1. w) = wi*'w, | and w, =

ap—1 / ..
Wyt we_1wy_q, so this is true for £. O

RR n°® 7979
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Lemma 4. Let x be a proper prefiz of wg (resp. wy). Then p(z) < pe.

. . .. _ _ oap ,a—1—1 ap_o2—1 az—1,_ o

Proof. By induction. This is true for £ = 1, w, = w,* ,w," 5" w," 5" - w*  w) and w;, =
ag—1, a¢g—1—1 ar_o—1 — ay—1_

Wy_ 1 Wy_g  Wy_3 wyt wy. O

Theorem 2. Fiz p >0, 0 > [p] and T > [1/p]. If (zy) is a periodic balanced flow of slope p,
then Algorithm [9 with parameters o and T converges to p in finite time.

Proof. We show by induction on ¢ that the patterns w, or/and wj correspond to the slopes
discovered by the algorithm.

Initialisation: the first slope to be discovered is either p| = 1/ag or py = 1/(ag + 1).

Induction hypothesis: the slope py or pj is discovered in finite time.

Induction step: We will use Lemma If ¢ # k, pe < p < pj. Suppose that the slope that has
been found is p;. Then the upper constraint will be broken, at a lower critical message.

The word can be decomposed in factors wy and wj. As long as only factors of w, are found,
the upper constraint is not broken and the lower critical message corresponds to the message
before the last of the first occurrence of wy (note that this first occurrence can be a suffix of wy),
and then this is valid for w} since w; = wy_wy,.

A careful look at the structure of the words wy and wj shows that only the last message
of wj can be critical. Moreover, the constraint cannot be broken at the first occurrence of wj
as 0 > [p]. Then, necessarily, the next slope computed will correspond to the slope computed
between two occurrences of wy, and then be either p,y1 or pj ;.

Now suppose that we start from the slope pj. One could apply exactly the same argument,
but it is slightly more difficult with the decomposition of the words that have been chosen.
Another simpler argument is to see that the problem of the upper critical messages is the same
as the lower critical messages for the algorithm applied to the balanced work of slope 1/p (the

role of 0 and 1 is exchanged). O

3 |

= |

[ |

e |

3 |

g o =1 ‘ |

a 1 3Jr + !

+ ! |

o= 1 + ! :

=3 Lo, To, Ze, To, S

Figure 5: Rates computed with Algorithm [2| for the balanced flow of slope p = %

Example 6. Figure [J] represents the actual rates computed by Algorithm [2 when T = 3 and

o =1, for the balanced flow of slope p = % represented in Figure The first rate computed is

p1 = 1/x1 = % Then, message 6, arriving at x,, s the first outgoing message and its lower

critical message is message 5 arriving at x.,. The new rate computed is then 1/(xg — x5) = %
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The next outgoing message is message 16 arriving at T, and its upper critical message is message
13 arriving at x.,. The rate computed is 1/(x16 — x13) = % So, convergence occurs after 38 s,
when 16 messages have arrived. Moreover, one can observe that the computed rates belong to the
set of slopes of the factors computed in Example [ as stated in Theorem [

4.2 The multi-layered algorithm

In this section we present an adaptation of our algorithm that provides a better analysis of the
flows. Algorithm [2] computes short term arrival rates of a flow: as said before, minor variations
of the arrival rates of the messages may be detected, whereas longer term arrival rate could be
preferred.

To be able to offer such levels of details, we modify our algorithm into a multi-layered archi-
tecture. Then the ground layer (or layer 0) provides interesting quantity of details; its objective
is to detect small variations in the arrival rate of messages. Finally, the last layer of the algo-
rithm returns long term arrival rates of messages. So if the flow is quite regular, the algorithm
will find the mean arrival rate. By contrast, if the arrivals are erratic, the important variations
of the flow will still be detected by the successive layers, with fewer details, thus pointing out
critical variations (see Section [5| for examples). We also define by experimentation that 3 layers
are enough to achieve such analysis.

To do this we now have to explain lines 5 and 12 of Algorithm 2] An output flow of messages
is built using the First outgoing messages defined in Definition [2l This is a sub-flow of the initial
flow, keeping the original numbering of the messages. Then, it is possible to run Algorithm [2] on
this output flow (outputFlow). Instead of reading messages from an input flow, the algorithm
uses the messages of outputFlow (lines 17 and 22 are modified accordingly).

Figure [6] gives an example of the structure of the multi-layered algorithm with three layers:
first, an input flow is given to Algorithm to compute arrival rates as explained in Section
- this is our layer 0 (or ground layer). Then, Algorithm [2[is run using outputFlow of layer O -
this builds layer 1 and produces a new output flow, and so on.

Input Flow

o

Layer 0
using Algorithm 2
i/ Rates computed

output flow of layer O

Correlation of results

Layer 1
using Algorithm 2
Rates computed

output flow of layer 1

to define

abnormal behavior
Layer 2

using Algorithm 2
i/ Rates computed

output flow of layer 2

Figure 6: Example of Algorithm [2] used with several layers.

Example 7. Previously, in Example [3, we showed that Algorithm [Z may not always converge
to the arrival rate for periodic flows. Figure [7 represents the rates computed with the multi-
layer algorithm with 2 layers for the input flow and parameters of Example @ The first (resp.
second) time line represents the rates computed on layer O (resp. layer 1). The dates correspond
to changes of rate in the corresponding layer. For example, for layer 0, the current rate is
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p1 = 0.066 between time t = 0 and t = 55 seconds. Note that the arrow of layer 1 starts at
t = 80 seconds: it corresponds to the first time a rate can be computed on this overlay because
two messages broke the current constraints in layer 0. Then, on this example, the multi-layer
algorithm converges to the arrival rate. Up to our knowledge, this is still an open question whether
there exist a layer for which this algorithm will converge for a periodic flow of messages.

0 55 180 235 360 415 time (s)
Overlay 0 f | | | f f
p1=0.066  pr=0.04 p1 P2 p1 P2
80 375
Overlay 1 | |
o = 0.052 oy = 0.05

Figure 7: Example of algorithm computation with 2 overlays.

4.3 Discussion for the algorithm

Several points of the algorithm need some discussion: the choice of the parameters ¢ and T,
the choices that were made for the implementation, and solutions that could be implemented to
guaranty the convergence of our algorithm.

The role of 0 and T' In the previous paragraph, we have seen that o and T do not play
an important role: they have no obvious property that make the convergence easier if they are
increased (see Example . Concerning this matter, the multi-layer version of the algorithm is
far more efficient.

However, those parameters have to be chosen by the user (a network administrator for exam-
ple) in order to define the tolerance to detect the rate variations, particularly in the ground layer.
Small parameters will allow a very refined detection. Finally, the choice of these parameters will
be made in accordance with the theoretical characteristics of the flow of interest. For example
we will see in Section [5| that it can be useful to take small values for the first layers and larger
values for the last layers to respectively emphasize the precision and the long term computation.
More precisely, we have taken o = 1 for layers 0 and 1 and o = 5 for layers 2 and 3 in the next
section.

Implementation choices In our algorithm, we chose to update the rate when the lower
constraint is broken with the upper critical message, and conversely. Another solution would
have been to choose the other way round: update the rate with the lower critical message when
the lower constraint is broken. Doing this, there is no way to ensure the convergence in finite
time, in view of Lemma [2] However, with this implementation, we could experimentally notice
some convergence when time goes to infinity.

Convergence of the algorithm Several solutions can be proposed for the convergence of our
algorithm for regulated flows (flow of messages respecting some (o, r, @, »)-constraints).

e Linear Regression of least squares approach: This method is a well-known technique to
approximate a set of points with a linear function. In our study, this method can be
efficient to compute the mean rate on the last overlay. Furthermore, it is an interesting
technique to raise the problem of convergence for periodic flows. We did not find any
example showing that the multi-layered algorithm does not converge, but for a given layer,
it is quite sure that this case may happen. One solution to get the mean arrival rate
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would be to compute a linear regression on the last layer to obtain a rate close to p. Thus
Theorem [I] proved that the last overlay converges to p after a finite number of computation.

e Correlation between the layers: The idea of this approach is to correlate results from the
lower and the upper layers of algorithm: even in the case of non-convergence of the last
layer, the rate computed will converge to p, as only sub-flows are considered. Then, injecting
the rate computed by the last layer to the first layer will eventually ensure the convergence
in view of Theorem [l

e Mix the implementations: Even in the single-layer algorithm the convergence can be im-
proved: it suffices to randomly run Algorithm [2] and its adaptation in the previous para-
graph.

5 Experimental results

In this part, we perform Algorithm [2] on an OSPF flow monitoring on a telecommunication
network which topology is based on the German main cities. Each node is set from an Ubuntu
Linux that hosts a running instance of the well-known Quagga Routing Software Suite [13]. We
obtain a testbed that will act as a real network and that can be monitored with traditional
network management tools.

We then define several scenarii to perform on the network: First a normal and stable network
with a fluid OSPF traffic that acts as a reference; then a cyclic and malicious OSPF protocol
stack router failure; and to conclude, a multiple competitive router start that provides many
OSPF convergence perturbations. For each scenario we monitor all exchanged messages in the
testbed as in an operational context. Afterwards the records are given to Algorithm 2 with
multiple layers. Finally the resulting rates obtained allow us to prove its operational interest.
Some of the figures also represent the moving average method (MAM) that will be compared to
our results in the last chapter of this section.

Figure 8: Topology of the network studied.

5.1 The Open Shortest Path First protocol

The Open Shortest Path First (OSPF) protocol ([I1]) is a link state protocol that makes intern
IP routing. To do so, routers exchange network’s information such as topology, metrics, alive
routers, etc. These exchanges of data are made using different kind of messages: Hello and Link
State Advertisement (LSA) messages. Hello messages are sent every 10 seconds. The LSA ones
describe the evolution of the routes of the network. Typically, they are sent every 30 minutes, at
this moment routers send the information they have recorded about the network topology. LSA
sending stops when all routers have recorded the same information.
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The OSPF protocol is an emblematic protocol of the networking domain. Furthermore, it
has the great advantage to be well-known and accessible, so that the relation between algorithm
results and the network behavior is clear and immediate.

5.2 OSPF fluid traffic study

In this part, we present an OSPF flow of messages when there is no perturbation in the network.
The flow evaluated is the one from router Rj; to router Rg. Figure |§| represents the arrival of
messages on this link between 0 and 8000 s with a zoom on that flow between 1500 and 2500 s.
One can observe that the flow seems to be globally linear. This represents the sending of Hello
messages. But, when having a deeper look (zoom on the figure), one can observe that the linear
behavior is perturbed between 1900 and 2250 s: the amount of arrivals intensifies. On the global
flow, it is clear that this scheme periodically happens (every 1800 s), corresponding to an LSA
refresh operation. Consequently, the objective here is to highlight these two behaviors with our
algorithm.

Number of messages arrived

1500 1500 1700 1800 1900 2000 2100 2200 2300 2400 2500
[ 1000 2000 3000 4000 5000 6000 7000 8000
time(s)

Figure 9: Flow of messages from R;; to Rg during 8000 s with a detailed period (between 1500
and 2500 s) at the bottom right.

The results of the ground layer of our algorithm on the flow studied are shown by the plain
curve in Figure One can clearly observe a periodical scheme in this curve. Indeed, there are
two kinds of behaviors on the rates computed: the stable case during which at most three rates
are computed in 1500 s (these rates have low values that do not exceed a slope of 1 message per
second) and the perturbed case that last at most 400 s. During this period, there are in average
four rates computed. Furthermore, the slopes have a mean value higher and vary between 0.5 to
1000 messages per second.

Finally, the plain curve of Figure [11] shows the results of the third layer of our algorithm.
One can notice that the two behaviors are still present. It is important to observe that each
behavior is represented by only one slope that represents the average messages arrival on the
period. When only Hello messages are sent the slope is a little higher than 0.11. Then, when
LSA and Hello messages are sent the slope equals in mean to 0.14. Between each occurrence of
the Hello rate and the LSA refresh one, there is another slope computed for a few second and
that equals to 0.1 message per second. It corresponds to a transition time and is negligible.

Note that on each figure, the beginning of the flow is slightly different to the rest of the curve.
This is normal and corresponds to the starting of the network.

In a nutshell, Algorithm [2] has effectively reached the theoretical rates of the two trends on
arrival for the OSPF protocol on the flow from R;; to Rs.
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Figure 10: Results of our algorithm on layer 0 and MAM with N = 2 on the link from Rj; to
Ry in fluid traffic case.
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0 1000 2000 3000 4000 5000 6000 7000 8000
time(s)
Figure 11: Results of our algorithm on layer 3 and MAM with N = 100 on the link from R;; to
Rg in fluid traffic case.

5.3 When router Ry fails

In this part, we present a flow of OSPF messages when in router Rg a failure occurs every 6
min and lasts 3 min. This corresponds to a bug in the implementation that forces Rg to reboot
frequently. The flow evaluated is from router Rg to router Ri;. Figure [12| represents the arrival
of messages on this link between time 0 and 4000 s. One can observe that at the beginning
messages arrive regularly, which corresponds to Hello messages arrival. Then, at time 310 s,
arrival of messages stops and restarts 180 s later. This is the time during which router Rg
cannot send messages because it is restarting. Afterwards, at time 500 s, messages are received
again: more frequently first, as initially then. Here, Rg first floods LSAs when restarting and
sends Hello messages again, until it crashes.

The result of the ground layer of our algorithm on the flow of interest is shown in Figure
Most of the time, the slope computed is p = 0.1, which corresponds to the receipt of Hello
messages. But, each time Rg restarts, there is a sudden high rate computed - between 10 and
400 - with a mean slope value that equals 30.

Figure [14] represents the rates computed on the third layer of our algorithm. The resulting
rates are smoother than the ones of layer 0. Here, rates do not exceed 1 when it could be 400 on
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Figure 12: Flow of messages from Rg to Rj; during 4000 seconds.
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Figure 13: Rates computed on layer 0 with our algorithm on the flow of messages from Rg to
Ry;.

layer 0. Furthermore, the number of abrupt rate change is reduced on layer 3. Unfortunately,
it does not establish additional knowledge on this flow. In this case, a smoother study does not
bring additional value and layer O exactly represents what happens: each reboot of router Rg is
pointed out by an abrupt rate change.

5.4 OSPF convergence perturbations

In this experiment, each node is started the one after the other and the full run of the current node
must be established to start the next one. The start order is: Ry, Rig, R11,..., R17, Ro,..., Rg.
This experiment simulates the conditions for observing a classical problem when several routers
have to face multiple changes at the same time. Figure [15| presents an OSPF flow of messages
exchanges from router Rj; to router Rg between time 0 and 1600 s in this context. From 30 to
100 s Hello messages are sent regularly by R1; to Rg. But router Rg has not started yet, and thus
does not answer to Ry;. This implies that between 100 and 140 s R;; reduces its Hello sending
speed. Afterwards, as Rg has still not started, R1; stops flooding messages until Rg starts (at
time 190 s). Now the connection is made, a few Hello messages are sent (between time 190 and
230 s) before routers could exchange their database in a LSA operation process. This operation
is clearly observable with the burst of messages between time 230 and 271 s. Afterwards, Hello
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Rates computed for flow from Rg to Ry; on layer 3 ——
0.001 | | | | | |

500 1000 1500 2000 2500 3000 3500 4000
time(s)
Figure 14: Rates computed on layer 3 with our algorithm on the flow of messages from Rg to
Ri1.

messages are sent. During this period, there are lost messages (at time 285, 335, and 445 s),
because Rg is still struggling in LSA exchange operations. Finally, one can observe a second
perturbation between time 1200 and 1300 s during which Rg does not answer to Hello messages
from Rj; because it is busy on synchronizing with Rg. Note that this perturbation arises quite
long after Rg starts running because in the topology Ry is far from Rg.

160 T T

140 /
120 - . B
100 B
80 B
60 B

40 / b
20 - r 4

/-' - Number of messages arrived
| | | | | | |

0 200 400 600 800 1000 1200 1400 1600
time(s)

0

Figure 15: Flow of messages from R;; to Rg during 1600 seconds.

Figure [I6] shows the ground layer of our algorithm on the studied flow. One can immediately
observe the two perturbations discussed above: the beginning of messages broadcast from Rj;
to Rg between time 0 and 450 s and the busy period of router Rg due to its synchronization with
Rg between time 1200 and 1300 s.

Finally, Figure [17] presents layer 1 of our algorithm on the studied flow. One can observe an
improvement compared to the ground layer as the two perturbations are still present but with
less details, which is what we are looking for. This conclude that our algorithm clearly points
out the abnormal behaviors of the flows of messages.

5.5 Comparison with the Moving Average Method

In this part, we compare our algorithm to another method based on moving averages. MAM
analyzes a data flow to suppress instantaneous fluctuations and then to study long term behaviors.
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Figure 16: Rates computed on layer 0 with our algorithm on the flow of messages from Rj; to
Rs.
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Figure 17: Rates computed on layer 1 with our algorithm on the flow of messages from Rj; to
Rs.

In a data flow, the mean value associated to a given point is computed using that point and the
N — 1 former ones, where N is a fixed parameter. To stick with our algorithm, the data flow we
use is the arrival dates messages. For message n, it is defined by — L

n—Tn—1

Figure [10| presents results of the ground layer of our algorithm (plain curve) and MAM with
N = 2 (dotted curve). The results are similar. Then, Figure [11| compares results of the third
layer of our algorithm (plain curve) and the ones of MAM with N = 100 (dotted curve). The
results given by the two methods are really different. The first noticeable difference is that our
algorithm outputs fewer points, stressing only the changes of arrival rate (68 output points versus
850 points). In the case of LSA refresh operations our algorithm highlight it by the slight and
short slope changes, quite as MAM if N is put to N = 100. However, for MAM, these changes
last too long (around 1000 s) and also there is no convergence to the mean arrival rate. This
means that our algorithm is more accurate to detect these changes. Finally, the quality of the
results of the MAM is highly sensitive on the value taken for N, whereas our algorithm only
considers the constraints of the flows. Other methods using sliding windows, like the exponential
moving average did not lead to any conclusive results.
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6 Conclusion

This article presents a method to study flows of messages arrivals in networks. This work aims
at detecting hidden abnormal behaviors.

The algorithm introduced here is very light in computing complexity and in memory usage.
Thus, it works on the fly to detect bad behavior immediately. Furthermore, no expert is needed
to interpret the results and the method proposed has the great advantage to return flow behavior
and thus it cannot statue on false problem. When compared to the Moving Average Method, we
have shown that our algorithm supply a really better understanding of the studied flows.

This work will be deepened with other network management contexts studies, such as network
security with the detection of DoS/DDoS attacks and network alarms management by detecting
abnormal trends in the huge flow generated by a telecommunication network.
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