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Une structure de données arborescente pour représenter les

complexes simpliciaux

Résumé : Nous définissons dans cet article une nouvelle structure de données, appelée “simplex
tree”, pour représenter les complexes simpliciaux abstraits de toutes dimensions. Le complexe
simplicial est représenté par un arbre préfixe dont les nœuds sont en bijection avec les faces
du complexe. Cette structure de données permet de calculer efficacement un grand nombre
d’opérations de bases sur les complexes simpliciaux. Nous développons dans cet article une
analyse théorique de la complexité de ces algorithmes, ainsi qu’une analyse expérimentale détail-
lée. Nous étudions plus particulièrement la construction des complexes de Rips et des witness
complexes.

Mots-clés : complexes simpliciaux, structure de données, flag complexes, complexes de Rips,
witness complexes, relaxed witness complexes, grandes dimensions
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1 Introduction

Simplicial complexes are widely used in combinatorial and computational topology, and have
found many applications in topological data analysis and geometric inference. A variety of
simplicial complexes have been defined, for example the C̆ech complex, the Rips complex and
the witness complex [9, 8]. However, the size of these structures grows very rapidly with the
dimension of the data set, and their use in real applications has been quite limited so far.

We are aware of only a few works on the design of data structures for general simplicial com-
plexes. Brisson [5] and Lienhardt [13] have introduced data structures to represent d-dimensional
cell complexes, most notably subdivided manifolds. While those data structures have nice alge-
braic properties, they are very redundant and do not scale to large data sets or high dimensions.
Zomorodian [18] has proposed the tidy set, a compact data structure to simplify a simplicial
complex and compute its homology. Since the construction of the tidy set requires to compute
the maximal faces of the simplicial complex, the method is especially designed for flag complexes.
Flag complexes are a special type of simplicial complexes (to be defined later) whose combina-
torial structure can be deduced from its graph. In particular, maximal faces of a flag complex
can be computed without constructing explicitly the whole complex. In the same spirit, Attali
et al. [2] have proposed the skeleton-blockers data structure. Again, the representation is general
but it requires to compute blockers, the simplices which are not contained in the simplicial com-
plex but whose proper subfaces are. Computing the blockers is difficult in general and details on
the construction are given only for flag complexes, for which blockers can be easily obtained. As
of now, there is no data structure for general simplicial complexes that scales to dimension and
size. The best implementations have been restricted to flag complexes.

Our approach aims at combining both generality and scalability. We propose a tree represen-
tation for simplicial complexes. The nodes of the tree are in bijection with the simplices (of all
dimensions) of the simplicial complex. In this way, our data structure explicitly stores all the
simplices of the complex but does not represent explicitly all the adjacency relations between
the simplices, two simplices being adjacent if they share a common subface. Storing all the sim-
plices provides generality, and the tree structure of our representation enables us to implement
basic operations on simplicial complexes efficiently, in particular to retrieve incidence relations,
ie to retrieve the faces that contain, or are contained, within a given simplex. Moreover, stor-
ing exactly one node per simplex ensures that the size of the structure adapts to the intrinsic
complexity of the simplicial complex to be represented.

1.1 Background

Simplicial complexes. A simplicial complex is a pair K = (V, S) where V is a finite set whose
elements are called the vertices of K and S is a set of non-empty subsets of V that is required to
satisfy the following two conditions :

1. p ∈ V ⇒ {p} ∈ S

2. σ ∈ S, τ ⊆ σ ⇒ τ ∈ S

Each element σ ∈ S is called a simplex or a face of K and, if σ ∈ S has precisely s+ 1 elements
(s ≥ −1), σ is called an s-simplex and the dimension of σ is s. The dimension of the simplicial
complex K is the largest k such that S contains a k-simplex.
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We define the j-skeleton, j ≥ 0, of a simplicial complex K to be the simplicial complex made of
the faces of K of dimension at most j. In particular, the 1-skeleton of K contains the vertices
and the edges of K. The 1-skeleton has the structure of a graph, and we will equivalently talk
about the graph of the simplicial complex.

Faces and cofaces. A face of a simplex σ = {p0, · · · , ps} is a simplex whose vertices form a
subset of {p0, · · · , ps}. A proper face is a face different from σ and the facets of σ are its proper
faces of maximal dimension. A simplex τ ∈ K admitting σ as a face is called a coface of σ. The
subset of simplices consisting of all the cofaces of a simplex σ ∈ K is called the star of σ.

The link of a simplex σ in a simplicial complex K is defined as the simplicial complex
{τ ∈ K|σ ∪ τ ∈ K, σ ∩ τ = ∅}.

Filtration A filtration over a simplicial complex K is an ordering of the simplices of K such
that all prefixes in the ordering are subcomplexes of K. In particular, for two simplices τ and σ
in the simplicial complex such that τ ( σ, τ appears before σ in the ordering. Such an ordering
may be given by a real number associated to the simplices of K. The order of the simplices is
simply the order of the real numbers.

2 Simplex Tree

In this section, we introduce a new data structure which can represent any simplicial complex.
This data structure is a trie [4] which will explicitly represent all the simplices and will allow
efficient implementation of basic operations on simplicial complexes.

2.1 Simplicial Complexes and Trie

Let K be a simplicial complex of dimension k, V its vertex set. The vertices are labeled from 1
to |V | and ordered accordingly.

We can thus associate to each simplex of K a word on the alphabet 1 · · · |V |. Specifically, a
j-simplex of K is uniquely represented as the word of length j + 1 consisting of the ordered
set of the labels of its j + 1 vertices. Formally, let simplex σ = {vℓ0 , · · · , vℓj}, where vℓi ∈ V ,
ℓi ∈ {1, · · · , |V |} and ℓ0 < · · · < ℓj . σ is represented by the word [σ] = [ℓ0, · · · , ℓj ]. The last
label of the word representation of a simplex σ will be called the last label of σ and denoted by
last(σ).

The simplicial complex K can be defined as a collection of words on an alphabet of size |V |.
To compactly represent the set of simplices of K, we store the corresponding words in a tree
satisfying the following properties:

1. The nodes of the simplex tree are in bijection with the simplices (of all dimensions) of the
complex. The root is associated to the empty face.

2. Each node of the tree, except the root, stores the label of a vertex. Specifically, a node N
associated to simplex σ 6= ∅ stores the label of vertex last(σ).
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Figure 1: A simplicial complex on 10 vertices and its simplex tree. The deepest node represents
the tetrahedron of the complex. All the positions of a given label at a given depth are linked in
a list, as illustrated in the case of label 5.

3. The vertices whose labels are encountered along a path from the root to a node N , associ-
ated to a simplex σ, are the vertices of σ. The labels are sorted by increasing order along
such a path, and each label appears exactly once.

We call this data structure the Simplex Tree of K. It may be seen as a trie [4] on the words
representing the simplices of the complex (Figure 1). The depth of the root is 0 and the depth
of a node is equal to the dimension of the simplex it represents plus one.

In addition, we augment the data structure so as to quickly locate all the instances of a given
label in the tree. Specifically, all the nodes at a same depth j which contain a same label ℓ are
linked in a circular list Lj(ℓ), as illustrated in Figure 1 for label ℓ = 5.

We also attach to each set of sibling nodes a pointer to their parent so that we can access a
parent in constant time.

The children of the root of the simplex tree are called the top nodes. The top nodes are in
bijection with the elements of V , the vertices of K. Nodes which share the same parent (e.g. the
top nodes) will be called sibling nodes.

We give a constructive definition of the simplex tree. Starting from an empty tree, we insert the
words representing the simplices of the complex in the following manner. When inserting the
word [σ] = [ℓ0, · · · , ℓj ] we start from the root, and follow the path containing successively all
labels ℓ0, · · · , ℓi, where [ℓ0, · · · , ℓi] denotes the longest prefix of [σ] already stored in the simplex
tree. We then append to the node representing [ℓ0, · · · , ℓi] a path consisting of the nodes storing
labels ℓi+1, · · · , ℓj .

It is easy to see that the three properties above are satisfied. Hence, if K consists of |K| simplices
(including the empty face), the associated simplex tree contains exactly |K| nodes.

We use dictionaries for searching, inserting and removing elements among a set of sibling nodes.
As the size of a dictionary is linear in the number of elements it stores, these additional structures
do not change the asymptotic complexity of the simplex tree. For the top nodes, we simply use
an array since the set of vertices V is known and fixed. Let domax denote the maximal outdegree
of a node in the tree distinct from the root. Remark that domax is at most the maximal degree
of a vertex in the graph of the simplicial complex. In the following, we will denote by Dm

the maximal number of operations needed to perform a search, an insertion or a removal in a
dictionary of maximal size domax (for example, with red-black trees Dm = O(log(domax))). Some
algorithms, that we describe later, on the simplex tree require to intersect and to merge sets of
sibling nodes. In this case, we will prefer dictionaries keeping their elements sorted to allow fast



6 2 SIMPLEX TREE

set intersections (e.g., red-black trees).

The degree of a vertex in the simplicial complex depends on the inherent structure of the data.
Let us define the doubling dimension of a set S in RD to be the minimal integer d such that
for any x ∈ RD and any r > 0 we can cover the set B(x, r) ∩ S with 2d balls of radius r

2 ,
where B(x, r) denotes the closed ball centered at x and of radius r. The doubling dimension
captures the intrinsic dimensionality of the data. The following illustration is meaningful in
the context of geometric and topological data analysis. Let M be a d-manifold with bounded
curvature, embedded in RD. M admits a O(d) doubling dimension [7], and so does any set of
points sampled from the manifold. Consequently, for a set of points S sampled from M, the
degree of the vertices of a geometric simplicial complex, with vertex set S and homeomorphic
to M, is O(2d). Hence, the time to perform an elementary operation in a dictionary depends on
the intrinsic dimension of the set of vertices (for example, Dm = O(d) for red-black trees).

We introduce two new notations for the analysis of the complexity of the algorithms. Given a
simplex σ ∈ K, we define Cσ to be the number of cofaces of σ. Note that Cσ only depends on the
combinatorial structure of the simplicial complex K. Let T be the simplex tree associated to K.
Given a label ℓ and an index j, we define T >j

ℓ to be the number of nodes of T at depth strictly
greater than j that store label ℓ. These nodes represent the simplices of dimension greater than
j that admit ℓ as their last label. T >j

ℓ depends on the labelling of the vertices and is bounded
by C{vℓ}, the number of cofaces of the vertex with label ℓ. For example, if ℓ is the greatest label,

we have T >0
ℓ = C{vℓ}, and if ℓ is the smallest label we have T >0

ℓ = 1 independently from the
number of cofaces of {vℓ}.

2.2 Operations on a Simplex Tree

2.2.1 Insertions and Adjacency Retrieval

Insertions and Removals Using the previous top-down traversal, we can search and insert
a word of length j in O(jDm) operations.

We can extend this algorithm so as to insert a simplex and all its subfaces in the simplex
tree. Let σ be a simplex we want to insert with all its subfaces. Let [ℓ0, · · · , ℓj ] be its word
representation. For i from 0 to j we insert, if not already present, a node Nℓi , storing label ℓi,
as a child of the root. We recursively call the algorithm on the subtree rooted at Nℓi for the
insertion of the suffix [ℓi+1, · · · , ℓj ]. Since the number of subfaces of a simplex of dimension j is∑

i=0···j+1

(
j+1
i

)
= 2j+1, this algorithm takes time O(2jDm).

We can also remove a simplex from the simplex tree. Note that to keep the property of being
a simplicial complex, we need to remove all its cofaces as well. We locate them thanks to the
algorithm described below.

Locate cofaces. Computing the cofaces of a face is required to retrieve adjacency relations
between faces. In particular, it is useful when traversing the complex or when removing a face.
We also need to compute the cofaces of a face when contracting an edge (described later) or
during the construction of the witness complex, described later in section 3.2.

If τ is represented by the word [ℓ0 · · · ℓj ], the cofaces of τ are the simplices of K which are
represented by words of the form [⋆ℓ0 ⋆ ℓ1 ⋆ · · · ⋆ ℓj⋆], where ⋆ represents an arbitrary word on
the alphabet, possibly empty.
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Figure 2: Facets location of the simplex σ = {2, 3, 4, 5}, starting from the position of the σ in
the simplex tree. The nodes representing the facets are colored in grey.

To locate all the words of the form [⋆ℓ0 ⋆ ℓ1 ⋆ · · · ⋆ ℓj⋆] in the simplex tree, we first find all the
words of the form [⋆ℓ0 ⋆ ℓ1 ⋆ · · · ⋆ ℓj ]. Using the lists Li(ℓj) (i > j), we find all the nodes at
depth at least j+1 which contain label ℓj . For each such node Nℓj , we traverse the tree upwards
from Nℓj , looking for a word of the form [⋆ℓ0 ⋆ ℓ1 ⋆ · · · ⋆ ℓj ]. If the search succeeds, the simplex
represented by Nℓj in the simplex tree is a coface of τ , as well as all the simplices represented
by the nodes in the subtree rooted at Nℓj , which are words of the form [⋆ℓ0 ⋆ ℓ1 ⋆ · · · ⋆ ℓj⋆].
Remark that the cofaces of a simplex are represented by a set of subtrees in the simplex tree.
The procedure searches only the roots of these subtrees.

The complexity for searching the cofaces of a simplex σ of dimension j depends on the number
T >j

last(σ) of nodes with label last(σ) and depth at least j+1. If k is the dimension of the simplicial

complex, traversing the tree upwards takes O(k) time. The complexity of this procedure is thus
O(kT >j

last(σ)).

Locate Facets. Locating the facets of a simplex efficiently is the key point of the incremental
algorithm we use to construct witness complexes in section 3.2.

Given a simplex σ, we want to access the nodes of the simplex tree representing the facets of σ.
If the word representation of σ is [ℓ0, · · · , ℓj ], the word representations of the facets of σ are the

words [ℓ0, · · · , ℓ̂i, · · · , ℓj ], 0 ≤ i ≤ j, where ℓ̂i indicates that ℓi is omitted. If we denote by Nℓi

the node representing the word [ℓ0, · · · , ℓi], a traversal from the node representing σ up to the
root will exactly pass through the nodes Nℓi , i = j · · · 0. When reaching node Nℓi−1

, a search
from Nℓi−1

downwards for the word [ℓi+1, · · · , ℓj ] will locate (or prove the absence of) the facet

[ℓ0, · · · , ℓ̂i, · · · , ℓj ]. See Figure 2 for a running example.

This procedure locates all the facets of the j-simplex σ in O(j2Dm) operations.

Experiments. We present the experimental performance of the facets and cofaces look-up,
which are key operations in the construction of witness complexes. Figure 3 represents the
average time for these operations on a simplex, as a function of the dimension of the simplex.
We use the dataset Bro, consisting of points in R25, on top of which we build a relaxed witness
complex with 300 landmarks and 15, 000 witnesses, and relaxation parameter ρ = 0.15. We
obtain a 13-dimensional simplicial complex with 140K faces in less than 3 seconds.

The theoretical complexity of computing the facets of a j-simplex σ is O(j2Dm). As reported in
Figure 3, the average time to search all facets of a j-simplex is well approximated by a quadratic
function of the dimension j (the standard error in the approximation is 2.0%).

A bound on the complexity of computing the cofaces of a j-simplex σ is O(kT >j

last(σ)), where
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Dim.Face 0 1 2 3 4 5 6 7 8 9 10 11 12 13
# Faces 300 2700 8057 15906 25271 30180 26568 17618 8900 3445 1015 217 30 2
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Figure 3: Average time to compute the facets (left) and the cofaces (right) of a simplex of a given
dimension.

T >j

last(σ) stands for the number of nodes in the simplex tree that store the label last(σ) and have

depth more than j+1. The actual complexity depends on the labelling of the vertices. Figure 3
provides experimental results for a random labelling of the vertices. As can be seen, the time for
computing the cofaces of a simplex σ is low, on average, when the dimension of σ is either small
(0 to 2) or big (6 to 13), and higher for intermediate dimensions (3 to 5).

2.2.2 Topology preserving operations

We show how to implement two topology preserving operations on a simplicial complex repre-
sented as a simplex tree. Such simplifications are, in particular, important in topological data
analysis.

Elementary collapse. We say that a simplex σ is collapsible through one of its faces τ if σ is
the only coface of τ , which can be checked by computing the cofaces of τ . Such a pair (τ, σ) is
called a free pair. Removing both faces of a free pair is an elementary collapse.

Since τ has no coface other than σ, the node representing τ in the simplex tree is either a
leaf (and so is the node representing σ), or it has the node representing σ as its unique child.
An elementary collapse of the free pair (τ, σ) consists either in the removal of the two leaves
representing τ and σ, or the removal of the two-nodes subtree containing the nodes representing
τ and σ.

Edge contraction. Edge contractions are used in [2] as a tool, under certain conditions, for
homology preserving simplification. Let K be a simplicial complex and let {vℓa , vℓb} be an edge
of K we want to contract. We say that we contract vℓb to vℓa meaning that vℓb is removed from
the complex and the link of vℓa is augmented with the link of vℓb . Formally, we define the map
f on the set of vertices V which maps vℓb to vℓa and acts as the identity function for all other
inputs:

f(u) =

{
vℓa if u = vℓb
u otherwise

We then extend f to all simplices σ = {vℓ0 , · · · , vℓj} of K with f(σ) = {f(vℓ0), · · · , f(vℓj )}. The
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Figure 4: Contraction of vertex 3 to vertex 1 and the associated modifications of the simplicial
complex and of the simplex tree. The nodes which are removed are marked with a red cross, the
subtrees which are moved are colored in blue.

contraction of vℓb to vℓa is defined as the operation which replaces K by K′ = {f(σ)|σ ∈ K}. K′ is
a simplicial complex. Let σ be a simplex of K. We distinguish three cases : 1. σ does not contain
vℓb and remains unchanged; 2. σ contains both vℓa and vℓb , and f(σ) = σ \{vℓb}; |f(σ)| = |σ|−1
and f(σ) is a strict subface of σ; 3. σ contains vℓb but not vℓa and f(σ) = (σ \ {vℓb}) ∪ {vℓa}
(|f(σ)| = |σ|).

We describe now how to compute the contraction of vℓb to vℓa when K is represented as a simplex
tree. We suppose that the edge {vℓa , vℓb} is in the complex and, without loss of generality, ℓa < ℓb.
All the simplices which do not contain vℓb remain unchanged and we do not consider them. If
a simplex σ contains both vℓa and vℓb , it will become σ \ {vℓb} which is a simplex already in K
which does not contain vℓb and will remain in K′. We simply remove σ from the simplex tree.
Finally, if σ contains vℓb but not vℓa , we need to remove σ from the simplex tree and add the
new simplex (σ \ {vℓb}) ∪ {vℓa}.

We consider each node Nℓb with label ℓb in turn. Let σ be the simplex represented by Nℓb . The
algorithm traverses the tree upwards from Nℓb and collects the vertices of σ. Let TNℓb

be the
subtree rooted at Nℓb . As ℓa < ℓb, if σ contains both vℓa and vℓb , this will be true for all the
simplices whose representative nodes are in TNℓb

, and, if σ contains only vℓb , the same will be
true for all the simplices whose representative nodes are in TNℓb

. Consequently, if σ contains
both vℓa and vℓb , we remove the whole subtree TNℓb

from the simplex tree. Otherwise, σ contains
only vℓb , all words represented in TNℓb

are of the form [σ′] � [σ′′] � [ℓb] � [σ
′′′] and will be turned

into words [σ′] � [ℓa] � [σ
′′] � [σ′′′]. We then have to move the subtree TNℓb

(except its root) from
position [σ′] � [σ′′] to position [σ′] � [ℓa] � [σ

′′] in the simplex tree. If a subtree is already rooted
at this position, we have to merge TNℓb

with this subtree as illustrated in Figure 4. In order to
merge the subtree TNℓb

with the subtree rooted at the node representing the word [σ′] � [ℓa] � [σ
′′],

we can successively insert every node of TNℓb
is the corresponding set of sibling nodes, stored in

a dictionary. This will take in the worst case O(Dm) operations per node in TNℓb
.

We analyse the complexity of contracting an edge {vℓa , vℓb}. For each node storing the label ℓb,
we traverse the tree upwards. This takes O(k) time if the simplicial complex has dimension k.
As there are T >0

ℓb
such nodes, the total cost is O(kT >0

ℓb
).

We also manipulate the subtrees rooted at the nodes storing label ℓb. Specifically, either we
remove such a subtree or we move a subtree by changing its parent node. In the latter case,
we have to merge two subtrees. This is the more costly operation which takes, in the worst
case, O(Dm) operations per node in the subtrees to be merged. As any node in such a subtree
represents a coface of vertex vℓb , the total number of nodes in all the subtrees we have to
manipulate is at most C{vℓb

}, and the manipulation of the subtrees takes O(C{vℓb
}Dm) time.

Consequently, the time needed to contract edge {vℓa , vℓb} is O(kT >0
ℓb

+ C{vℓb}
Dm).
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3 Construction of Simplicial Complexes

In this section, we detail how to implement two important types of simplicial complexes, the flag
and the witness complexes, using simplex trees.

3.1 Flag complexes

A flag complex is a simplicial complex whose combinatorial structure is entirely determined by
its 1-skeleton. Specifically, a simplex is in the flag complex if and only if its vertices form a clique
in the graph of the simplicial complex, or, in other terms, if and only if its vertices are pairwise
linked by an edge.

Expansion. Given the 1-skeleton of a flag complex, we call expansion of order k the operation
which reconstructs the k-skeleton of the flag complex. If the 1-skeleton is stored in a simplex
tree, the expansion of order k consists in successively inserting all the simplices of the k-skeleton
into the simplex tree.

Let G = (V,E) be the graph of the simplicial complex, where V is the set of vertices and
E ⊆ V × V is the set of edges. For a vertex vℓ ∈ V , we denote by

N+(vℓ) = {ℓ′ ∈ {1, · · · , |V |} | (vℓ, vℓ′) ∈ E ∧ ℓ′ > ℓ}

the set of labels of the neighbors of vℓ in G that are bigger than ℓ. Let Nℓj be a node in the tree
that stores the label ℓj and represents the word [ℓ0, · · · , ℓj ]. The children of Nℓj store the labels
in N+(vℓ0) ∩ · · · ∩ N+(vℓj ). Indeed, the children of Nℓj are neighbors in G of the vertices vℓi ,
0 ≤ i ≤ j, (by definition of a clique) and must have a bigger label than ℓ0, · · · , ℓj (by construction
of the simplex tree).

Consequently, the sibling nodes of Nℓj are exactly the nodes that store the labels in A =
N+(vℓ0) ∩ · · · ∩ N+(vℓj−1

), and the children of Nℓj are exactly the nodes that store the
labels in A ∩N+(vℓj ). See Figure 5.

For every vertex vℓ, we have an easy access to N+(vℓ) since N+(vℓ) is exactly the set of labels
stored in the children of the top node storing label ℓ. We easily deduce an in-depth expansion
algorithm.

The time complexity for the expansion algorithm depends on our ability to compute fast inter-
sections of the type A ∩ N+(vℓj ). In practice, we have observed that the time taken by the
expansion algorithm depends linearly on the size of the output simplicial complex. This means
that, on average, the time to compute the intersection of A with N+(vℓj ) depends linearly on
the size of the output set A ∩N+(vℓj ).

Rips Complex. Rips complexes are geometric flag complexes which are popular in compu-
tational topology due to their simple construction and their good approximation properties [3].
Given a set of vertices V in a metric space and a parameter r > 0, the Rips graph is defined as
the graph whose set of vertices is V and two vertices are joined by an edge if their distance is
at most r. The Rips complex is the flag complex defined on top of this graph. We will use this
complex for our experiments on the construction of flag complexes.



3.2 Witness complexes 11

vℓ0 vℓj

vℓ1

vℓj

N+(vℓ0) N+(vℓj)
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) = A
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Figure 5: Representation of a set of sibling nodes as intersection of neighborhoods.

3.2 Witness complexes

The Witness Complex has been first introduced in [8]. Its definition involves two given sets
of points in a metric space, the set of landmarks L and the set of witnesses W .

Definition 1 A witness w ∈ W witnesses a simplex σ ⊆ L iff:

∀x ∈ σ and ∀y ∈ L \ σ we have d(w, x) ≤ d(w, y)

or, equivalently, the vertices of σ are the |σ| nearest neighbors of w in L.

The witness complex Wit(W,L) is the maximal simplicial complex, with vertex set L, whose
faces admit a witness in W . Equivalently, a simplex belongs to the witness complex if and only if
it is witnessed and all its facets belong to the witness complex. A simplex satisfying this property
will be called fully witnessed.

Construction Algorithm. We suppose the sets L and W to be finite and give them labels
{1, · · · , |L|} and {1, · · · , |W |} respectively. We describe how to construct the k-skeleton of the
witness complex, where k may be any integer in {1, · · · , |L| − 1}.

Our construction algorithm is incremental, from lower to higher dimensions. If the simplices
of the (j − 1)-skeleton of Wit(W,L) have been inserted in the simplex tree, we consider all j-
dimensional witnessed simplices. For each such simplex σ, we check if its facets are already in
the tree and, in the affirmative, we insert σ in the simplex tree.

During the construction of the k-skeleton of the witness complex, we need to access the nearest
neighbors of the witnesses, in L. To do so, we compute the k + 1 nearest neighbors of all the
witnesses in a preprocessing phase, and store them in a |W | × (k + 1) matrix. Given an index

j ∈ {0, · · · , k} and a witness w ∈ W , we can then access in constant time the (j + 1)th nearest
neighbor of w. We denote this landmark by swj . We maintain a list of active witnesses, initialized
with W . We insert the vertices of Wit(W,L) in the simplex tree. For each witness w ∈ W we
insert a top node storing the label of the nearest neighbor of w in L, if no such node already
exists. w is initially an active witness and we make it point to the node mentionned above,
representing the 0-dimensional simplex w witnesses.

We maintain the following loop invariants: 1. at the beginning of iteration j, the simplex tree
contains the (j − 1)-skeleton of the witness complex Wit(W,L); 2. the active witnesses are the
elements of W that witness a (j− 1)-simplex of the complex; each active witness w points to the
node representing the (j − 1)-simplex in the tree it witnesses.
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Figure 6: Third iteration of the witness complex construction. The active witness w witnesses the
tetrahedron {2, 3, 4, 5} and points to the triangle {2, 4, 5}. (Left) Search for the potential position
of the simplex {2, 3, 4, 5} in the simplex tree. (Right) Facets location for simplex {2, 3, 4, 5}, and
update of the pointer of the active witness w.

At iteration j ≥ 1, we traverse the list of active witnesses. Let w be an active witness. We

first compute the (j + 1)th nearest neighbor swj of w using the nearest neighbors matrix (Step
1). Let σj be the j-simplex witnessed by w and let us decompose the word representing σj into
[σj ] = [σ′] � [swj ] � [σ

′′] ( “ �” denotes the concatenation of words). We then look for the location in
the tree where σj might be inserted (Step 2). To do so, we start at the node Nw which represents
the (j − 1)-simplex witnessed by w. Observe that the word associated to the path from the root
to Nw is exactly [σ′] � [σ′′]. We walk |[σ′′]| steps up from Nw, reach the node representing [σ′]
and then search downwards for the word [sjw] � [σ

′′] (see Figure 6, left). The cost of this operation
is O(jDm).

If the node representing σj exists, σj has already been inserted; we update the pointer of w and
return. If the simplex tree contains neither this node nor its father, σj is not fully witnessed
because the facet represented by its longest prefix is missing. We consequently remove w from
the set of active witnesses. Lastly, if the node is not in the tree but its father is, we check
whether σj is fully witnessed. To do so, we search for the j + 1 facets of σj in the simplex tree
(Step 3). The cost of this operation is O(j2Dm) using the facets look-up algorithm described in
section 2.2. If σj is fully witnessed, we insert σj in the simplex tree and update the pointer of
the active witness w. Else, we remove w from the list of active witnesses (see Figure 6, right).

It is easily seen that the loop invariants are satisfied at the end of iteration j.

Complexity. The cost of accessing a neighbor of a witness using the nearest neighbors matrix
is O(1). We access a neighbor (Step 1) and locate a node in the simplex tree (Step 2) at most
k|W | times. In total, the cost of Steps 1 and 2 together is O((kDm + 1)k|W |). In Step 3, either
we insert a new node in the simplex tree, which happens exactly |K| times (the number of faces
in the complex), or we remove an active witness, which happens at most |W | times. The total
cost of Step 3 is thus O((|K| + |W |)k2Dm). In conclusion, constructing the k-skeleton of the
witness complex takes time

O((|K|+ |W |)k2Dm + k|W |) = O((|K|+ |W |)k2Dm).

Landmark Insertion. We present an algorithm to update the simplex tree under landmark
insertions. Adding new vertices is, for example, important for mesh refinement. Given the set
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of landmarks L, the set of witnesses W and the k-skeleton of the witness complex Wit(W,L)
represented as a simplex tree, we take a new landmark point x and we update the simplex tree so
as to construct the simplex tree associated to Wit(W,L∪ {x}). We assign to x the biggest label
|L| + 1. We suppose to have at our disposal an oracle that can compute the subset W x ⊆ W
of the witnesses that admit x as one of their k + 1 nearest neighbors. Computing W x is known
as the reverse nearest neighbor search problem, which has been intensively studied in the past

few years [1]. Let w be a witness in W x and suppose x is its (i + 1)th nearest neighbor in
L ∪ {x}, with 0 ≤ i ≤ k. Let σj ⊆ L be the j-dimensional simplex witnessed by w in L and
let σ̃j ⊆ L ∪ {x} the j-dimensional simplex witnessed by w in L ∪ {x}. Consequently, σj = σ̃j

for j < i and σj 6= σ̃j for j ≥ i. We equip each node N of the simplex tree with a counter of
witnesses which maintains the number of witnesses that witness the simplex represented by N .
As for the witness complex construction, we consider all nodes representing simplices witnessed
by elements of W x, proceeding by increasing dimensions. For a witness w ∈ W x and a dimension
j > i, we decrement the witness counter of σj and insert σ̃j if and only if its facets are in the
simplex tree. We remark that [σ̃j ] = [σj−1] � [x] because x has the biggest label of all landmarks.
We can thus access in time O(Dm) the position of the word [σ̃j ] since we have accessed the node
representing [σj−1] in the previous iteration of the algorithm.

Complexity. The update procedure is a “local” variant of the witness complex construction,
where, by “local”, we mean that we reconstruct only the star of vertex x. Let Cx denote the
number of cofaces of x in Wit(W,L∪{x}) (or equivalently the size of its star). The same analysis
as above shows that updating the simplicial complex takes time O((|W x|+Cx)k

2Dm), plus one
call to the oracle to compute W x.

Relaxed Witness Complex. Given a relaxation parameter ρ ≥ 0 we define the relaxed witness
complex [8]:

Definition 2 A witness w ∈ W ρ-witnesses a simplex σ ⊆ L iff:

∀x ∈ σ and ∀y ∈ L \ σ we have d(w, x) ≤ d(w, y) + ρ

The relaxed witness complex Witρ(W,L) with parameter ρ is the maximal simplicial complex,
with vertex set L, whose faces admit a ρ-witness in W . For ρ = 0, the relaxed witness complex
is the standard witness complex. The parameter ρ defines a filtration on the witness complex,
which has been used in topological data analysis.

We resort to the same incremental algorithm as above. At each step j, we insert, for each witness
w, the j-dimensional simplices which are ρ-witnessed by w. Differently from the standard witness
complex, there may be more than one j-simplices that are witnessed by a given witness w ∈ W .
Consequently, we do not maintain a pointer from each active witness to the last inserted simplex
it witnesses. We use simple top-down insertions from the root of the simplex tree.

Given a witness w and a dimension j, we generate all the j-dimensional simplices which are
ρ-witnessed by w. For the ease of exposition, we suppose we are given the sorted list of nearest
neighbors of w in L, noted {z0 · · · z|L|−1}, and their distance to w, noted mi = d(w, zi), with
m0 ≤ · · · ≤ m|L|−1, breaking ties arbitrarily. Note that if one wants to construct only the k-
skeleton of the complex, it is sufficient to know the list of neighbors of w that are at distance at
most mk+ρ from w. We preprocess this list of neighbors for all witnesses. For i ∈ {0, · · · , |L|−1},
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Figure 7: Computation of the ρ-witnessed simplices σ of dimension 5. If z3 is the first neighbor
of w not in σ, then σ contains {z0, z1, z2} and any 3-uplet of A3 = {z4, · · · , z8}.

we define the set Ai of landmarks z such that mi ≤ d(w, z) ≤ mi + ρ. For i ≤ j + 1, w ρ-
witnesses all the j-simplices that contain {z0, · · · , zi−1} and a (j + 1− i)-subset of Ai, provided
|Ai| ≥ j +1− i. It is easy to see that all j-simplices that are ρ-witnessed by w are obtained this
way, and exactly once, when i ranges from 0 to j + 1.

For all i ∈ {0, · · · , j+1}, we compute Ai and generate all the simplices which contain {z0, · · · , zi−1}
and a subset of Ai of size (j + 1 − i). In order to easily update ai when i is incremented, we
maintain two pointers to the list of neighbors, one to zi and the other to the end of Ai. We check
in constant time if Ai contains more than j + 1 − i vertices, and compute all the subsets of Ai

of cardinality j + 1− i accordingly. See Figure 7.

Complexity. Let Rj be the number of j-simplices ρ-witnessed by w. Generating all those
simplices takes O(j + Rj) time. Indeed, for all i from 0 to j + 1, we construct Ai and check
whether Ai contains more than j + 1− i elements. This is done by a simple traversal of the list
of neighbors of w, which takes O(j) time. Then, when Ai contains more than j+1− i elements,

we generate all subsets of Ai of size j + 1− i in time O(
(

|Ai|
j+1−i

)
). As each such subset will lead

to a ρ-witnessed simplex, the total cost for generating all those simplices is O(Rj).

We can deduce the complexity of the construction of the relaxed witness complex. Let R =∑

w∈W

∑

j=0···k

Rj be the number of simplices witnessed by elements of W . The construction of the

relaxed witness complex takes O(Rk2Dm) operations. This bound is quite pessimistic and, in
practice, we observed that the construction time is sensitive to the size of the output complex.
Observe that the quantity analogous to R in the case of the standard witness complex was k|W |
and that the complexity was better due to our use of the notion of active witnesses.

4 Experiments

In this section, we report on the performance of our algorithms on both real and synthetic data,
and compare them to existing software. More specifically, we benchmark the construction of
Rips complexes, witness complexes and relaxed witness complexes. Our implementations are in
C++. We use the ANN library [15] to compute the 1-skeleton graph of the Rips complex, and to
compute the lists of nearest neighbors of the witnesses for the witness complexes. All timings are
measured on a Linux machine with 3.00 GHz processor and 32 GB RAM. Timings are provided
by the clock function from the Standard C Library, and zero means that the measured time
is below the resolution of the clock function. For its efficiency and flexibility, we use the map

structure from the Standard Template Library [17] for storing sets of sibling nodes, except for
the top nodes which are stored in an array.
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Data |P| D d r k Tg |E| TRips |K| Ttot Ttot/|K|

Bud 49,990 3 2 0.11 3 1.5 1,275,930 104.5 354,695,000 104.6 3.0 · 10−7

Bro 15,000 25 ? 0.019 25 0.6 3083 36.5 116,743,000 37.1 3.2 · 10−7

Cy8 6,040 24 2 0.4 24 0.11 76,657 4.5 13,379,500 4.61 3.4 · 10−7

Kl 90,000 5 2 0.075 5 0.46 1,120,000 68.1 233,557,000 68.5 2.9 · 10−7

S4 50,000 5 4 0.28 5 2.2 1,422,490 95.1 275,126,000 97.3 3.6 · 10−7

Data |L| |W | D d ρ k Tnn TWitρ |K| Ttot Ttot/|K|
Bud 10,000 49,990 3 2 0.12 3 1. 729.6 125,669,000 730.6 12 · 10−3

Bro 3,000 15,000 25 ? 0.01 25 9.9 107.6 2,589,860 117.5 6.5 · 10−3

Cy8 800 6,040 24 2 0.23 24 0.38 161 997,344 161.2 23 · 10−3

Kl 10,000 90,000 5 2 0.11 5 2.2 572 109,094,000 574.2 5.7 · 10−3

S4 50,000 200,000 5 4 0.06 5 25.1 296.7 163,455,000 321.8 1.2 · 10−3

Figure 8: Data, timings (in s.) and statistics for the construction of Rips complexes (TOP) and
relaxed witness complexes (BOTTOM).

We use a variety of both real and synthetic datasets. Bud is a set of points sampled from the
surface of the Stanford Buddha in R3. Bro is a set of 5 × 5 high-contrast patches derived from
natural images, interpreted as vectors in R25, from the Brown database (with parameter k = 300
and cut 30%) [12, 6]. Cy8 is a set of points in R24, sampled from the space of conformations
of the cyclo-octane molecule [14], which is the union of two intersecting surfaces. Kl is a set of
points sampled from the surface of the figure eight Klein Bottle embedded in R5. Finally S4 is
a set of points uniformly distributed on the unit 4-sphere in R5. Datasets are listed in Figure 8
with details on the sets of points P or landmarks L and witnesses W , their size |P|, |L| and |W |,
the ambient dimension D, the intrinsic dimension d of the object the sample points belong to
(if known), the parameter r or ρ, the dimension k up to which we construct the complexes, the
time Tg to construct the Rips graph or the time Tnn to compute the lists of nearest neighbors of
the witnesses, the number of edges |E|, the time for the construction of the Rips complex TRips
or for the construction of the witness complex TWitρ , the size of the complex |K|, and the total
construction time Ttot and average construction time per face Ttot/|K|.

We test the performance of our algorithms on these datasets, and compare them to the JPlex

library [16] which is a Java software package which can be used with Matlab. JPlex is widely
used to construct simplicial complexes and to compute their homology. We also provide an exper-
imental analysis of the memory performance of our data structure compared to other representa-
tions. Unless mentioned otherwise, all simplicial complexes are computed up to the embedding
dimension, because the homology is trivial in dimenson higher than the ambient dimension. All
timings are averaged over 10 independent runs. Due to the lack of space, we cannot report on
the performance of each algorithm on each dataset but the results presented are a faithful sample
of what we have observed on other datasets.

As illustrated in Figure 8, we are able to construct and represent both Rips and relaxed witness
complexes of up to several hundred million faces in high dimensions, on all datasets.

4.1 Memory Performance of the Simplex Tree

In order to represent the combinatorial structure of an arbitrary simplicial complex, one needs
to mark all maximal faces. Indeed, from the definition of a simplicial complex, we cannot infer
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Figure 9: Statistics and timings for the Rips complex (Left) and the relaxed witness complex
(Right) on S4.

the higher dimensional faces from the lower dimensional ones. Moreover, the number of maximal
simplices of a k-dimensional simplicial complex is at least |V |/(k + 1). In the case, considered
in this paper, where the vertices are identified by their labels, a minimal representation of the
maximal simplices would then require at least Ω(log |V |) bits per maximal face. The simplex
tree uses O(log |V |) memory bits per face of any dimension. The following experiment compares
the memory performance of the simplex tree with the minimal representation described above,
and with the representation of the 1-skeleton.

Figure 9 shows results for both Rips and relaxed witness complexes associated to 10, 000 points
from S4 and various values of, respectively, the distance threshold r and the relaxation parameter
ρ. The figure plots the total number of faces |K|, the number of maximal faces |mF|, the size of
the 1-skeleton |G| and the construction times TRips and TWitρ . The quantities |K|, |mF| and

|G| stand, respectively, for the asymptotic size of the simplex tree, the asymptotic size of the
optimal representation and of the size of the representation of the 1-skeleton.

As expected, the 1-skeleton is significantly smaller than the two other representations. However,
as explained earlier, a representation of the graph of the simplicial complex is only well suited
for flag complexes.

As shown on the figure, the total number of faces and the number of maximal faces remain
close along the experiment. Interestingly, we catch the topology of S4 when r ≈ 0.4 for the Rips
complex and ρ ≈ 0.08 for the relaxed witness complex. For these “good” values of the parameters,
the total number of faces is not much bigger than the number of maximal faces. Specifically,
the total number of faces of the Rips complex is less than 2.3 times bigger than the number of
maximal faces, and the ratio is less than 2 for the relaxed witness complex.

4.2 Construction of Rips Complexes

We test our algorithm for the construction of Rips complexes. In Figure 10 we compare the
performance of our algorithm with JPlex along two directions.

In the first experiment, we build the Rips complex on 45000 points from the dataset Bud. Our
construction is at least 43 times faster than JPlex along the experiment, and several hundred
times faster for small parameter r. Moreover, JPlex is not able to handle the full dataset Bud

nor big simplicial complexes due to memory allocation issues, whereas our method has no such
problems. In our experiments, JPlex is not able to compute complexes of more than 23 million
faces (r = 0.07) while the simplex tree construction runs successfully until r = 0.12, resulting in
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Figure 10: Statistics and timings for the construction of the Rips complex on (Left) Bud and
(Right) Cy8.

a complex of 368 million faces.

In the second experiment, we construct the Rips complex on the 6040 points from Cy8, with
threshold r = 0.31, for different dimensions k. Again, our method outperforms JPlex, by a factor
14 to 20 (from small to big k). Again, JPlex cannot compute complexes of dimension higher
than 7.

The simplex tree and the expansion algorithm we have described are, by design, output sensitive.
For example, when we construct the Rips complex on Cy8 for dimensions k higher than 5, the
size of the output complex is constant, and so is the time for the Rips complex construction
using a simplex tree. This is not the case for JPlex. Even further, as shown by our experiments,
the construction time using a simplex tree depends linearly on the size of the output complex.
Indeed, when the Rips graphs are dense enough so that the time for the expansion dominates the
full construction, we observe that the average construction time per face is constant and equal
to 2.9× 10−7 seconds for the first experiment, and 5.4× 10−7 seconds for the second experiment
(with standard errors 0.2% and 1.3% respectively).

4.3 Construction of Witness Complexes

JPlex does not provide an implementation of the relaxed witness complex as defined in this
paper. Consequently, we were only able to compare the algorithms on the construction of the
witness complex. Figure 11 (top) shows the results of two experiments on the full construction
of the witness complex.

The first one compares the performance of the simplex tree algorithm and of JPlex on the
dataset Bro consisting of 15000 points in dimension R25. Subsets of different size of landmarks
are selected at random among the sample points. Our algorithm is from several hundred to
several thousand times faster than JPlex (from small to big subsets of landmarks). We stopped
the experiment when JPlex became too slow. Moreover, the simplex tree algorithm spends more
than 99% of the time to compute the nearest neighbors of the witnesses.

In the second experiment, we construct the witness complex on 2500 landmarks from Kl, and
sets of witnesses of different size. The simplex tree algorithm outperforms JPlex, being tens of
thousands times faster. We stopped the experiment for JPlex when it became too slow; differ-
ently, the simplex tree algorithm stayed under 0.1 second all along the experiment. Moreover,
the simplex tree algorithm spends about 90% of the time to compute the nearest neighbors of
the witnesses.
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Figure 11: Statistics and timings for the construction of: (TOP) the witness complex and (BOT-
TOM) the relaxed witness complex, on datasets (Left) Bro and (Right) Kl.

Finally we test the full construction of the relaxed witness complex along two directions, as
illustrated in Figure 11 (bottom). In the first experiment, we compute the 5-skeleton of the
relaxed witness complex on Bro, with 15000 witnesses and 1000 landmarks selected randomly,
for different values of the parameter ρ. In the second experiment, we construct the k-skeleton of
the relaxed witness complex on Kl with 10000 landmarks, 100000 witnesses and fixed parameter
ρ = 0.07, for various k. We are able to construct and store complexes of up to 260 million faces.
In both cases the construction time is linear in the size of the output complex, with a contruction
time per face equal to 4.9× 10−6 seconds in the first experiment, and 4.0× 10−6 seconds in the
second experiment (with standard errors 1.6% and 6.3% respectively).

Conclusion

We believe that the simplex tree is the first scalable and truly practical data structure to represent
general simplicial complexes. We plan to integrate our code in the CGAL library and to use it for
practical applications in data analysis and manifold learning. Further developments also include
more compact storage using succinct representations of trees [11].
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