Dictionary learning of convolved signals

Abstract : Assuming that a set of source signals is sparsely representable in a given dictionary, we show how their sparse recovery fails whenever we can only measure a convolved observation of them. Starting from this motivation, we develop a block coordinate descent method which aims to learn a convolved dictionary and provide a sparse representation of the observed signals with small residual norm. We compare the proposed approach to the K-SVD dictionary learning algorithm and show through numerical experiment on synthetic signals that, provided some conditions on the problem data, our technique converges in a fixed number of iterations to a sparse representation with smaller residual norm.
Type de document :
Communication dans un congrès
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, May 2011, Praha, Czech Republic. pp.5812 -5815, 2011, 〈10.1109/ICASSP.2011.5947682〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00705998
Contributeur : Jules Espiau de Lamaestre <>
Soumis le : vendredi 8 juin 2012 - 16:15:26
Dernière modification le : lundi 13 octobre 2014 - 15:43:25

Lien texte intégral

Identifiants

Collections

Citation

Daniele Barchiesi, Mark Plumbley. Dictionary learning of convolved signals. Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, May 2011, Praha, Czech Republic. pp.5812 -5815, 2011, 〈10.1109/ICASSP.2011.5947682〉. 〈hal-00705998〉

Partager

Métriques

Consultations de la notice

113