
HAL Id: hal-00709755
https://inria.hal.science/hal-00709755

Submitted on 19 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed control for reconfigurable FPGA systems: a
high-level design approach

Chiraz Trabelsi, Samy Meftali, Jean-Luc Dekeyser

To cite this version:
Chiraz Trabelsi, Samy Meftali, Jean-Luc Dekeyser. Distributed control for reconfigurable FPGA
systems: a high-level design approach. 2012. �hal-00709755�

https://inria.hal.science/hal-00709755
https://hal.archives-ouvertes.fr

Distributed control for reconfigurable FPGA

systems: a high-level design approach

Chiraz Trabelsi, Samy Meftali and Jean-Luc Dekeyser

INRIA Lille Nord Europe - LIFL - Universite Lille1

Lille, FRANCE

Email:{Firstname.Lastname}@inria.fr

Abstract—Due to their exponential complexity, designing adap-
tation control for Reconfigurable Systems-on-Chip (RSoC) is
becoming one of the most challenging tasks, resulting in longer
design cycles and increased time-to-market. This paper ad-
dresses this issue and proposes a novel adaptation control design
approach for FPGA-based reconfigurable systems aiming to
increase design productivity. This approach combines control
distribution and high-level modeling in order to decrease design
complexity and enhance design reuse and scalability. Control
distribution is based on allocating local control aspects (moni-
toring, decision and reconfiguration) to distributed controllers,
while respecting global system constraints/objectives using a
coordinator. High-level modeling makes use of Model-Driven En-
gineering and the MARTE (Modeling and Analysis of Real-Time
and Embedded Systems) standard in order to move from high
level models to automatic code generation, which significantly
simplifies the control design. The proposed design approach is
integrated in a model-driven RSoC design flow and allows to
model adaptation aspects at different design levels: application,
architecture, allocation and deployment, which allows to target
a wide range of control requirements. In order to validate our
approach, a video processing application was implemented on a
reconfigurable system that contained four distributed hardware
controllers.

Index Terms—Distributed control, high-level modeling, UML
MARTE, reconfiguration control, partial dynamic reconfigura-
tion, FPGA

I. INTRODUCTION

Being able to be reconfigured an arbitrary number of times,

Reconfigurable Systems-on-Chip (RSoC) are becoming widely

used thanks to their flexibility and adaptivity. These systems

offer the possibility of being modified after fabrication in

order to adapt to changes such as user preferences, application

requirements and standard changes. Dynamic reconfiguration

has the potential of offering a run-time system modification

by replacing reconfiguration data (bitstream). Partial Dynamic

Reconfiguration (PDR) is a very powerful mechanism sup-

ported by some modern FPGAs [1]. Supporting PDR provides

a high platform flexibility allowing to reconfigure only some

regions of the FPGA (loading partial bitstreams) without

disturbing the operation of the rest of the system. Such a

mechanism allows to reduce the total system area while meet-

ing performance constraints. However, adaptivity and reconfig-

urability implies an additional task for SoC designers, which

is adaptation control design whose complexity is increasing

with the size of the applications that modern RSoC are able

to embed. In this context, designing one controller to handle

the adaptation of the whole system is becoming a complex and

time-consuming task. Moreover, the rigidity of such a design,

due to its independence to the implemented system, represents

an obstacle to design reuse. Therefore, increasing autonomy in

control design can be viewed as an effective solution to deal

with the growing complexity of the reconfigurable systems

design [2]. Such an autonomy allows to divide the control

problem between autonomous controllers having each a local

vision of the system, which allows to decrease their design

complexity.

Another solution to decrease design complexity is to elevate

the low-level technical details using Model-Driven Engineer-

ing (MDE) [3]. MDE is a high-level design approach that is

suitable for SoC co-design, allowing to model both software

and hardware parts. In order to use the MDE for a high

level description of a system in a specific domain such as

embedded systems, UML (Unified Modeling Language) [4]

profiles are used. A UML profile is a set of stereotypes that

add specific information to a UML model in order to describe

a system related to a specific domain. Several UML profiles

target embedded systems design such as the Modeling and

Analysis of Real-Time and Embedded systems (MARTE) [5]

profile, a standard profile promoted by the Object Management

Group (OMG).

In a previous work [6], we proposed a distributed control

model for reconfigurable FPGA-based systems. This model

is based on autonomous modular controllers and formalism-

oriented design in order to decrease design complexity and

facilitate design reuse and scalability. In this paper, we en-

hance this work by a high-level modeling approach. This

approach allows designers to target dynamic reconfiguration

without being expert of modern FPGAs, which simplifies

the control design and decreases its complexity. We also

integrate this high-level control design into a model-based SoC

design framework in order to generate automatically controlled

reconfigurable FPGA-based systems, which allows to reduce

time-to-market and to enhance design productivity. The rest

of the paper is as follows. Section 2 gives a summary of

the related works on high-level modeling. Section 3 gives

an overview of the proposed control distribution. Section 4

presents the high-level modeling approach through a video

processing application case study. Section 5 gives experimental

results. The last section presents a conclusion and future

works.

Bus

Coordinator

Processor

Memory

SW-C
MemoryI/O RC1 RCr

Other
monitored

components

monitoring flow

decision flow
parallel reconfiguration flow

........

........

PRRn

HW-Cn
Monitoring
Decision

Reconfiguration

RUn

sequential reconfiguration flow

PRR1

HW-C1
Monitoring
Decision

Reconfiguration

RU1

Fig. 1: Considered reconfigurable system

II. RELATED WORK

High-level modeling for reconfigurable systems was pro-

posed in several works. In [7], the authors present a co-

design methodology for reconfigurable MPSoC (Multiproces-

sor SoC), in order to generate automatically reconfigurable

embedded systems using the MARTE UML profile. The

proposed solution for control modeling is extremely simplistic,

based on a UML state machine handling a repeated sequence

of configurations for one reconfigurable co-processor. This so-

lution is not suitable for more complex reconfiguration require-

ments. Besides, reconfiguration aspects were only handled at

the allocation level. In [8], the authors propose a MARTE-

oriented design approach of dynamic reconfigurable FPGA

(Field Programmable Gate Arrays) -based RSoC using mode

automata control for the Gaspard2 SoC design framework [9].

However, the proposed approach is based on a centralized

reconfiguration controller for the whole FPGA, which makes

it not suitable for large complex systems. In [10], the authors

present a design approach for dynamic reconfigurable FPGA-

based RSoC. This approach is based on the MARTE concepts

for reconfiguration control such as mode and configuration

concepts. However, it has the limit of remodeling the whole

system for each possible configuration. There are also several

other model-driven approaches for RSoC control that are

not MARTE-oriented [11] [12]. Compared to the mentioned

works, our approach allows to handle adaptation control design

at different design levels (application, architecture, allocation

and deployment), which offers a high design flexibility and

allows to cover a wide range of control requirements.

III. THE CONTROL DISTRIBUTION APPROACH

The considered reconfigurable systems in this paper are

those supporting partial reconfiguration. Figure 1 shows an

overview of the targeted architecture. It is mainly composed of

a processor, a number of reconfigurable hardware units (RUs),

memories, and I/Os. Application tasks are thus composed of

software tasks executed by the processor, and hardware tasks

executed by the RUs. In order to decrease the control design

complexity of such systems, we propose to divide control

concerns between distributed controllers in order to decrease

their design complexity and facilitates their verification and

reuse, resulting in a higher design productivity. Adaptation

control is distributed as follows: 1) a software controller (SW-

C) handling the software tasks adaptation, 2) a number of

hardware controllers (HW-Cs) handling RUs adaptations. Each

RU is composed thus of a partial reconfigurable region (PRR),

handling a hardware task, and a HW-C controlling it. Software

and hardware controllers are coordinated using a coordinator,

in order to guarantee that the system configuration respects

global constraints/objectives.

As shows Figure 1, each HW-C contains three modules

handling monitoring, decision and reconfiguration. Monitored

data (monitoring flow in Figure 1) can be related to the

internal status of PRRs or detected from external sources

(other monitored components in Figure 1), such as battery

sensors, user inputs, etc. Monitoring modules detect, from

monitored data, information and events that will be used by

decision modules for decision-making. Each decision module

makes local decisions about whether or not a reconfiguration

of the controlled region is required. Due to the local vision

of each HW-C, launching a reconfiguration of its controlled

region without checking whether it can coexist with the current

configurations of the other regions might result in problems

such as safety problems or might not respect the control global

constraints such as those related to performance, tempera-

ture, energy consumption, etc. Therefore, before launching

a reconfiguration that it estimates required according to the

monitoring data, the Hw-C has to send a reconfiguration

request to the coordinator (decision flow).

The role of the coordinator is to check whether the global

system constraints allow to launch the requested reconfigu-

ration without adapting other regions. If so, the coordinator

authorizes the reconfiguration. Otherwise, it sends reconfig-

uration suggestions to the HW-Cs of the involved regions.

According to the responses of the HW-Cs (acceptance or

refusal), the coordinator gives its decision about the requested

reconfiguration. This decision can be either an authorization

or a refusal of the reconfiguration. More details about the

used coordination mechanism can be found in [6]. In case

of authorization, the coordinator notifies the HW-Cs. Their

IP Library

Application Arcitecture

Allocation

Deployment

Deployed MARTE

bitstream generation

Model Transformation

Model

Code

UML + MARTE profile

Deployment profile

1) Modeling and deployment

2) Model Transformations

3) Code Generation
Platform-dependent files

4) Physical Implementation
uses
used for

Profile

Adaptivity aspects Adaptivity aspects

Adaptivity aspects

Adaptivity aspects

RTL

VHDLC

Fig. 2: Adaptation control integration to the Gaspard2 frame-

work

reconfiguration modules launch then reconfiguration through

reconfiguration controllers (RCs) in order to load the required

partial bitstreams in a parallel way (parallel reconfiguration

flow), which reduces reconfiguration time. For a Xilinx plat-

form, these RCs correspond to ICAP controllers. The coor-

dinator notifies also the SW-C so that adapts the application

software tasks to the new system configuration.

In order to adapt to technical limitations of current FPGAs,

which mostly contain one configuration port (ICAP) and do

not allow thus parallel reconfiguration, our control design

approach proposes a second reconfiguration flow. In case

of a reconfiguration authorization from the coordinator, each

reconfiguration module updates a dedicated register indicating

which mode is to be loaded in the controlled region. These

registers are then read by the SW-C, which communicates

with the ICAP port in order to load the required bitstreams

in the reconfigurable regions. Then, the SW-C notifies the

coordinator and the HW-Cs so that they update their ”current

configuration” registers. Taking into account the new system

configuration, the SW-C updates application software tasks

before sending data to reconfigurable regions. This control

flow is represented by the sequential reconfiguration flow in

Figure 1.

IV. THE HIGH-LEVEL MODELING APPROACH

Gaspard2 [13] is an MDE oriented SoC co-design frame-

work based on the Modeling and Analysis for Real Time and

Embedded systems (MARTE) standard. Our contribution in

this framework is to integrate reconfiguration aspects in the de-

sign flow, by integrating adaptivity aspects at different design

levels: application, architecture, allocation and deployment, as

shows Figure 2. This is an enhancement to previous control

modeling approaches in the Gaspard2 framework [8] [14],

which targeted centralized control and limit control modeling

at one design level. The design flow in Gaspard2 follows

several steps: 1)system modeling and deployment, 2)model

transformations, 3)code generation, and 4)physical implemen-

tation, as shows Figure 2. More details about these steps can

be found in [13]. Gaspard2 allows code generation targeting

different languages such as Fortran, SystemC, OpenCL, C,

VHDL, etc. In Figure 2, only the used languages in this paper

are mentioned (C and VHDL). The generation tool generates

also platform (FPGA)-dependent files. The generated code can

then be integrated into FPGA tools for synthesis, PAR and

bitstream generation. It can also be integrated into the IP

library in order to be reused in other system designs at the

deployment level.

The case study concerned in this paper deals with video

scaling, which is considerably important for previews or for

streaming for small form factor devices, such as mobile

phones. The application is a classical downscaler, which

transforms a video signal, which is expressed in Common

Intermediate Format (CIF:352x288 pixels), into a smaller size

video (132x128 pixels). This application is composed of two

main tasks: a horizontal filter and a vertical filter. By applying

the horizontal filter on the input frame, its size is reduced to

132x288 pixels. Then, by applying the vertical filter, we obtain

the target size (132x128 pixels). Each filter is composed of

a repetition of an elementary task. At each iteration of this

task, a frame block is treated. In order to guarantee a high

performance of the application, both filters are implemented

in hardware using hardware accelerators. Each accelerator

performs an elementary task of one of the filters. Using

different parallelism degrees, each filter can be implemented

by more than one accelerator. The input block sizes of the

accelerators can also be varied in order to obtain different

performance and power results. Indeed, using a bigger input

block size for an accelerator reduces the execution time thanks

to a higher hardware parallelism, at the cost of a higher

resource overhead and thus a higher power consumption.

In our case study, the objective of the control is to adapt

the downscaler application to changes in performance and

power requirements. Each accelerator is implemented in a

reconfigurable region using three different versions, varying

the size of the input blocks. In this case study we consider

the following block sizes: 35, 19 and 11 pixels for the

horizontal filter, and 41, 23 and 14 pixels for the vertical

filter. Here, for both filters, the first version corresponds to the

highest performance but at the same time the highest power

consumption. In order to take performance and consumption

requirements into account at runtime, each HW-C monitors

two elements. The first element is the required performance

level, which is a user input. The second is the battery level

sent by a battery sensor.

In the rest of this section, we detail our approach to integrate

adaptation control modeling in the Gaspard2 framework, the

application, architecture, allocation and deployment levels.

hc1:HFilter_HW-C1

d:Decision

m :Monitoring

r:Reconfiguration

i :Interface

h1 :HFilter_PRR1

battery_level
battery_level performance_level

battery_level

performance_level

<<FlowPort>>
{direction=inout}

PLB_signals

PLB_interface1
PLB_interface2

PLB_interface3
PLB_interface4

PLB_signals

PLB_signals

battery_level

reconfiguration_commands

reconfiguration_commands

PLB_signals

coordination_info

coordination_info

PLB_signals
PLB_signals

battery_level

coordination_info

hru1:HFilter_RU1

<<FlowPort>>
{direction=out}

<<FlowPort>>
{direction=in}

<<FlowPort>>
{direction=out}

<<FlowPort>>
{direction=inout}

<<FlowPort>>
{direction=inout}

Fig. 3: The RU modeling

A. Application modeling

An application is composed of hardware and software tasks.

Each task is modeled by a component. Inputs and outputs of a

task are represented by ports having the FlowPort stereotype

of MARTE. More details about application modeling in Gas-

pard2 can be found in [13]. In order to integrate adaptation

aspects, each reconfigurable task is modeled by a number

of components, representing each a version of the related

task. In our case study, a hardware task corresponds to an

elementary filter task executed by a PRR. Three versions

(HwHFilteri/HwV Filteri, i ∈ [1..3]) are possible for both fil-

ters, as we said previously. These versions have different input

and output block sizes. Software tasks are divided to a number

of static tasks and a reconfigurable task. Static tasks perform

frame reading and building before and after the downscaler

execution, respectively. The reconfigurable task is the task

that sends input frame blocks to RUs and retrieves output

blocks afterwards. The configuration of this task depends thus

on the current configurations of the RUs whose inputs/output

block sizes is different from a configuration to another. As

we said previously, the coordinator guarantee that the system

configuration respects global system constraints. In this case

study, we assume that these constraints require that all the RUs

implement the same version number. In this case, the reconfig-

urable software task, has three versions Downscaleri, i∈ [1..3],
where each Downscaleri communicates with RUs implement-

ing HwHFilteri and HwV Filteri.

B. Architecture modeling

The architecture model contains the hardware system imple-

mented on FPGA, on which the application will be running.

More details about architecture models in Gaspard2 can be

found in [13]. Here, we focus on the adaptation control

integration at the architecture level. For this, we integrate

RUs modeling at this level. For our case study, we choose to

implement the application with two RUs for horizontal filter

and two for the vertical filter. The architecture follows the

concepts presented in Figure 1. The reconfigurable part of

the system corresponds to 4 PRRs. Each PRR is controlled

by a HW-C forming thus 4 RUs. HW-Cs are connected to a

coordinator. The inputs of the HW-Cs are the battery level

sent by the battery sensor, the bus signals, and the coordi-

nation information. In order to offer the possibility for the

user to introduce the required performance level, the system

contains push buttons and a interruption controller to handle

the user commands as interruptions. The system contains a

SysACE controller for accessing the partial bitstreams placed

in a Compact Flash, an ICAP controller to carry out partial

reconfiguration using the read-modify-write mechanism, and

the DDR3 to store the input and downscaled frames. The

compact Flash will also be used to store the images to be

downscaled. This can be replaced by a camera connected to

the FPGA in order to downscale its input video. The system

contains also a TFT (Thin Film Transistor) controller in order

to display images before and after downscaling, and a UART

allowing the user to follow the application and the control

progress.

Figure 3 shows the structure of one of the RUs used for the

horizontal filter. The rest of the RUs follow the same concept.

Each HW-C is composed of four components: monitoring,

decision-making, reconfiguration and interface. The interface

component allows the communication of the processor with

<< modeBehavior >>
HFilterHW-C1

<< mode >>
HFilter1_mode1

<< mode >>
HFilter1_mode2

<< TransitionRequest >>
[performance_level=2

or (battery_level / H1 < T1,2 / H1)]

<< TransitionAcceptance >>
[true]

<< mode >>
HFilter1_mode3

<< TransitionRequest >>
[performance_level=3

or (battery_level / H2 < T2,3 / H1)]

<< TransitionAcceptance >>
[true]

<< TransitionRequest >>
[performance_level=1 and

(battery_level / H1 >= T2,1 / H1)]

<< TransitionAcceptance >>
[battery_level / H1 >= T2,1 / H1]

<< TransitionRefusal >>
[battery_level / H1 < T2,1 / H1]

<< TransitionRequest >>
[performance_level=2 and

(battery_level / H2 >= T3,2 / H1)]

<< TransitionAcceptance >>
[battery_level / H2 >= T3,2 / H1]

<< TransitionRefusal >>
[battery_level / H2 < T3,2/ H1]

<< TransitionRequest >>
[performance_level=1

and (battery_level / H1 >= T3,1 / H1)]

<< TransitionAcceptance >>
[battery_level / H1 >= T3,1 / H1]

<< TransitionRefusal >>
[battery_level / H1 < T3,1 / H1]

<< TransitionRequest >>
[performance_level=3]

<< TransitionAcceptance >>
[true]

Fig. 4: The HW-C’s mode-automaton

the PRR and the reconfiguration component. It allows also the

monitoring module to have the necessary information for the

monitoring through the PLB interface3 port. The monitoring

component inputs are the PLB signals (allowing to extract the

user performance level since they are sent by the processor),

and the battery level sent by the battery sensor. The decision

component inputs are the monitoring outputs modeled by

the per f ormance level and battery level ports, and the co-

ordination information through the con f iguration in f o port.

After a reconfiguration is authorized by the coordinator, the

decision component notifies the reconfiguration component

through the recon f iguration commands port. The reconfigu-

ration component has two ports. The first one allows it receive

reconfiguration commands from the decision component and

to notify this latter when the required reconfiguration has

finished. The second one allows it to communicate with the

processor as explained previously.

In order to model the behavior of the HW-C, we associate to

its decision component a mode-automaton, where each mode

corresponds to a given configuration/mode of the controlled

RU. Each mode represents thus a version of the hardware

tasks mentioned previously. The mode-automaton is modeled

using the MARTE stereotypes. Inspired from reactive mode

automata formalism [15], a mode in MARTE is an extension

of the UML state, and mode behavior is an extension of the

UML state machine. The mode-automaton has the modeBa-

havior stereotype, and each mode has the mode stereotype.

Transitions have the modeTransition stereotype, and give the

events triggering the transition and the activity that has to be

carried out to move from a mode to another. Provided that all

reconfigurable regions have three configuration possibilities,

each Hw-C uses a decision module modeled by a three-mode

automaton. In order to simplify the modeling of the Hw-C

decisions, we added extensions to the MARTE profile. These

extensions allow to facilitate the modeling the decision mod-

ule activities (requests, suggestion acceptance and suggestion

refusal), by making them implicit in transitions. Figure 4

shows the mode-automaton of the HW-C modeled in Figure 3.

Three stereotypes are added and are applied to transitions as

extensions of the ModeTransition stereotype. The Transition-

Request stereotype indicates that the decision module sends

a request to the coordinator asking for a reconfiguration to

the target mode if the transition condition is valid. Likewise,

TransitionAcceptance and TransitionRefusal stereotypes indi-

cate that the decision module accepts or refuses the received

reconfiguration suggestion to the target mode. Although these

stereotypes are applied to transitions, at the implementation

level (the decision mode-automaton to be generated), they are

not actual transitions to the target mode since, in the targeted

control implementation, the actual transition is only done

after the loading of the corresponding configuration (partial

bitstream). However, using these extensions allows to hide

many implementation details (which are handled automatically

by the model transformation and code generation tools) for

designers. This simplifies significantly the control design. The

designer has only to mention the transition conditions, since

the transition activities are implicit (request, acceptance and

refusal). In our case study, the decision making process of

each decision module is mainly based on the following rules,

which are represented by the transition conditions in Figure 4:

• Being at H/V Filter mode j1, a controller decides

that a reconfiguration to a less consuming mode

H/V Filter mode j2 is required, only if the user requires a

lower performance level, or the consumption constraints

do not allow to stay at H/V Filter mode j1, which is the

case when the following condition is valid

battery level/H j1 < Tj1, j2/H1 (1)

where H j (Vj for the vertical filter) is the energy con-

sumption per cycle of the controlled region’s mode

H/V Filter mode j. This constraint allows to check

whether the available energy is under a threshold (deter-

mined by Tj1, j2) that allows to stay at H/V Filter mode j1,

taking as a reference the highest consumption (H1).

• In order to move from a H/V Filter mode j2 to a

H/V Filter mode j1 that consumes more, it is necessary

that the user requires a performance level that is higher

than the previous one and that the consumption con-

straints allow to move to the target mode, which is the

case when

battery level/H j1 >= Tj2, j1/H1 (2)

• If the controller receives a reconfiguration suggestion

from the coordinator it treats it as follows. If the sug-

gestion requires to move to a less consuming mode,

the controller accepts directly. Otherwise, the controller

checks the consumption constraints in (2) in order to

accept or refuse.

As for the coordinator modeling, it can be done by defining

global system constraints using a contract-based language as

presented in [14]. However, contracts cannot be modeled using

MARTE. Therefore, MARTE has to be extended in order to

handle further control needs. This extension is out of the scope

of this paper. In the current implementation, the coordinator is

written directly in VHDL and stored in the IP library in order

to be attached later to the design at the deployment level.

In order to model the SW-C, we associate a mode-automaton

to the processor. Each mode of the automaton corresponds

to one configuration of the system. Here, we speak about

a system configuration because in our case, in addition to

software adaptation, the processor has to have a vision of the

PRR configurations in order to launch the PRRs reconfigura-

tion correctly. This global vision will be modeled later at the

allocation model. As we said previously, we assume that global

system constraints require that all the RUs implement the

same mode number. Therefore, there are three possible system

configurations, which correspond to a three-mode automaton.

Transitions from a mode to another is handled by the SW-C

that the processor will implement. The determination of the

required system configuration will be handled by the code

generation tool. This tool will generate the necessary code

allowing the processor to communicate with the HW-Cs in

order to extract the required system configuration and launch

partial reconfiguration accordingly. As for the required partial

bitstreams, they will be indicated later at the deployment level,

so that the code generation tool inserts them in the SW-C

generated code.

<<allocate>>
{nature=timeScheduling}

<< configuration >>
HFilter1_Conf1

{mode = HFilter1_mode1}

<<hwComponent,hwResource>>
h1:HFilter_PRR1

hh1:HwHFilter1

Fig. 5: Allocation of a hardware task on a PRR

SwHFilterBlock1-C
<<softwareIP>>

Monitoring-VHDL
<<hardwareIP>> << configuration >>

HFilter1_Conf1

monitoring.vhd
<<codeFile>>
<<artifact>>

<<manifest>>

hfilterBlock1.c
<<codeFile>>
<<artifact>>

h_1_1.bit
<<codeFile>>
<<artifact>>

<<manifest>><<manifest>>

Fig. 7: Components deployment

C. Allocation modeling

The allocation model allows to allocate application tasks to

architectural components (the processor and the PRRs). For

this, Gaspard2 uses the MARTE allocate stereotype, which is

an extension of the UML abstraction. In order to integrate

adaptation aspects at this level, we use the configuration

MARTE stereotype, in order to model the different config-

urations of the PRRs as well as the reconfigurable software

tasks. Figure 5 shows a part of the allocation model. It gives,

as example, the configuration corresponding to the first mode

of a PRR implementing the horizontal filter, following the

mode-automaton in modeled in Figure 4). This configuration

indicates the allocation of a version of a hardware task

(HwHFilter1) to the PRR (HFilter PRR1). For this, the prop-

erty nature of the allocate stereotype is set to timeScheduling

in order to indicate to the generation code tool that the PRRs

will be reconfigured in order to implement different hardware

tasks. In order to enhance design reuse, our approach reuses

the PRR configurations when modeling system configurations,

as shows Figure 6. System modes are also modeled by con-

figurations. Each configuration combines the allocation of the

software tasks to the processor, and the PRRs configurations

corresponding to the considered system mode. Reconfigurable

software tasks are allocated using timeScheduling for the

nature property of the allocate stereotype, as shows Figure 6.

D. Deployment modeling

The deployment level allows to link existing IPs to the mod-

eled components in order to add details allowing to get closer

R_in
d1:Downscaler1

G_in
B_in

R_out
G_out
B_outB

G
R

r:ReadFrame

B
G

R
b:BuildFrame

<<hwProcessor>>
mb:MicroBlaze

<<allocate>>
<<allocate>>

<< configuration >>
System_Configuration1

{mode =System_mode_1}

<< configuration >>
h1_1:HFilter1_Conf1

<< configuration >>
h2_1:HFilter2_Conf1

<< configuration >>
v1_1:VFilter1_Conf1

<< configuration >>
v2_1:VFilter2_Conf1

<<allocate>>
{nature=timeScheduling}

Fig. 6: Modeling of a system configuration

to the targeted platform. At this level, we used the Gaspard2

deployment profile. Stereotypes softwareIP and hardwareIP

are used to indicate several platform-dependent attributes such

as the implementation language and other parameters. The

softwareIP stereotype is used for the application software

elementary components. The hardwareIP stereotype is used

for the application and architecture hardware elementary com-

ponents. More details about Gaspard2 deployment can be

found in [13]. All the elementary components of our design

are deployed using the softwareIP and hardwareIP stereotypes,

except for the PRRs since they have different implementations.

Existing code files are attached to elementary components

through the codeFile stereotype, which is an extension of the

UML artifact. We associate VHDL codeFiles to hardware IPs,

and C codeFiles to software IPs. For the PRR deployment, we

associate codeFiles to the different PRR configurations. These

codeFiles indicate the name of the corresponding bitstreams as

shows Figure 7, which gives a part of the deployment model

handling the deployment of a software task, a hardware com-

ponent (the monitoring component), and a PRR configuration.

As for the HW-Cs, we associate code files to the interface,

monitoring and configuration components, whereas decision

modules will be generated automatically from the modeled

mode-automata.

V. EXPERIMENTAL RESULTS

After deployment, automatic model transformations are car-

ried out to add some details to the input model and get closer

to the targeted technologies. In order to take control aspects

into account in model transformation and code generation,

we integrated the proposed control aspects in the Gaspard2

metamodels as well as model transformation rules, in order

to get at the end of the transformation chain an RTL model

that conforms to the extended RTL metamodel, as shows

Figure 2. This model contains technical details allowing the

code generation related to the targeted FPGA technology. The

code generation tool was extended as well in order to take

control aspects into account. This tool allows to generate

the code to be integrated into the Xilinx tools for physical

implementation. The output of the code generation tool are C

code, VHDL code and other platform dependent files as shows

Figure 2. Using deployment information and code generation

rules, the code generation tool generates the following ele-

ments: 1) a software project for the processor. This project

contains the software application tasks to be executed by

the processor as well as the code of the SW-C, handling

software adaptation and the communication with distributed

reconfiguration modules and the ICAP, 2) the Xilinx MHS

(Microprocessor Hardware Specification) file, describing the

architecture to be implemented on FPGA, 3) the UCF (User

Constraints File) file, which allows to allocate the hardware

component external ports to the FPGA pins, 4) a VHDL

project for each RU.

Given to the Xilinx EDK tool, the generated files allowed to

generate the system netlists. After system synthesis, the Xilinx

PlanAhead tool is used to place the PRRs. This tool takes as

input the netlist file (an ngc file) generated by the EDK tool, as

well as the UCF file. To each PRR, we associate a number of

netlist files corresponding the synthesis result of the different

hardware tasks to be implemented by it. Bitstreams can then

be generated automatically.

In our case study, three partial bitstreams were generated for

each PRR, as well as a full bitstream for the initial system con-

figuration. The horizontal and vertical filters partial bitstreams

have as size 193Ko and 365Ko respectively. This difference

is due to the fact that the horizontal filter treats larger input

and output blocks. Reconfiguration times of horizontal and

vertical filter PRRS are 4,3ms and 8,1ms respectively. Table

I shows the performance and power consumption results for

the system configurations. In our case study, the battery sensor

was emulated by a hardware module that decrements at each

cycle an energy counter depending to the current configuration.

This counter was initialized with 1000J. The last column of

Table I shows the number of frames that can be treated if the

system keeps the same configuration until the battery is flat.

Experimental results show that partial reconfiguration allows

to make a trade-off between performance and power. Indeed,

without partial reconfiguration, if all the hardware accelerators

implement the first mode, the battery (1000J) allows to down-

scale only 2361 frames. Using partial reconfiguration allows

System mode Execution time for a video frame (cycles) Power consumption (mW) Number of treated frames

System mode 1 69082595 613 2361

System mode 2 76604837 564 2444

System mode 3 92092852 530 2585

TABLE I: Performance and power results for the case-study system

to handle user performance requirements and to save, at the

same time, power and to treat thus higher numbers of frames

(up to 9,4% of increase) for acceptable reconfiguration times.

This trade-off can be further refined by exploring different

implementations of the PRRs, but in this paper, we focus

on the validation of the distributed decision-making. This

validation was done by testing different scenarios by varying

the values of the user performance level and the moments

it is modified, which allowed to test all transition conditions

of Figure 4 for all controllers. Due to space limitation, these

scenarios are not detailed in this paper. More details about the

distributed decision-making mechanism can be found in [6].

In order to evaluate the efficiency of our control model

compared to the centralized one in terms of design reusability

and scalability, we varied the application parallelism in order

to implement higher numbers of PRRs for each filter. Exper-

iments were carried out for a number of PRRs up to n = 10

regions, where n/2 regions implement the horizontal filter and

the rest the vertical filter. The HW-Cs generated previously

were reused in order to target larger control systems. For

the coordination scalability, we only modified the number of

coordinated controllers given as parameter to the coordinator,

as well as the global constraints handled by it. The same

systems were designed using a centralized controller. We

noticed that adapting the centralized controller to different

numbers of regions was more complicated. Indeed, for the

centralized controller the decision-making had to be rewritten

each time to adapt to the system implementation, which led

to longer design phases.

VI. CONCLUSION

This paper presents a novel design approach for RSoC

adaptation control. This approach combines distributed control

together with high-level design in order to decrease design

complexity, enhance design flexibility and reuse, and automate

code generation. It is based on splitting the control concerns

between a number of distributed controllers. A coordinator is

used to guarantee that the local decisions made by distributed

controllers respect global system constraints. Using Model-

Driven Engineering and the MARTE standard, adaptation

aspects were integrated in a whole RSoC design flow at

different design levels (application, architecture, allocation and

deployment). Generated code was then integrated into FPGA

tools for physical implementation. FPGA implementations

allowed to validate the distributed control and to show that

it is more flexible, reusable and scalable than the centralized

one. As future works, we plan to explore different control

approaches such as those based on optimization problems

in order to target a wider range of control objectives and

reconfigurable systems. The MARTE profile can also be

extended to cope with further control needs allowing, for

instance, to model control in form of contracts and generate

the coordinator automatically. The MARTE standard is being

reworked is the ANR project FAMOUS [14], which is more

dedicated to reconfigurable systems compared to Gaspard2,

and in which we plan to integrate our work.

VII. ACKNOWLEDGMENT

The authors would like to thank the ANR project FAMOUS

for the financial support of this work.

REFERENCES

[1] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford, “Invited
paper: Enhanced architectures, design methodologies and cad tools for
dynamic reconfiguration of xilinx fpgas,” in FPL, 2006, pp. 1–6.

[2] E. Mainsah, “Autonomic computing: the next era of computing,” pp.
2–3, 2002.

[3] OMG, “Portal of the model driven engineering community,”
http://www.planetmde.org.

[4] ——, UML Superstructure, 2009.
[5] ——, UML Profile for MARTE: Modeling and Analysis of Real-Time

Embedded Systems, 2011.
[6] C. Trabelsi, S. Meftali, and J.-L. Dekeyser, “Semi-distributed control for

fpga-based reconfigurable systems,” in 15th Euromicro Conference on

Digital System Design, 2012.
[7] J. Vidal, F. de Lamotte, G. Gogniat, J.-P. Diguet, and P. Soulard,

“Uml design for dynamically reconfigurable multiprocessor embedded
systems,” in Proceedings of the Conference on Design, Automation and

Test in Europe, ser. DATE ’10, 2010.
[8] I. R. Quadri, S. Meftali, and J.-L. Dekeyser, “Integrating mode automata

control models in soc co-design for dynamically reconfigurable fpgas,”
in International Conference on Design and Architectures for Signal and

Image Processing, ser. DASIP ’09, 2009.
[9] O. Labbani, J.-L. Dekeyser, P. Boulet, and E. Rutten, “Introducing con-

trol in the gaspard2 data-parallel metamodel: Synchronous approach,”
2005.

[10] I. R. Quadri, A. Gamatie, P. Boulet, and J.-L. Dekeyser, “Modeling of
configurations for embedded system implementations in marte,” in 1st

workshop on Model Based Engineering for Embedded Systems Design

- Design, Automation and Test in Europe, ser. DATE ’10, 2010.
[11] S. Pillement and D. Chillet, “High-level model of dynamically recon-

figurable architectures,” in Conference on Design and Architectures for

Signal and Image Processing, ser. DASIP ’09, 2009.
[12] R. Gumzej, M. Colnaric, and W. A. Halang, “A reconfiguration pattern

for distributed embedded systems,” Software and System Modeling,
vol. 8, pp. 145–161, 2009.

[13] A. Gamatie, S. L. Beux, E. Piel, R. B. Atitallah, A. Etien, P. Marquet,
and J.-L. Dekeyser, “A model driven design framework for massively
parallel embedded systems,” ACM Transactions on Embedded Comput-

ing Systems (TECS), vol. 10, 2011.
[14] S. Guillet, F. de Lamotte, E. Rutten, G. Gogniat, and J.-P. Diguet,

“Modeling and formal control of partial dynamic reconfiguration,”
Reconfigurable Computing and FPGAs, International Conference on,
vol. 0, pp. 31–36, 2010.

[15] F. Maraninchi and Y. Remond, “Mode-automata: a new domain-specific
construct for the development of safe critical systems,” 2003.

