J. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numerische Mathematik, vol.84, issue.3, pp.375-393, 2000.
DOI : 10.1007/s002110050002

J. D. Benamou and Y. Brenier, Mixed L 2-Wasserstein Optimal Mapping Between Prescribed Density Functions, Journal of Optimization Theory and Applications, vol.44, issue.2, pp.255-271, 2001.
DOI : 10.1023/A:1011926116573

D. P. Bertsekas, Convex analysis and optimization With Angelia Nedi´cNedi´c and Asuman E. Ozdaglar. MR2184037 (2006j:90001) [Ber92] , Auction algorithms for network flow problems: a tutorial introduction, Athena Scientific Comput. Optim. Appl, vol.193, issue.1, pp.7-66, 1992.

D. Bosc, Numerical Approximation of Optimal Transport Maps, SSRN Electronic Journal, 2010.
DOI : 10.2139/ssrn.1730684

Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Communications on Pure and Applied Mathematics, vol.117, issue.4, pp.375-417, 1991.
DOI : 10.1002/cpa.3160440402

G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal, pp.271-28335137, 1991.

S. Boyd and L. Vandenberghe, Convex optimization, p.206157590002, 2004.

C. J. Budd and J. F. Williams, Moving Mesh Generation Using the Parabolic Monge???Amp??re Equation, SIAM Journal on Scientific Computing, vol.31, issue.5, pp.3438-3465, 2009.
DOI : 10.1137/080716773

A. Luis and . Caffarelli, Boundary regularity of maps with convex potentials. II, Ann. of Math, issue.2 3, pp.144-453, 1996.

L. Chacón, G. L. Delzanno, and J. M. Finn, Robust, multidimensional mesh-motion based on Monge???Kantorovich equidistribution, Journal of Computational Physics, vol.230, issue.1, pp.87-103, 2011.
DOI : 10.1016/j.jcp.2010.09.013

J. A. Carrillo and J. S. Moll, Numerical Simulation of Diffusive and Aggregation Phenomena in Nonlinear Continuity Equations by Evolving Diffeomorphisms, SIAM Journal on Scientific Computing, vol.31, issue.6, pp.4305-4329, 2009.
DOI : 10.1137/080739574

M. J. Cullen, J. Norbury, and R. J. Purser, Generalised Lagrangian Solutions for Atmospheric and Oceanic Flows, SIAM Journal on Applied Mathematics, vol.51, issue.1, pp.20-31, 1991.
DOI : 10.1137/0151002

M. J. Cullen and R. J. Purser, An extended Lagrangian theory of semigeostrophic frontogenesis, J. Atmospheric Sci, vol.4187, issue.9, pp.1477-1497, 1984.

A. Dominitz, S. Angenent, and A. Tannenbaum, On the computation of optimal transport maps using gradient flows and multiresolution analysis , Recent advances in learning and control, pp.65-78, 2008.

P. Delanoë, Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Amp??re operator, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.8, issue.5, pp.443-457, 1991.
DOI : 10.1016/S0294-1449(16)30256-6

U. Frisch, S. Matarrese, R. Mohayaee, and A. Sobolevski, A reconstruction of the initial conditions of the Universe by optimal mass transportation, Nature, vol.34, issue.6886, 2002.
DOI : 10.1086/176348

D. Brittany, A. M. Froese, and . Oberman, Convergent finite difference solvers for viscosity solutions of the elliptic Monge-Ampère equation in dimensions two and higher MR2831067 [FO11b] , Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation, SIAM J. Numer. Anal. J. Comput. Phys, vol.49, issue.4 3, pp.1692-1714, 2011.

B. D. Froese, A Numerical Method for the Elliptic Monge--Amp??re Equation with Transport Boundary Conditions, SIAM Journal on Scientific Computing, vol.34, issue.3, pp.1432-1459, 2012.
DOI : 10.1137/110822372

T. Glimm and V. Oliker, Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem Nonlinear problems and function theory. MR2027449 (2004k:49101) [GO03b] , Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem, Journal of Mathematical Sciences, vol.117, issue.3, pp.4096-4108, 2003.
DOI : 10.1023/A:1024856201493

E. Haber, T. Rehman, and A. Tannenbaum, An Efficient Numerical Method for the Solution of the $L_2$ Optimal Mass Transfer Problem, SIAM Journal on Scientific Computing, vol.32, issue.1, pp.197-211, 2010.
DOI : 10.1137/080730238

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, Optimal Mass Transport for Registration and Warping, International Journal of Computer Vision, vol.60, issue.3, pp.225-240, 2004.
DOI : 10.1023/B:VISI.0000036836.66311.97

R. Jordan, D. Kinderlehrer, and F. Otto, The Variational Formulation of the Fokker--Planck Equation, SIAM Journal on Mathematical Analysis, vol.29, issue.1, pp.1-17, 1998.
DOI : 10.1137/S0036141096303359

L. V. Kantorovich, On the transfer of masses, Dokl. Akad. Nauk. SSSR, vol.378, issue.7, pp.227-229, 1942.

D. Kinderlehrer and N. J. Walkington, Approximation of Parabolic Equations Using the Wasserstein Metric, ESAIM: Mathematical Modelling and Numerical Analysis, vol.33, issue.4, pp.837-852, 1999.
DOI : 10.1051/m2an:1999166

G. Loeper and F. Rapetti, Numerical solution of the Monge???Amp??re equation by a Newton's algorithm, Comptes Rendus Mathematique, vol.340, issue.4, pp.319-324, 2005.
DOI : 10.1016/j.crma.2004.12.018

A. Lachapelle, J. Salomon, and G. Turinici, COMPUTATION OF MEAN FIELD EQUILIBRIA IN ECONOMICS, Mathematical Models and Methods in Applied Sciences, vol.20, issue.04, pp.567-588, 2010.
DOI : 10.1142/S0218202510004349

URL : https://hal.archives-ouvertes.fr/hal-00346214

P. Lions, N. S. Trudinger, and J. I. Urbas, The neumann problem for equations of monge-amp??re type, Communications on Pure and Applied Mathematics, vol.20, issue.4, pp.539-563, 1986.
DOI : 10.1002/cpa.3160390405

Q. Merigot, A Multiscale Approach to Optimal Transport, Computer Graphics Forum, vol.40, issue.2, pp.1583-1592, 2011.
DOI : 10.1111/j.1467-8659.2011.02032.x

URL : https://hal.archives-ouvertes.fr/hal-00604684

J. Robert, A. M. Mccann, and . Oberman, Exact semi-geostrophic flows in an elliptical ocean basin, Nonlinearity, vol.17, issue.5, pp.1891-1922, 2004.

B. Maury, A. Roudneff-chupin, F. Santambrogio, and J. Venel, Handling congestion in crowd motion modeling On the approximation of linear elliptic differential equations by difference equations with positive coefficients, MR2826756 [MW53] Theodore S. Motzkin and Wolfgang Wasow, pp.485-519, 1953.

M. Adam and . Oberman, A convergent monotone difference scheme for motion of level sets by mean curvature, Numer. Math, vol.99, issue.2, pp.365-379, 2004.

M. Adam, L. Oberman, and . Silvestre, The dirichlet problem for the convex envelope, Trans. Amer. Math. Soc, issue.16, 2009.

F. Otto, THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION, Communications in Partial Differential Equations, vol.4, issue.1-2, pp.101-174, 2001.
DOI : 10.1007/BF00535689

A. V. Pogorelov, Generalized solutions of Monge-Ampère equations of elliptic type, A tribute to Ilya Bakelman (College Station, TX Numerical and analytical results for the transportation problem of Monge-Kantorovich, MR1423367 [RU00] Ludger Rüschendorf and Ludger Uckelmann, pp.47-50, 1993.

J. Urbas, On the second boundary value problem for equations of Monge- Ampère type, J. Reine Angew. Math, vol.487, pp.115-124, 1997.