A New Bound on the Minimum Distance of Cyclic Codes Using Small-Minimum-Distance Cyclic Codes

Abstract : A new bound on the minimum distance of q-ary cyclic codes is proposed. It is based on the description by another cyclic code with small minimum distance. The connection to the BCH bound and the Hartmann--Tzeng (HT) bound is formulated explicitly. We show that for many cases our approach improves the HT bound. Furthermore, we refine our bound for several families of cyclic codes. We define syndromes and formulate a Key Equation that allows an efficient decoding up to our bound with the Extended Euclidean Algorithm. It turns out that lowest-code-rate cyclic codes with small minimum distances are useful for our approach. Therefore, we give a sufficient condition for binary cyclic codes of arbitrary length to have minimum distance two or three and lowest code-rate
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00710290
Contributeur : Alexander Zeh <>
Soumis le : mercredi 29 août 2012 - 11:26:14
Dernière modification le : dimanche 25 février 2018 - 17:16:01
Document(s) archivé(s) le : vendredi 16 décembre 2016 - 08:21:23

Fichiers

ZehBezzateev_BoundMinimumDista...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00710290, version 3
  • ARXIV : 1206.4976

Collections

Citation

Alexander Zeh, Sergey Bezzateev. A New Bound on the Minimum Distance of Cyclic Codes Using Small-Minimum-Distance Cyclic Codes. Designs, Codes and Cryptography, Springer Verlag, 2012, pp.229-246. 〈hal-00710290v3〉

Partager

Métriques

Consultations de la notice

223

Téléchargements de fichiers

189