
HAL Id: hal-00708787
https://inria.hal.science/hal-00708787

Submitted on 15 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Seamless Distribution of Data Centric Applications
through Declarative Overlays

Ahmad Ahmad Kassem, Stéphane Grumbach, Eric Bellemon

To cite this version:
Ahmad Ahmad Kassem, Stéphane Grumbach, Eric Bellemon. Seamless Distribution of Data Centric
Applications through Declarative Overlays. BDA 2011 : 27èmes journées Bases de Données Avancées,
Oct 2011, Rabat, Morocco. �hal-00708787�

https://inria.hal.science/hal-00708787
https://hal.archives-ouvertes.fr

Seamless Distribution of Data Centric Applications

through Declarative Overlays

Ahmad Ahmad-Kassem

Université de Lyon, INRIA, CITI

ahmad.ahmad_kassem@inria.fr

Eric Bellemon

INRIA, LIAMA

eric.bellemon@gmail.com

Stéphane Grumbach

INRIA

stephane.grumbach@inria.fr

Abstract

We present an approach based on peer-to-peer overlays which allows to distribute seamlessly data

centric applications defined by queries over a centralized database. We consider applications in which

the users have access to views, which contain horizontal fragments of the data of interest to them.

The peer-to-peer overlays are defined by simple declarative programs in the Netlog language. The

communication relies on implicit addresses, which can be evaluated on the fly, and ensure persistence

of data in messages. We demonstrate the technique on a multiplayer online game, written in SQL, with

players who connect to a mobile ad hoc network through their portable devices. The overlay is defined

by a combination of an ad hoc routing protocol, DSDV, together with a DHT. The application runs on

the QuestMonitor platform, which allows to monitor the communication between peers, the evolution

of the local data stores, as well as the execution of the declarative code.

Keywords: peer-to-peer overlays; declarative networking; multiplayer online games

Résumé

Nous proposons une approche basée sur les réseaux pair à pair pour distribuer de manière transpar-

ente des applications définies par des requêtes sur une base de données centralisée. Nous considérons

des applications pour lesquelles les utilisateurs ont accès à des vues qui contiennent des fragments

horizontaux des données qui les intéressent. Les réseaux logiques sont définis par des programmes

déclaratifs simples dans le langage Netlog. La communication repose sur l’usage d’adresses implicites,

qui peuvent être évaluées à la volée, et garantissent la persistance des données dans les messages. Nous

montrons le fonctionnement du système pour un jeu en ligne multijoueur, joué par des joueurs qui

utilisent leurs terminaux portables connectés à un réseau mobile ad hoc. Le réseau logique repose sur

un protocole de routage pour réseau ad hoc, DSDV, couplé à une DHT. L’application tourne sur la plat-

forme QuestMonitor, qui permet de contrôler la communication entre pairs, l’évolution des données

locales, ainsi que l’exécution du code déclaratif.

Mots clés: réseaux pair à pair; protocoles déclaratifs; jeux multijoueurs en ligne

0This work has been supported by the Agence Nationale de la Recherche, under grant ANR-09-BLAN-0131-01.
0CITI Laboratory, INSA Lyon, 6 avenue des Arts, 69621 Villeurbanne Cedex

1

1 Introduction

Peer-to-peer systems have been widely used to alleviate the burden of servers, by transferring to

peers in a network tasks that do not require a centralization of the information. Their architecture

can be more or less structured, with nodes playing identical or different functions, and with or

without interaction with a centralized server. They have been very successful in various fields such

as file sharing (e.g. Napster, Gnutella), and communication networks (e.g. skype). A wide range

of applications are now emerging over peer-to-peer systems, such as social networking [5, 19],

multiplayer games [14, 11], mobile messaging [22], video broadcasting [15], etc.

Most of these applications are essentially data centric, they rely on exchange of data between

peers, and could be expressed by queries over a database. In this paper, we demonstrate how such

applications programmed as a collection of queries over a database, can be ported seamlessly, that

is without changing the queries, from a client-server architecture, to a peer-to-peer architecture

with the appropriate overlay. Moreover, following the trend open by the declarative networking

[17, 16], we show that the overlay can be defined using declarative data centric programs, thus

resulting in a fully data centric modeling of the peer-to-peer application.

Let us consider for instance online multiplayer games, which constitute a very promising appli-

cation for peer-to-peer systems. This type of application relies on a scenery from a virtual world,

which constitute static data with graphical properties that are out of the scope of this work. Games

also involve mutable objects, whose properties can be updated, and avatars representing the play-

ers, that can change their attributes. Most of the actions of such games can be captured in a purely

data centric perspective, even if like for other applications, additional characteristics are impor-

tant, such as trust and security issues [7], as well as real time aspects, essential for communication

systems [8].

In all these applications, the clients can access data of interest to them, which can generally be

defined by views over some horizontal fragments of the data structures. The clients can perform

actions, which consist in querying or updating these views (e.g. moving an avatar means updating

its position), while the system can perform more general actions such as queries and updates over

the whole data. We show that under some restrictions under the views and queries allowed, the

application can be ported seamlessly over overlay networks and executed efficiently.

Numerous techniques have been developed to support peer-to-peer overlays, such as Chord

[25], or Pastry [24] for instance. As distributed algorithms in general, they require high program-

ming skills, and their correction is very difficult to guarantee. High level programming abstraction,

such as data centric programming languages constitute a very promising model in this context [12].

They are more declarative, so facilitate programming, they parallelize well, so facilitate the execu-

tion, they manipulate explicitly data structures, so facilitate verification of their properties.

The use of rule-based languages, à la Datalog [1, 2, 26, 23], developed in the field of databases

in the 1980’s, for distributed applications, was initially proposed in UC Berkeley [18, 16], under the

name "declarative networking". It was shown that such languages augmented with communication

primitives, allowed to express communication protocols or P2P systems with code about two orders

of magnitude shorter than imperative programs, and with reasonable execution models.

We used the rule-based language, Netlog [10], which extends Datalog with aggregation and

non-deterministic constructs as well as communication primitives, in the spirit of the declarative

2

networking approach. It has a sound distributed fixpoint semantics, which takes explicitly into

account the in-node behavior as well as the communication between nodes. Netlog runs on the

Netquest Virtual Machine, which is coupled with an embedded Data Management System, DMS,

which stores all the data as well as the bytecode of the Netlog programs. The bytecode is obtained

by a compilation from Netlog into an SQL dialect. The Virtual machine makes calls to the DMS

to evaluate the bytecode of the Netlog programs, which result in updates of the database, and

production of messages. Implicit addresses have been added to the Netquest machine, to handle

messages to peers that perform server duties. They ensure the persistence of the data even in case

of changes in the network due to a node failure or departure.

The Netquest machine has been shown to be portable over small devices, as long as they support

an embedded DMS [3]. It runs as well on the QuestMonitor platform [4], which allows to monitor

the communication between peers, the evolution of the local data stores, as well as the execution

of the declarative code. Moreover, proof techniques have been developed in Coq to certify Netlog

programs [9].

We describe the technique over an example of a multiplayer online game, which can be defined

by sequences of queries over a central database, presented in Section 2. Each player has access

to views giving the data pertaining either to its avatar in the game (simple views), or to the region

where it is involved (geographic views). We consider a game where a player participates to an

auction by making a bid, while the system at the expiration of the auction, changes the owner of

the object, and updates the bank accounts of both the seller and the buyer according to the price.

So far as the network is concerned, we make the following assumptions on the application.

We assume that players participate to the game over a network to which they connect through

devices in some short range communication mean (e.g. bluetooth). The players thus form an ad

hoc mobile network. They can physically enter or leave the network, as well as move from one

place to another, without being disconnected from the application. The players form a pure peer-

to-peer system, with nodes playing identical roles, and no centralized server. The overlay network

is formed by a distributed hash table, DHT, which is used to distribute both data and computation

initially performed by the server.

We assume that each table has (at least) an index attribute. The values of index attributes

are mapped to hash keys using a hash function. The corresponding horizontal fragments of the

relations are stored on the node which has the largest Id smaller than the hash key. Some restrictions

are imposed on the queries to ensure smooth distribution through the peer-to-peer system, making

full use of the DHT. Queries should in particular have at least one where argument on an index

attribute. Moreover join should be performed on index attributes as well. Under such restrictions,

we show that the distribution can be done smoothly using the DHT protocols.

For the game application, we propose a DHT constructed over a routing table defined and

maintained by a DSDV like protocol [20]. DSDV is a table-driven routing protocol based on

the Bellman-Ford algorithm, well adapted to ad hoc networks. We have considered other routing

protocols as well such as OLSR [13], AODV, for on-demand routing, well adapted to a network

with many changes, [21], or VRR [6] based on a ring, which are useful under other network

conditions.

The main contribution of the paper is to show that the whole specification of such applications

3

can be made in a fully data centric approach, relying on simple centralized queries for the applica-

tion, and data centric programs written in Netlog for the DHT protocols. We show in particular in

Section 4 that a few dozen of rules are sufficient to express the DHT for mobile ad hoc networks.

Our experiments with the game are presented in Section 5. The scenario, with a node joining

the network, participating to the game, moving physically while playing, and leaving the network

before the distributed server handles the updates in the game, shows the robustness of the proposed

protocols in Netlog. Our experiments show that the movement of one node does not affect the

game, all data are preserved, and the duties ensured by the leaving nodes are distributed to other

nodes.

The paper is organized as follows. In the next section, we explain the motivation through the

multiplayer games, and show the distribution over an overlay. In Section 3, we present the Netlog

language together with the virtual machine to evaluate Netlog programs. Section 4 is devoted to

fundamental protocols supporting the overlay. In Section 5, we illustrate over the example, the

protocols to distribute the applications specified as centralized queries, and test these protocols

over the QuestMonitor system.

2 Motivation

We consider applications which can be described as sequences of database updates performed by

clients over a centralized server. The server stores all the data from all clients, while the clients

can access and modify only some part of these data, which can be defined by views over the whole

data. In this section, we consider such an example to illustrate our technique.

On-line multi-player games over virtual worlds, such as Second Life, World of Warcraft, etc.

constitute fundamental applications of this type. Currently, most massively multiplayer games

are implemented on a client-server architecture, with a server which handles both client accounts

and game states. Various types of clusters are used, for scalability purposes, to support massive

numbers, millions, of players at the same time.

If we leave apart the graphical interface in which players evolve, the basic actions they perform

can be modeled easily as database updates. Clients generally participate to the game through an

avatar. The game relies on some stable "landscape", which can be seen by the clients, using their

views over the global data. Most games support mutable virtual objects, which can be changed

(created, destroyed, exchanged, etc.) by the players during the course of the game.

The server knows at every moment the connected clients, as well as the updates they make on

the data (e.g. creating, deleting or moving avatars, exchanging virtual objects, etc.). We illustrate

over an example how each of the basic actions of the payers can be described with a set of queries

over the centralized database of the server.

The list of avatars of players is stored in the table Owner, which contains an authentication key

for each avatar. We consider a simple game in which avatars exchange, sell or buy objects through

an auction market. Each avatar owns bank accounts (table Bank), can register itself into a market

(table Market), buy or sell their objects (table Objects), into an auction market (table Auction).

Samples of the tables used in the example are shown below.

4

Table Owner

Avatar Auth Client

Toto 37 0012

Loulou 54 0193

Table Bank

Name Avatar Account Balance

WorldBank Toto 123985642 1524

GlobalBank Loulou AB87532 845

Table Object

Class Avatar Name Price Id

Pet Toto 2 yo Mouse 75 1

Table Market

Name Avatar Account

Catown Toto 123985642

Catown Loulou AB87532

Table Auction

Name Seller Buyer OId Price ExpTime MinPrice

Catown Toto Loulou 1 150 1305273029 100

Each client has a local view of these data, which concerns their avatar, say α. We distinguish

between simple views, such as the bank accounts or the objects that belong to the avatar α, defined

with a where condition of type Object.Avatar=α; and geographic views, where an avatar can get

all the fragment of for instance the market on which it occurs. The local view of table, Table, is

denoted VTable. Views have the same structure as the corresponding table, without the Avatar

attribute in the case of simple views.

We distinguish between two types of actions: client action and system action. The only actions

clients can perform is to query or update their local views. Note that some attributes might be sys-

tem defined (e.g. Account, Balance). An avatar, for example, cannot retrieve the account balance

of another avatar neither change the balance of its bank account. When an avatar updates data in a

view, the update is sent to the server to be performed. Systems actions consist of queries over the

global schema and are triggered and performed by the server. We show below the main actions of

the auction game which are defined by simple queries.

1. See the auctions on the market where I am (geographical view)

INSERT INTO VAuction

SELECT Auc t ion . Name , Auc t ion . OId , Auc t ion . P r i c e , Auc t ion . S e l l e r

FROM Auct ion , Auc t ion AS Auct ion2 , Owner

WHERE Auc t ion . Name = Auc t ion2 . Name AND Auct ion2 . S e l l e r =

Owner . A va t a r AND Owner . C l i e n t = s e l f ;

2. Propose a new auction (client action)

INSERT INTO VAuction

SELECT ’ Catown ’ , Owner . Avatar , Owner . Avatar ,

O b j e c t . Id ,100 ,1305273029 ,100

FROM VAuction , Owner

WHERE Owner . C l i e n t = s e l f AND VObject . Id = Id ;

5

3. Make a bid (client action)

UPDATE VAuction

SET VAuction . Buyer =Owner . Avatar , VAuction . P r i c e = ’ 150 ’

WHERE VAuction . Name= ’ Catown ’ AND VAuction . S e l l e r = ’ Toto ’

AND VAuction . OId = 1 AND Owner . C l i e n t = s e l f ;

4. Cancel a bid (client action)

DELETE FROM VAuction

WHERE VAuction . Name= ’ Catown ’ AND VAuction . S e l l e r = Owner . Av a t a r

AND VAuction . OId = 1 AND Owner . C l i e n t = s e l f ;

5. Conclude an auction when the auction has expired (system action)

UPDATE Bank

SET Bank . Ba lance = Bank . Ba lance − 150

WHERE Bank . Account = ’ AB87532 ’ ;

UPDATE Bank

SET Bank . Ba lance = Bank . Ba lance + 150

WHERE Bank . Account = ’ AB123985642 ’ ;

DELETE FROM Auc t ion

WHERE Auc t ion . Name= ’ Catown ’ AND Auc t ion . S e l l e r = ’ Toto ’

AND Auc t ion . OId = 1 ;

UPDATE O b j e c t

SET O b j e c t . A va t a r = ’ Loulou ’ , O b j e c t . P r i c e =150

WHERE O b j e c t . Id = 1 ;

In their seminal paper, Knutsson et al. [14] showed how such a multiplayer game could be

developed over a P2P architecture using the Pastry [24] overlay network. We show how more

generally any application described by queries and views as presented above can be distributed

seamlessly over an overlay.

We consider a network constituted by peers that communicate in a peer to peer fashion (over

the Internet, device to device, etc.). They can join and leave the network at any time and partici-

pate to the applications with the other connected peers. Collectively they support the tasks of the

centralized server, by storing fragments of the data on peers, and by routing the queries (views,

client actions, system actions) to the peers in charge. There is no centralized server, and the peers

play the same role.

The application is defined over some schema, which will be used in the distributed environment

exactly like in the centralized one. Each relation has at least one special attribute called index

attribute (underlined in the tables of our example), such as Avatar in table Owner, and Id in table

Object. Attributes of the tables are either client-defined (e.g. Name, Price in table Object), or

system defined (e.g. Balance in Bank).

The views are expressed as select queries over a single table of the schema. There are two types

of views, simple views and geographic views. Simple views are expressed as select queries with a

where argument over the index attribute which should be some Id of the client (e.g. the avatar in

6

the game). Geographic views are expressed as select queries with a similar where condition, but

allowing a self equijoin over the geographic attribute of the table. The client queries are queries

over the views available on the client. System queries are queries over the global schema. Joins are

limited to index attributes.

The data are fragmented and distributed as follows using a DHT. The values of the index at-

tribute are mapped to a random uniformly distributed set of circular ID’s, used to form the Dis-

tributed Hash Table. We assume for simplicity that the node Id’s are uniformly distributed, and

that the hash values are over the same domain as the node Id’s. A circular order is defined over this

domain. Each node α is responsible for storing the fragment of each relation corresponding to the

tuples whose index value is such that α is the largest node Id smaller than the index value of the

tuple.

Several mechanisms can be used to ensure the replication of the data so that nodes can leave the

network without perturbing the application. In the sequel we use replication and synchronization

methods to ensure the persistence of the data under nodes movement.

3 The Netlog language for distributed protocols

Netlog programs consist of sets of recursive rules of the form head :- body, where the head is

derived when the body is satisfied. The programs are installed on each node of a network, where

they run concurrently. The computation is distributed and the nodes exchange information. The

facts deduced from the rules can be either stored on the node on which the rules run, or sent to

other nodes.

We present the language through some fundamental examples of programs for network orga-

nization, routing, and sensor network monitoring.

In the following Program tree, we consider the construction of a spanning tree. The results are

distributed so that each node stores the knowledge of its parent in the tree.

Program Tree

l onST (self) : −Root(self). (1)

↓ ST (⋄y, self) : −Link(self, y), onST (y),¬onST (self). (2)

l onST (self) : −Link(self, y), onST (y),¬onST (self). (3)

The variable self is interpreted by the node address. The store/push operator, "l", in front of

rules, determines where the results are assigned. The effect of "↓" is to store the results of the rule

on the node where it runs; "↑", to push them to its neighbors; and "l", to both store and push them.

The negation is interpreted by local closed world assumption (a fact is not true on a node if it

is not stored on that node). The choice operator ⋄ chooses non-deterministically a parent among

the possible choices.

Assume that Root(ρ) holds on a root node ρ exclusively. When a node α is on the spanning

tree, it broadcasts onST (α) to its neighbors by Rules (1) and (3). The fact ST (α, β), which is

7

deduced by node β, is stored exclusively on node β, and saved as parent the node α, by Rule (2).

Program Sensor monitoring

↑ Req(self) : −Temperature(self, t), t > m_threshold. (4)

↑ Rep(self,@x, t) : −Req(x), T emperature(self, t). (5)

↓ Temperature(x, t) : −Rep(x, self, t),¬Temperature(x, _). (6)

↓ TpAvg(x, avg(t)) : −Temperature(x, t). (7)

The program Sensor monitoring uses to monitor the temperature on sensors. The temperature

of the sensors are stored in the relation Temperature with attributes nodeId and temperature.

The location instruction "@" in the head of rules represents the destination. Rule (5) unicasts its

results, using the location instruction "@", on the second variable of the head, instead of pushing

them to all neighbors. The constant m_threshold in Rule (4) is a metadata defined in the header

of the program, and the underscore used in Rule (6) denotes "any value".

When the temperature of a sensor, say α, is greater than the defined threshold, it sends a request

to all neighbors to retrieve their temperature in Rule (4). Neighbor sensors, upon receiving the

request in Rule (5) , unicast their current temperature to α, which in its turn saves the temperature

of their neighbors upon receiving their answers in Rule (6). Finally, sensor α, using the aggregation

avg in Rule (7), computes the average temperature of all its neighbors and stores it in the relation

TpAvg.

The Netquest Virtual Machine executes the Netlog byte-

code and manipulates data and messages. It is working as a

daemon in the device, and applications can use it to commu-

nicate with other devices on the network. The virtual ma-

chine is portable and can be installed in small devices with

embedded DMS. A previous implementation was done in

iMote sensors [3].

The Netquest Virtual Machine is composed of six com-

ponents:

• Device Wrapper for QuestMonitor: provides an abstraction layer of the network. It receives

and sends data over the network, and does the address translation between Netlog internal

addresses and the network addresses.

• Data Management System (DMS): provides an access to the data. This module evaluates the

bytecode, manipulates data (insertion, update and deletion) and produces messages.

• Router: receives and sends Netquest messages through the device wrapper. It chooses the

best route to reach each destination. The strategy to select the route can be easily defined in

Netlog.

8

• Engine: executes the Netlog programs. When a node receives a new message, the engine

loads the rules matching the facts of the message and evaluates them through the DMS.

• Timer Manager (TM): manages time event of the system. Netlog programs can create and

manipulate timers. These timers are managed and fired by this module.

• Application API: this module is an interface between the virtual machine and applications.

An external application can use the Netlog Virtual Machine to send and receive messages

over the network.

The generated bytecode is a SQL di-

alect. A query is built for each operator

(store, push and deletion) in a rule.

Consider for instance the following

rule which contains the three operators.

The @ symbol in the body of the rule fol-

lowed by the variable a denotes the loca-

tion specifier, where the evaluation of the

rule is taken place (on node a). The sym-

bol “!” denotes the deletion of the facts

used in the evaluation of the rules.

l Link(a, b) : −!Hello(b,@a),

¬Link(a, b).

This rule is evaluated when the engine

receives a Hello message. It is translated

into three SQL queries corresponding to

each operator.

The first query is the result for the op-

erator push, the second for the operator

store and the third for the deletion.

All the keyword beginning by m_

(e.g. m_self) are replaced by the en-

gine during the evaluation of the rule. The

negation of Link is translated with the

sub-query into the section not exists.

SELECT H e l l o . a , H e l l o . b

FROM H e l l o

WHERE H e l l o . a= ’ m_ se l f ’

AND NOT EXISTS (

SELECT Link . a , Link . b

FROM Link

WHERE Link . a= H e l l o . a

AND Link . b= H e l l o . b) ;

INSERT INTO Link

SELECT H e l l o . a , H e l l o . b

FROM H e l l o

WHERE H e l l o . a= ’ m_ se l f ’

AND NOT EXISTS (

SELECT Link . a , Link . b

FROM Link

WHERE Link . a= H e l l o . a

AND Link . b= H e l l o . b) ;

UPDATE H e l l o

SET H e l l o . d e l e t e d =1

WHERE H e l l o . a= ’ m_ se l f ’

AND NOT EXISTS (

SELECT Link . a , Link . b

FROM Link

WHERE Link . a= H e l l o . a

AND Link . b= H e l l o . b) ;

Nodes communicate by messages which have the following format: < dest, payload >, where

payload is the content of the message (a set of facts), and dest = (exdest, imdest), where exdest
is an explicit destination (e.g. node Id), and imdest is an implicit destination, that is a query whose

answer is of type node Id.

9

When a message is received by a device, the device wrapper transfers it to the router. The

message is read by the router and the payload is sent to the engine if the device belongs to the

destination, otherwise it is forwarded to the destination. If the explicit destination is known to the

node, the implicit destination is ignored. Otherwise, the query of the implicit destination is fired

on the local store of the node, and the result is used as new explicit destination. As we will see, the

implicit destinations reveal very useful to handle the destination obtained by the DHT, which can

have left the network, and can be recomputed on the fly.

The engine loads rules from Netlog programs matching the facts contained in the payload and

then evaluate these rules using the DMS. The DMS can update or delete data and create messages

to be sent. These new messages are sent to the network through the device wrapper.

The Netlog Engine does not execute directly the bytecode. It orchestrates the tasks to be done

to treat messages and facts. When receiving facts, a new round starts and a first stage is executed.

In this stage, the engine loads and executes rules triggered by these facts. If there are derived facts

produced by the engine, a new stage is executed recursively again with these new facts. A round

is finished when there are no new derived facts. At the end of a round, produced messages are sent

to other nodes in unicast or broadcast mode.

4 Declarative overlays

Netlog is well adapted to the development of networking protocols. In this section, we show how

the basic protocols which are used to distribute the server tasks over a DHT can be written. We

first present a routing protocol, which defines the routes in the network. Then a ring, that is a

circular order, is defined over the node Ids. Each node then constructs the segment of keys it is

responsible for. Finally, the replication of the fragments to ensure persistence of the game in the

event of failure of a node is defined.

The program DSDV, presented below, is a simplified version of the DSDV protocol [20],

which constructs and maintains proactively all possible routes in ad hoc networks. We chose

DSDV to support mobile clients participating to a multiplayer game in a device to device net-

work. The routes are stored in relation Route with attributes dest, nextHop, nbHops, destSN
and expirationT ime, where destSN is used for sequence numbers.

The program is composed of four modules. Each module can be triggered by an incoming fact

or by a timer. For example, the module ini, composed of Rule (8), is triggered by the timer ini,
while the module UpdRoute is composed of Rules (11), (12) and (13) and triggered by the fact

HelloRoute. When a module is triggered, all the rules of this module are evaluated in parallel.

Each node initially creates a route to itself when the program starts with Rule (8), triggered by

the timer ini, which is fired only once. Periodically, using the timer hello, each node in Rule (9)

broadcasts all its route information to its neighbors, and increases the value of the sequence number

destSN , of the route to itself, using Rule (10).

The route information are sent using facts of the form HelloRoute. A node updates its routing

table according to the received route information from its neighbors as follows: (i) a new route

is stored Rule (11) if there is no route to the same destination in the local route table, (ii) the old

route is deleted and replaced with a new one, if the new route has a larger destination sequence

10

number, Rule (12), or the new route has the same sequence number as the old one but has a smaller

number of hops, Rule (13). Each node sets for each route a timeout m_timeout, in Rules (11),

(12) and (13) upon saving it in the routing table. In Rule (14), each node periodically using the

timer checkRoute deletes all expired routes.

Program DSDV

module(ini)

↓ Route(self, self, 0, 1, 0) : −
{

T imeEvent(′ini′). (8)

module(hello)

↑ HelloRoute(self, x, n, s) : −
{

T imeEvent(′hello′), Route(x, y, n, s, _). (9)

↓ Route(self, self, 0, s, 0) : −
{ T imeEvent(′hello′),

!Route(self, self, 0, s′, 0), s := s′ + 1.
(10)

module(UpdRoute)

↓ Route(x, ⋄y, n, s, t) : −
{ HelloRoute(y, x, n′, s),¬Route(x, _, _, _,),

n := n′ + 1, t := m_time+m_timeout.
(11)

↓ Route(x, ⋄y, n, s, t) : −
{ HelloRoute(y, x, n′, s), n := n′ + 1, s′ < s,

!Route(x, y′, n′′, s′), t := m_time+m_timeout.
(12)

↓ Route(x, ⋄y, n, s, t) : −
{ HelloRoute(y, x, n′, s), n := n′+1, n′′ > n′ + 1,

!Route(x, y′, n′′, s), t := m_time+m_timeout.
(13)

module(checkRoute)

: −
{ !T imeEvent(′checkRoute′), !Route(_, _ ,_, t),

t < m_time, t <> 0.
(14)

The next figure shows an example of dynamic network in which node 9 is moving between

nodes. We monitor and display the content of the routing table of node 9. The left figure and

related table represent the network and the content of the table of node 9 before changing the

position while the right figure and related table represent node 9 after changing its position. The

route between source node 9 and the destination node 1 is colored in red. As we notice, all routes

are up to date, with the DSDV protocol, and there is always a route between all the nodes.

Route

dest nextHop nbhops routesn exptime

0000 0008 2 32 103055929

0001 0008 3 30 103055929

0002 0008 3 30 103055929

0003 0008 2 32 103055929

0004 0007 2 32 103057272

0005 0008 2 32 103055929

0006 0006 1 34 103056834

0007 0007 1 34 103057272

0008 0008 1 34 103055929

0009 0009 0 36 0

Route

dest nextHop nbhops routesn exptime

0000 0000 1 54 103190702

0001 0005 2 52 103189468

0002 0005 2 52 103189468

0003 0000 3 50 103190702

0004 0000 4 48 103190702

0005 0005 1 54 103189468

0006 0000 2 52 103190702

0007 0000 3 50 103190702

0008 0000 2 52 103190702

0009 0009 0 56 0

11

The following program, RING, defines a circular order on the node Ids (with the smallest node

Id, immediate successor of the biggest one), used in the DHT. The index values of each relation

are mapped to hash values. Each node is responsible for an interval of these values, according to

the value of its identifier, and their predecessor and successor in the ring.

Since we consider mobile ad hoc networks, the next program relies on the previous routing

protocol, ensuring that each node has routes to all nodes in the network, which are maintained over

time. Any participating node may be part of the DHT and hold data related to the application. The

program uses the relations Intvl with two attributes to save the predecessor and the successor of

each node, similar for NIntvl to calculate the new interval. The relation Extreme with two attributes

saves the nodes with minimum and maximum Id in the network.

Program RING

module(ini)

↓ Intvl(self, self) : −
{

T imeEvent(′ini′). (15)

module(extreme)

↓ Extreme(min(d),max(d)) : −
{

T imeEvent(′chNgb′), Route(d, _). (16)

module(interval)

↓ NIntvl(max(d1),min(d)) : −
{ !Extreme(_, _), Route(d, _), d > self,

Route(d1, _), d1 < self.
(17)

↓ NIntvl(y,min(d)) : −
{

!Extreme(self, y), Route(d, _), d > self. (18)

↓ NIntvl(max(d), x) : −
{

!Extreme(x, self), Route(d, _), d < self. (19)

module(updateInt)

↓ Intvl(np, ns) : −
{

!Intvl(_, _), !NIntvl(np, ns). (20)

12

The program is composed of four main modules. Each node in the network initially sets its

successor and predecessor to its node Id when the program starts with rule (15), triggered by the

timer ini only once. Then, periodically using the timer chNgb in Rule (16), extreme nodes are

specified by using the routing table which has a route to all destination. The third step consists

at finding the interval of each node. Rule (17) defines new intervals of intermediate nodes by

checking the routing table and finding the new predecessor and successor, while Rule (18) and

(19) are used to calculate the interval of extreme nodes. The minimum node, in Rule (18), sets its

predecessor to the last node and finds its successor, and the maximum node in Rule (19) sets its

successor to the first node and finds its predecessor. Finally, in Rule (20), each node updates its

interval upon receiving a new interval.

The virtual ring can be seen on the next figure. The edges in black are the network edges, while

red edges form the virtual ring.

Interval

Node Predecessor Successor

0000 0009 0001

0001 0000 0002

0002 0001 0003

0003 0002 0004

0004 0003 0005

0005 0004 0006

0006 0005 0007

0007 0006 0008

0008 0007 0009

0009 0008 0000

For reliability purposes, we assume that all data are replicated on two nodes, thus allowing any

node to leave the network with no perturbation to the game. We assume that each node, say α,

is responsible for the interval of values between its predecessor and successor node in the loop,

[predα, succα[. The program REPLICATION ensures the replication of the data on the two nodes

responsible for a fragment. It is shown here on the relation Owner, which has three attributes

Avatar, Auth and Client, where Avatar is the index attribute.

Program REPLICATION

module(updatecopy)

↑ OwnerUpd(@s, x, y, z) : −
{ T imeEvent(′upd′), hv := hash(x), hv ≥

self, Intvl(p, s), Owner(x, y, z), hv < s.
(21)

↑ OwnerUpd(@s, x, y, z) : −
{ T imeEvent(′upd′), hv := hash(x), hv ≥

self, Intvl(p, s), Owner(x, y, z), s < self.
(22)

13

module(updatemove)

: −
{ Intvl(op, os), hv := hash(x), hv < self,

!Owner(x, y, _), !NIntvl(np, ns), np > op.
(23)

↑ Recover(@np, x, y, z) : −
{ Intvl(op, _), !NIntvl(np, _), hv < self,

Owner(x, y, z), hv := hash(x), np < op.
(24)

module(updateOwner)

↓ Owner(x, y, z) : −
{

!OwnerUpd(self, x, y, z). (25)

: −
{ !OwnerUpd(self, x, y, z), !Owner(r, s,m)

hv := hash(r), hv < self.
(26)

↓ Owner(x, y, z) : −
{

Recover(self, x, y, z). (27)

The program is composed of three main modules. Periodically using the timer upd in module

updatecopy, each node, using Rules (21) and (22), sends a backup to be saved on its successor s
for all entries that have index values in the interval [self, s[. Rule (22) is used to manage the last

node and together with Rule (21) to prevent each node to save on its successor the backup of its

predecessor.

The module updatemove with rules (23) and (24) is used to manage the backup copy in the

successor upon the detection of any change in the predecessor. Indeed, if the new predecessor is

greater than the old one, all entries that have index values less than self are deleted, Rule (23).

However, if old predecessor less than old one, that means the old predecessor leaves the network,

and so all entries that have keys less then self should be sent to new predecessor, Rule (24).

The backup and recover copy are sent using facts of the form OwnerUpd(nodeId, avatar,
authentication, owner) and Recover(nodeId, avatar, authentication, owner). In the module

updateOwner, the successor saves a backup copy upon receiving the fact OwnerUpd(self, x, y, z)
in Rule (25) and at the same time deletes the old copy, Rule (26), while new predecessor saves a

recover copy upon receiving the fact Recover(self, x, y, z) in Rule (27).

In the next example, we monitor the impact of the departure of node 7 from the network. Node

7 is in charge of fragments of relations whose index attribute is mapped to a value in the interval

[6, 8[. The values of the index attributes Toto and Loulou are mapped by the hashing function

respectively to 7, and 3. Node 7 is therefore responsible for the fragment of relation Owner with

Avatar Toto as seen on the first Owner Table below. When node 7 disappears, its predecessor 6

takes the duty, and hosts the fragment, as shown on the second owner table. The figure shows the

new Ring over the network after the departure of node 7.

14

Owner

Node Avatar Auth Client

0007 Toto 37 0009

0008 Toto 37 0009

0003 Loulou 54 0005

0004 Loulou 54 0005

Owner

Node Avatar Auth Client

0006 Toto 37 0009

0008 Toto 37 0009

0003 Loulou 54 0005

0004 Loulou 54 0005

The program SYNCHRONIZATION, performs the synchronization of the tables which have

more than one index, such as the table Auction of the example, and whose data are therefore

duplicated in as many pairs of copies as there are indexes. (This program is omitted in this draft

for space reason).

Similar replication and synchronization programs are defined for all the tables of the applica-

tion. The use of these programs is shown in the next section.

5 A Distributed Server for a multiplayer game

We have implemented the auction game in Netlog over the QuestMonitor system, and made exper-

iments on dynamic networks of several dozen peers participating to the game. We describe below

the execution of a simple scenario, where a node joins the network to participate to the game. After

retrieving all the information about its avatar, it does a bid on an auction and finally disconnects

from the network. At the expiration of the auction, the avatar owns the object, although the peer to

whom the avatar belongs has already left the game.

To join the game, a node, say α, goes through four important steps:

• Authentication: Node α sends an authentication message to its neighbors. When the neigh-

bors receive an authentication request, they verify if the authentication key of the avatar is

correct, by sending the query to the node which stores the corresponding fragment of the

Owner table. If the authentication succeeds, the routing algorithm is allowed to start.

• Route propagation: If node α is allowed to join the game, neighbors propagate their routes

to node α and accept incoming route from it. The detailed workflow of DSDV is described

in Section 4.

• Insertion in the ring: Node α has to insert itself into the DHT ring. The Ring protocol

described in Section 4 is used to make it responsible for the interval [predα, succα[of index

values, and to update accordingly the nodes predα and succα.

15

• Replication and synchronization: The change in the ring also triggers the replication and

synchronization protocols. The predecessor and the successor of node α in the ring send

to node α all entries (data about the distributed table) that have index values in the inter-

val [predα, succα[. The new node is now responsible of some fragments of the distributed

database.

The process begins as follows when a new node, node 7, joins the game, which is already

running between players. The communication between nodes is represented in red in the following

figure.

After the authentication and the propaga-

tion of the route, node 7 calculates its interval

and saves as predecessor node 6 and successor

node 8. It then receives all entries of the dis-

tributed table that have index values in its inter-

val [6, 8[from both its predecessor and its suc-

cessor.

Suppose now that node 6 has data with in-

dex values in the interval]7, 8]. The predeces-

sor of the index values is the node responsible.

Thus, node 6 communicates with node 7 to save

the corresponding data, and then saves a backup

in its successor node 8.

After node 7 has entered the game, it has to retrieve all the information about its avatar (list

of owned objects, bank account, etc.) as well as its geographic views (such as the list of auctions

on markets where it registers). It uses the index attributes to communicate with nodes that are

responsible of the fragments of interest to it. When the node has retrieved all the information about

its avatar, and has registered to a market, it is able to bid at an auction. It updates its local view of

the table Auction and then sends an update (client action 3 in Section 2) to the node responsible of

the market. When this node receives the update query, it updates the table Auction and the backup

copy in its successor (using the replication protocol).

The node can move in the physical space, and so change position in the network. Thanks to the

DSDV program, it is always reachable, but the DHT ring is not modified.

Every message sent by a node is composed of an explicit and an implicit destination. The

explicit destination is the node responsible of the index values and the implicit destination is a

query over relation Intvl that can compute a new destination if the explicit destination becomes

unreachable.

The DSDV program updates its routes every three seconds. If a node α sends a message to a

disconnected node β, a hop in the path between α and β will eventually be missing and the implicit

destination to find a new explicit destination will be evaluated. The new destination is the node

newly responsible of the index value. Thus, data in the message is not lost.

Suppose now that the node disconnects before the end of the auction. The DSDV program

detects that the node is no more in the network and the route to this node expires and is deleted.

16

When the route is deleted, the ring, as well as the duplication and replication of the data fragments

are updated as seen in Section 4.

When the auction expires, the node responsible of the market where the auction is stored has

to execute some system actions. These actions are SQL queries on the distributed tables. They

consist of a transaction of SQL queries: (i) update the bank account of the seller and the buyer; (ii)

update the owner of the object; and (iii) delete the auction from table Auction

To update the bank accounts, the node responsible of the auction, say λ, does a join between

the fragments of two tables Auction and Market, which are on the same node because they have the

same index attribute, in order to retrieve the account of the avatar. Then, after hashing the account

of each avatar, it sends two messages with explicit and implicit destination to nodes responsible

(say β, γ for the seller and the buyer respectively) in order to update their balance.

Given the restrictions on the queries, messages are never broadcasted, but unicasted thanks

to the index attribute of the DHT table. An important feature of our approach, supported by the

Nequest machine, is the use of a pair of explicit/implicit destination at the same time, to handle

the possibility that the destination node leaves the network.

To update the object, node λ hashes the object OId from its local table Auction and sends a

message with explicit and implicit destinations to the node responsible, say θ. Upon receiving

the message, node θ updates the entry related to object OId.

Finally, to delete the auction, node λ directly removes the entry of the auction on the local

fragment of the auction table, and updates the replicated version and synchronizes with the protocol

Replication and Synchronization.

In the simple game we have considered, the join is done on one single node. More complex

distributed joins can be handled as well by the present approach, but require additional protocols

to carry on the distribution.

6 Conclusion

Data centric languages facilitate the writing of distributed programs, resulting in much shorter and

more declarative code. We have shown that networking protocols could be written as simple, very

concise, programs consisting of a few dozen of Netlog rules. We described the rules coding for

a DHT in a mobile ad hoc network relying on a DSDV like routing protocol. We then showed

that applications coded as queries in a client-server framework could be ported seamlessly, that is

without modifying the initial queries, to the distributed environment. The distributed system based

on the DHT ensures the tasks of the centralized server in a fully distributed manner, by relying in

the peers which handle horizontal fragments of the relations, and communicate with other peers

to solve queries. We considered the promising example of multiplayer online games, which can

be fully described in a data centric fashion, and showed how it can be seamlessly distributed. The

experiments we made on the QuestMonitor platform, with games of over 50 players, demonstrated

the robustness of the approach.

We plan to further investigate the protocols supporting peer-to-peer applications and the distri-

bution of the server tasks, by considering other DHTs, as well as additional issues, such as security

and real time which are critical. We also plan to verify formally the DHT, and extends our results

17

to ensure the persistence of the game under more stringent conditions, such as the movements of

several nodes at a time. It has been shown that the data centric approach facilitates the verifica-

tion of the programs. Simple Netlog protocols have already been verified [9] using the Coq proof

assistant.

Acknowledgment

The authors would like to thank Ben Leong for suggesting us to consider fully distributed multi-

player games, as well as Christophe Bobineau, Christine Collet, Fuda Ma, and Stéphane Ubéda,

for fruitful discussions.

References

[1] F. Bancilhon. Naive evaluation of recursively defined relations. In On knowledge base man-

agement systems: integrating artificial intelligence and database technologies, 1986.

[2] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other strange ways to

implement logic programs (extended abstract). In PODS ’86: Proceedings of the fifth ACM

SIGACT-SIGMOD symposium on Principles of database systems, pages 1–15, New York,

NY, USA, 1986. ACM.

[3] M. Bauderon, S. Grumbach, D. Gu, X. Qi, W. Qu, K. Suo, and Y. Zhang. Programming

imote networks made easy. In The Fourth International Conference on Sensor Technologies

and Applications, pages 539–544. IEEE Computer Society, 2010.

[4] E. Bellemon, V. Dubosclard, S. Grumbach, and K. Suo. Questmonitor: A visualization plat-

form for declarative network protocols. In MSV 2011: The 8th International Conference on

Modeling, Simulation and Visualization Methods, Las Vegas, USA, 2011.

[5] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta. Peerson: P2p social networking: early

experiences and insights. In Proceedings of the Second ACM EuroSys Workshop on Social

Network Systems, 2009.

[6] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron. Virtual ring routing:

network routing inspired by dhts. SIGCOMM Comput. Commun. Rev., 36:351–362, 2006.

[7] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Secure routing for

structured peer-to-peer overlay networks. SIGOPS Oper. Syst. Rev., 36, December 2002.

[8] D. Chopra, H. Schulzrinne, E. Marocco, and E. Ivov. Peer-to-peer overlays for real-time

communication: Security issues and solutions. IEEE Communications Surveys and Tutorials,

11(1), 2009.

18

[9] Y. Deng, S. Grumbach, and J.-F. Monin. A framework for verifying data-centric protocols.

In FORTE 2011: The 31th IFIP International Conference on FORmal TEchniques for Net-

worked and Distributed Systems, Reykjavik, Iceland, 2011.

[10] S. Grumbach and F. Wang. Netlog, a rule-based language for distributed programming. In

PADL’10, Twelfth International Symposium on Practical Aspects of Declarative Languages,

Madrid, Spain, january, 2010.

[11] T. Hampel, T. Bopp, and R. Hinn. A peer-to-peer architecture for massive multiplayer online

games. In Proceedings of 5th ACM SIGCOMM workshop on Network and system support for

games, NetGames ’06, 2006.

[12] J. M. Hellerstein. The declarative imperative: experiences and conjectures in distributed

logic. SIGMOD Record, 39(1):5–19, 2010.

[13] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot. Optimized

link state routing protocol for ad hoc networks. In Multi Topic Conference, 2001. IEEE

INMIC 2001. Technology for the 21st Century. Proceedings. IEEE International, pages 62–

68, 2001.

[14] B. Knutsson, M. M. Games, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer support for mas-

sively multiplayer games. In INFOCOM, 2004.

[15] J. Liu, S. G. Rao, B. Li, and H. Zhang. Opportunities and challenges of peer-to-peer internet

video broadcast. Special Issue on Recent Advances in Distributed Multimedia Communica-

tions, Vol. 96, No. 1, pp. 11-24, 2008.

[16] B. T. Loo, T. Condie, M. N. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis, R. Ra-

makrishnan, T. Roscoe, and I. Stoica. Declarative networking: language, execution and opti-

mization. In Proc. ACM SIGMOD’06, 2006.

[17] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica. Implementing

declarative overlays. In Proc. SOSP’05, 2005.

[18] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative routing: extensible

routing with declarative queries. In Proc. ACM SIGCOMM ’05, 2005.

[19] C. man Au Yeung, I. Liccardi, K. Lu, O. Seneviratne, and T. Berners-Lee. Decentralization:

The future of online social networking. In W3C Workshop on the Future of Social Networking

Position Papers, 2009.

[20] C. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-vector routing

(dsdv) for mobile computers. In ACM SIGCOMM’94 Conference on Communications Archi-

tectures, Protocols and Applications, pages 234–244, 1994.

[21] C. E. Perkins. Ad-hoc on-demand distance vector routing. In In Proceedings of the 2nd IEEE

Workshop on Mobile Computing Systems and Applications, pages 90–100, 1999.

19

[22] P. Persson. Exms: an animated and avatar-based messaging system for expressive peer com-

munication. In Proceedings of the 2003 international ACM SIGGROUP conference on Sup-

porting group work, GROUP ’03, 2003.

[23] R. Ramakrishnan and J. D. Ullman. A survey of research on deductive database systems.

Journal of Logic Programming, 23:125–149, 1993.

[24] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing

for large-scale peer-to-peer systems. In Middleware 2001, IFIP/ACM International Confer-

ence on Distributed Systems Platforms, 2001.

[25] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable

peer-to-peer lookup service for internet applications. SIGCOMM Comput. Commun. Rev.,

31, 2001.

[26] L. Vieille. Recursive axioms in deductive databases: The query/subquery approach. In Expert

Database Conf., pages 253–267, 1986.

20

