
HAL Id: hal-00710623
https://inria.hal.science/hal-00710623

Submitted on 22 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

R-MOM: A Component-Based Framework for
Interoperable and Adaptive Asynchronous Middleware

Systems
Jonathan Labéjof, Antoine Léger, Philippe Merle, Lionel Seinturier, Hugues

Vincent

To cite this version:
Jonathan Labéjof, Antoine Léger, Philippe Merle, Lionel Seinturier, Hugues Vincent. R-MOM: A
Component-Based Framework for Interoperable and Adaptive Asynchronous Middleware Systems.
First International Workshop on Service and Cloud Based Data Integration (SCDI) at the 16th IEEE
International EDOC Conference, Sep 2012, Beijing, China. pp.204-213, �10.1109/EDOCW.2012.35�.
�hal-00710623�

https://inria.hal.science/hal-00710623
https://hal.archives-ouvertes.fr


1

R-MOM: A Component-Based Framework for

Interoperable and Adaptive Asynchronous

Middleware Systems
Jonathan Labéjof∗†, Antoine Léger∗, Philippe Merle†, Lionel Seinturier†‡ and Hugues Vincent∗

∗THALES COMMUNICATIONS & SECURITY

Massy, France

Email: firstname.lastname@thalesgroup.com
†Univ. Lille 1 & Inria

LIFL UMR CNRS 8022

Villeneuve d’Ascq, France

Email: firstname.lastname@inria.fr
‡IUF

Abstract—Systems of systems (SoS) are composed of sub-
systems such as Distributed, Information Technology, Real-Time
and Embedded systems. Among distributed systems, Message-
Oriented Middleware (MOM) is used by SoS in order to share
status information from system elements (component, service,
etc.). Often several different MOM technologies are used in one
SoS, then interoperability between these MOM is a requirement.

In this paper, we present R-MOM, a component-based frame-
work for interoperable and adaptive asynchronous middleware
systems.

R-MOM provides a reflective component architecture where
one MOM functionality is embedded into one component which
is modifiable at run-time. Loosely-coupling between reflective
components permits to get a fined-personalization of MOM
functionalities, such as protocol, encoding rule, Quality of Ser-
vices (QoS) processing, data production/consumption, descrip-
tion, routing and filtering. Interoperability between integrated
protocol functionalities is a consequence of architecture design.

R-MOM interoperates with different kinds of MOM, from
distributed message queues (Java Message Service, Advanced
Message Queueing Protocol, 0MQ) to content-based pub-
lish/subscribe systems (OMG’s Data Distribution Service). This
paper describes the architectural concepts of the R-MOM frame-
work, discusses its implementation, and evaluates its interoper-
ability capability.

Keywords-Adaptability, Distributed systems, Asynchronous
communication, Message Oriented Middleware (MOM), Reflec-
tive Component Model, Reconfigurability, Interoperability.

I. INTRODUCTION

Asynchronous communication paradigms are widely used

by distributed systems as a solution for loosely coupling

software entities. Loose coupling brings several interesting

properties such as flexibility and ability to take into account

new system and application requirements.

Among asynchronous communication paradigms, Message-

Oriented Middleware (MOM) is commonly used in distributed

systems. It consists to transmit a message (or data with

context information such as sending date or routing property)

from a producer to one or many consumers. The producer

specifies logical (topic) or physical (queue) targets from where

consumers are notified when data is available (push mode)

or request data (pull mode). This communication model is

flexible since producers and consumers are independent from

each others.

Actually, a plethora of MOM exists. Differences come

from the functionalities which are specific to the applica-

tion domains they target (e.g. message distribution, event-

driven solutions [24], [20], [10]). For example, OMG’s Data

Distribution Service (DDS) [16] specifies a publish/subscribe

distribution model with Topics and is dedicated to Real-

Time and Embedded systems (RT-E). Java Message Service

(JMS) [7] specifies both logical and physical targets. But the

main differences come from API (creation of producers and

consumers) and quality of services (QoS). For example, DDS

provides twenty one QoS parameters to configure producers

and consumers. JMS, for its part, defines ten QoS parameters

dedicated to IT systems with six of them associated with

messages and four with producers.

The difference between implementations becomes an issue

when a system uses different ones in order to exchange

common structured data. For example, Systems of systems

(SoS) are composed of sub-systems such as IT, RT-E and

distributed systems. SoS require MOM platforms from those

sub-systems in order to exchange system elements status

information. Therefore, SoS have to ensure data value from

all used different MOM. Even if most MOM implement same

functionalities, their protocols are different, and they are not

interoperable amongst each other. That’s why interoperability

is a requirement in such global systems.

Some MOM solutions address interoperability at API level

in describing a specification related to the domain (JMS for IT

systems, DDSI/DDS for RT-E systems [18]), with limitations

about QoS. AMQP specification [3] provides interoperability

at the protocol level, in order to keep safe messages content

whatever the APIs are, but does not ensure QoS processing. In

addition much MOM properties such as message description



2

and encoding rules are static. Furthermore, AMQP does not

provide an API where MOM functionalities are flexible, and

so, is not adaptive to new MOM requirements.

In this paper, we present R-MOM, a component-based

framework for interoperable and adaptive asynchronous mid-

dleware systems.

Our approach provides the smallest architecture in order

to ease its learning and makes interoperability between asyn-

chronous middleware system functionalities. The R-MOM

architecture is composed of six families of components corre-

sponding to six MOM functionalities expected by MOM users,

such as message production/consumption/sending/reception,

data serialization/encoding, routing, description, filtering and

QoS processing. Those components are declined to non-

functional and binding components. An Envelope inspired

from the AMQP Envelope, with lighter and more flexible

capabilities, is transported between components and over

the network, with information related to messages, encoding

and non-functional properties. R-MOM makes interoperability

between ten asynchronous communications technologies, and

simplifies the configuration and execution phases in focusing

on sending and reception of data.

Furthermore, we present a use case using UDP, DDS, JMS

and AMQP in a SoS. In order to compare R-MOM with usual

architectures, we design the SoS architecture with and without

R-MOM. Both SoS architectures are equivalent at the level

of components, and show that R-MOM is portable in legacy

systems. At run-time, R-MOM is currently the best solution

to address adaptation through four points:

1) R-MOM permits to personalize MOM functionalities

independently from each others.

2) R-MOM saves context information whatever the nature

of adaptation tasks to apply on asynchronous communi-

cation components.

3) R-MOM avoids system unavailability time during asyn-

chronous communication changes.

4) R-MOM execution time is negligible compared to exist-

ing solutions.

This paper is divided into seven sections. Section II de-

scribes the R-MOM architecture. Section III deals with R-

MOM bindings to three concrete MOM solutions. Section IV

presents an implementation of R-MOM with the FraSCAti

platform [21]. Section V evaluates a concrete use case sce-

nario in comparing architecture choices and execution times,

between R-MOM and existing MOMs. Section VI compares

R-MOM with related works about interoperability. Section VII

summarizes the contribution and discusses about perspectives.

II. THE R-MOM ARCHITECTURE

R-MOM provides a component-based framework for inter-

operability between asynchronous distributed system function-

alities, i.e. data, functional and non-functional interoperability.

Interoperability has a lot of definitions, depending on appli-

cation business and concerned abstraction levels.

For example, James A. O’Brien and George M. Marakas

give this definition: ”Being able to accomplish end-user ap-

plications using different types of computer systems, operating

systems, and application software, interconnected by different

types of local and wide area” [14].

In this paper, we focus on interconnection with asyn-

chronous middleware paradigms. Therefore, the interoper-

ability we target consists in translating one communication

technology to another one. Simple and smart adapters [25]

exist for that, respectively understood as direct and indirect

transformations, and both with strengths and weaknesses.

A direct transformation or simple adapter consists in con-

verting one communication operation call to another one. Be-

cause the call is specific, request processing time is the fastest.

However this solution is not adaptable to other communication

framework even if it is based on the same communication

paradigm. Therefore, if both technologies have to be changed,

all communication paradigm information context will be lost

at the operational level.

An indirect transformation or smart adapter consists in

using an intermediate common language, based on the model

communication paradigm. This approach requires to specify

a communication standard able to handle all communication

paradigm capabilities, and to perform optionally additional

processings as specific quality of services. This smart adapter

should not be replaced during the system lifespan, therefore

it must be as dynamic and reconfigurable as possible. Result-

ing request processing time is much longer than the direct

transformation, and the memory footprint is more important

because it imposes to use the common language as a third

technology and simple adapters to communicate with, instead

of one simple adapter.

Both simple and smart adapters have strengths and weak-

nesses, therefore their use depend on system requirements.

Real-Time and Embedded systems (RTE [11]) (such as sensors

networks [22], [8]) aim to minimize memory consumption and

to improve efficiency, whereas IT systems wish to process

a large amount of received data. Therefore, simple adapters

are commonly used in system nodes solicited only for data

sending, and smart adapters are commonly used in system

nodes which are communication intersections, i.e. both data

sender and receiver (such as in peer-to-peer architectures [19]).

We propose in this paper a smart adapter for interoperability

of message content and context (description, QoS). We identify

a MOM as the set of three logic parts; (i) the architecture based

on the MOM paradigm extended with specific features, (ii)

the message or the data interesting the application (same for

all MOMs paradigm) and (iii) the message context containing

non-functional properties related to the message. These parts

help us to define the common features shared between MOMs.

The result is the architecture of MOM functionalities but also

messages and their contexts.

In the remainder of this section, we present our interop-

erable architecture with MOMs, in two parts. First, (i) with

system nodes architecture as a set of components in charge

of processing Envelopes (see subsection II-A). Then (ii) and

(iii) with the concept of the Envelope which is responsible

for sending message information at the transport level (see

subsection II-D).

Figure 1 represents the interfaces related to the R-MOM

API, and is described in the remaining of this section.



3

envelope_processing

process(Envelope): int

IEnvelopeProcessor

setMessageToEnvelope(
MessageToEnvelope)

IEnvelopeProducer

setEnvelopeToMessage(
EnvelopeToMessage)

IEnvelopeConsumer

getMessage(Envelope): Object

IEnvelopeToMessage
newEnvelope(Object, 
Map<String, Object>): 
Envelope

IMessageToEnvelope

setEnvelopeProcessor(EnvelopeProcessor)

IBoundEnvelopeProcessor

getEnvelopeProcessor()

getMessageToEnvelope()

getEnvelopeToMessage()

name(): String

Protocol

checkProtocol(Protocol): 
boolean

IProtocolChecker
name():String
process(Envelope, 
EnvelopeProcessorListener)
unregister(Envelope)

IEnvelopeQoSProcessor

setEnvelopeQoSProcessors(
EnvelopeQoSProcessor[])

IEnvelopeQoSManager

IEnvelopeFilter

connectTo(Protocol)
disconnect()

IEnvelopeSender

connectedProtocol()

bindTo(Protocol)
unbind()
connect(Protocol[])
disconnect(Protocol)

IEnvelopeReceiver

boundProtocol()

connectedProtocols()

getEnvelopeQoSProcessors()

setEnvelopeConsumers(EnvelopeConsumer[])

IEnvelopeConsumerManager

getEnvelopeConsumers()

*

0..1 0..1

{ordered}

*

0..1

0..1

*

0..1

getEnvelopeFilter()

0..1

message

produce(Object message, 
Map<String, Object> nfps, byte[] 
dataApplication): int
produce(Envelope): int

<<interface>>
IMessageProducer

read(int, Collection<Envelope>): int
take(int, Collection<Envelope>): int
take(long, TimeUnit): Envelope
setMessageConsumerListener(ConsumerListener)

<<interface>>
IMessageConsumer

envelopeAvailable(MessageConsumer, Envelope)

IMessageConsumerListener

getMessageConsumerListener()

0..1

Fig. 1. API of R-MOM components – UML class diagram

A. Core processing architecture

An Envelope is a generic container for message value and

context, and is processed by a set of components which

represent a composition of MOM functionalities, and named

a R-MOM core node.

1) R-MOM concepts: We design the R-MOM architecture

into analyzing six MOM capabilities and in providing an adap-

tive version for each one by using one reflective component

per functionality. Coupling between functionalities depends on

component bindings, and permits to get as much flexibility as

possible.

In a view where a system is considered through its func-

tionalities, if all functionalities respect one property P , then

the whole system also respects P . Therefore, if R-MOM

corresponds to an assembly of adaptive functionalities, then

R-MOM is adaptive too. Now, let’s see how to have such

an assembling of MOM functionalities, and such an adaptive

property for all these functionalities.

Figure 2 represents an UML2.x class diagram of R-MOM

components with respective MOM capabilities. Their descrip-

tions follow:

(P) The message production/consumption protocol is in

charge of defining a policy about the means to

exchange messages over the network or between

applications.

(D) The message description identifies the message struc-

ture.

(C) The message transformation is in charge to

(de)serialize a message depending on (D) and (P).

(Q) The Quality of services processing process all Enve-

lope non-functional properties.

(F) The Message content filters that we assimilate to (Q)

in our architecture view but specific to consumption

tasks.

(B) Message distribution is responsible for message rout-

ing policy.

A such architecture simplifies (re-)configuration in focusing

on functionalities to use. For example, several specialists can

apply their expertise on a R-MOM system without impacting

other specialists works. For example, message transformation

does not impact message distribution.

Envelope
QoS

Manager

Envelope
Consumer
Manager

Envelope
QoS

Processor

Message
To

Envelope

Envelope
To

Message

Envelope
Filter

Envelope
Consumer

Envelope
Producer

*

message

application network Envelope

Processor

Bound

Envelope

Processor

*

<<component>>

<<component>>

<<component>><<component>>

<<component>>

<<component>> <<component>>

<<component>>
<<component>>

<<component>>

message

application network

B - distribution
F - filter Q - quality of service

P - protocolD - message description
C - conversion

B

CC DD F

PP Q

MOM capabilities

Fig. 2. R-MOM concepts - UML component diagram

In Figure 2, we represent a R-MOM core node. All plain

line boxes are components with only one provided interface

in order to simplify the understanding of the architecture.

Interfaces are defined in Figure 1. Interface names start with I



4

and are implemented by the corresponding component (for

example, an EnvelopeProducer component implements the

IEnvelopeProducer interface). Relationships have the same

semantics, than in a UML2.x component diagram except for

dotted line relationships which denote a message reception

from an application or the network. The main idea is to process

an Envelope into a R-MOM node, which is a composition

of R-MOM components. Two main parts concern Bound-

EnvelopeProcessor and EnvelopeProcessor components. Both

components are the minimum required by R-MOM to process

data.

Additional components are for binding component related to

the communication technology the system needs to interoper-

ate with, or the quality of service, which needs to be enforced.

We now detail the way Envelope production, QoS process-

ing and consumption work.

2) Envelope production: An EnvelopeProducer gets mes-

sages from an application (thanks to a IMessageProducer

interface, see subsection II-B) or from the network (thanks

to a binding component, see section III). It requires at most

one MessageToEnvelope in charge to get an Envelope related

to message information (value, QoS and application data), and

requires an EnvelopeProcessor, among one EnvelopeQoSMan-

ager or one EnvelopeConsumer.

3) QoS processing: An EnvelopeQoSManager implements

both IBoundEnvelopeProcessor and IEnvelopeProcessor inter-

faces. It is in charge to process message QoS thanks to many

referenced EnvelopeQoSProcessors bound via a plug-in design

pattern. When it receives an Envelope, it resolves the QoS

to process. In the most dynamical case (if QoS discovery is

required) EnvelopeQoSProcessor names are used to find which

components are able to process QoS.

An EnvelopeQoSProcessor called to process a QoS has to

get the value, deserializes it if necessary, then updates the

value and serializes it before put it in the Envelope for future

EnvelopeQoSProcessor calls and make envelope serialization

easier.

4) Envelope Consumption: An EnvelopeConsumer can fil-

ter an Envelope and gets an embedded message thanks respec-

tively to EnvelopeFilter and EnvelopeToMessage components.

Envelopes are sent to an application (thanks to push and pull

methods, see subsection II-B) or to the network (thanks to

an integrated communication technology which like to inter-

operate with other ones, see section III). As a specialization

of the EnvelopeConsumer, the EnvelopeConsumerManager is

in charge of routing locally a message to EnvelopeConsumers

with specific distribution policies1. For efficiency reasons, it

is able to filter an Envelope and to deliver messages to many

EnvelopeConsumers.

5) R-MOM node interfaces: Package envelope processing

illustrated in Figure 1 represents all interfaces in charge of

processing an Envelope.

Interfaces are IEnvelopeSender, IEnvelopeReceiver, Proto-

col and IProtocolChecker. Both IEnvelopeSender and IEn-

velopeReceiver are used respectively to send and to receive

serialized Envelopes from the network. An IEnvelopeReceiver

1”one to all”, ”one to one”, etc...

inherits from IEnvelopeProducer, so its task is to get an Enve-

lope buffer from the network, to convert it to an Envelope and

to give the result to its IEnvelopeProcessor. IEnvelopeSender

inherits from IEnvelopeConsumer, so, its business is to get

Envelope, convert it into an array of bytes, and send it to

the network. The Protocol interface enables to specialize the

network protocol used by both IEnvelopeSender and IEnvelop-

eReceiver2. Therefore, both inherit from the IProtocolChecker

interface which can check if a Protocol can be processed or

not. An EnvelopeReceiver component can be bound to one

Protocol, and connected to many Protocols, in order to receive

messages from many sources. An EnvelopeSender component

can be connected to a target using only one Protocol.

Protocols are used to identify system node exchanges, and

to ease adaptation from design-time to run-time. Architects

and final users can use a BindingFactory component in order

to register at run-time new R-MOM bindings and create

related EnvelopeSender, EnvelopeReceiver and Protocol, from

an URI. Parameterizing and to evolving a R-MOM node

becomes as simple as to use URIs, whatever complex archi-

tecture provided by integrated asynchronous communication

technologies (see section III). For example, 0MQ allows to

specify a binding through the TCP transport layer with the

simple URI value ”tcp:127.0.0.21:8080” which indicates that

a message consumer or a message producer aims to be bound

to the IP address ”127.0.0.21” and the port 8080. In the

case of R-MOM, the value ”tcp:127.0.0.21:8080” creates an

EnvelopeSender with the same URI as given in the 0MQ

example, and the text ”jms:topic:my topic” indicates to R-

MOM to create a component bound to the JMS topic named

”my topic”.

B. Message production/consumption generic interfaces

Message production and consumption respect push and pull

modes, thanks to IMessageProducer and IMessageConsumer

interfaces (see Figure 1) which inherit respectively from

IEnvelopeProducer and IEnvelopeConsumer interfaces. The

IMessageProducer produces message with context information

(nfps is non-functional properties) or directly Envelope. The

IMessageConsumer permits to use both pull and push modes,

i.e., to be notified about Envelope reception with the IMes-

sageConsumerListener, or to take and read manually a set of

received Envelopes. MessageProducer and MessageConsumer

are components which implement respectively IMessagePro-

ducer and IMessageConsumer.

C. Interoperability and bindings

In order to interoperate with existing MOM platforms, we

provide Protocol and Interface bindings as a way to bind a

MOM platform to R-MOM components. An example with 3

existing MOM platforms is given in Section III.

Protocol binding permits to produce or to consume

messages with bound technologies, in keeping a reference to

a related entity. This binding is a specialization of R-MOM

2For example, a ”socket” protocol is used to exchange bytes over UDP/TCP
transport layers, containing an URI. A ”JMS” protocol will be used to realize
JMS exchanges thanks to a destination name and a type (Topic or Queue).



5

EnvelopeReceiver and EnvelopeSender components (see

sub-section II-A5). It can be configured with an URI in order

to ease its use with existing technologies.

Interface binding permits to ease integration of R-MOM in

legacy systems. This binding is a component which provides

the same interface as proposed by the bound technology,

but calls are redirected to R-MOM MessageConsumer and

MessageProducer components (see the sub-section II-B ”mes-

sage production and consumption”). The used bridge design

pattern with bound technology interfaces permits to delegate

intermediate processing to R-MOM components, and does not

imply that we use the bound technology to consume or to

produce related messages.

Finally, the bound technology model can be respected

thanks to an optional component binding from an Interface

binding to a Protocol binding. Thus, a reference to a bound

technology element can be accessible from an Interface bind-

ing.

D. Envelope structure and message context

This sub-section deals with interoperability and adaptation

at the transport level and describes the structure of the en-

velope, such as a generic container for data value and data

context information. The envelope is inspired from AMQP [3]

which is a specification for interoperability between MOM at

the transport level. The AMQP envelope is inspirited from

the SOAP envelope, but it provides a binary format instead

of the SOAP envelope XML format. Our envelope provides a

structure more flexible and where data encoding size is smaller

than the one from AMQP.

The Envelope structure is composed of three parts: a Dic-

tionary of couples of quality of services name and value, the

message value with information related to its serialization, and

a last buffer which can be used by the application in order to

extend Envelope data.

The package envelope from Figure 3 represents interfaces

related to Envelope and MessageDescription, once the Enve-

lope has been deserialized by the transport layer. The Envelope

contains one message and one message buffer in order to be

deserialized by other deserializers.

envelope

name(): String
arraySize(): int

MessageDescription

description(): String

DescribedElement

serializerId(): string
major(): int
minor():int
revision():int
NFP(): Map<String, Object>

+message: Object
+messageBuffer: byte[]
+dataApplication: byte[]

Envelope

getMessageDescription()0..1

fields() *

Fig. 3. Envelope API - UML class diagram

Even if the R-MOM serialization mechanism depends on

envelope senders, generic informations exist in order to iden-

tify envelope parts from a serialized envelope.

Table I shows the structure of the R-MOM envelope. It is

divided into three parts, header, body and footer, which contain

respectively quality of services, message value and application

data.

TABLE I
SERIALIZED ENVELOPE CONTENT

PART PROPERTY SIZE (Bytes)

HEADER body position ≥ 1

serializer Id ≥ 0

QoS ≥ 0

BODY foot position ≥ 1

serializer Id ≥ 4

Message ≥ 0

FOOTER Application Data ≥ 0

In all parts described below, integer parameterized values

are stored using the ProtoBuf [1] varint method to serialize

integer values. This method allows to vary the buffer length

depending on the integer value. It is not restricted to 32 or 64

bytes, and lesser or equals to the default serialization length,

and independent from infrastructures. Therefore it is a good

choice in order to save as much bytes as possible from the

bandwidth consumption related to envelope size (instead of

AMQP which constraints integer values to be coded on 32 or

64 bytes). All arrays of bytes are stored starting with a varint

corresponding to their length. In the remainder of this section,

we call varint the serialized type for an integer, varintX the

serialized type for an integer coded on X bits and varbytes

the serialized type for an array of bytes starting with a varint

which is equals to the buffer length. Finally, if writing the

message length, the envelope length is equals to 6 bytes, which

is less than an int64 serialized by default serializers used by all

existing MOM solutions, and less than the 8 header bytes from

AMQP frames where the size of non-functional properties is

restricted to at most 255 ∗ 4 − 8 = 1012 bytes, and non-

functional properties and message encoding are imposed (and

not evolvable).

1) Header: The head part contains two properties. First, the

body position which is an absolute varint index location cor-

responding to the body beginning location in the buffer used

to read the message content without parsing the header, and

serializer Id for QoS. The serializer Id permits to deserialize

QoS, respecting a logic based on dynamic, or static processing.

A dynamic solution allows property types discovery, but costs

in process execution time and buffer length:

0: most dynamic solution, the buffer contains couples

of (varbytes, varbytes), where key and value cor-

respond respectively to property name and value.

1: between dynamic and static solutions, the buffer con-

tains couples of (varint, varbytes), where keys are

stored as integer values, and have to be established

between envelope sender and receiver.

≥ 2: full static solution, a list of varbytes, used with

predefined and static QoS.

2) Body: The body part contains two properties, foot po-

sition and serializer Id, which correspond respectively to the



6

foot offset in the buffer, and to the message serializer identifier

coded on at least 4 bytes for 1 varbytes and 3 varints. The first

one corresponds to a string identifier, for example ”PBF” for

ProtoBuf. The next 3 ones are related to the serializer version,

with three major, minor and revision identifiers.

3) Footer: Footer content is application specific. Therefore,

there is not R-MOM rules on this buffer space.

III. INTEGRATION OF EXISTING MOM PLATFORMS

THROUGH BINDINGS

In this section, we describe how R-MOM interoperates

with JMS, RabbitMQ/AMQP and DDS. The interoperability

is ensured with the binding approach (see Subsection II-C),

an implementation of the Protocol interface (see Subsection

II-A5) and data to Envelope transformation.

A. JMS - Java Message Service

JMS [7] is a MOM specification for Java programming. A

common API exists in order to make possible the portability

of a JMS-based application on top of different JMS implemen-

tation. The entry point provided by the ConnectionFactory is

the only feature specific to each JMS engine.

We provide an abstract component model for using JMS in

R-MOM. We rely on a DestinationFactory component in order

to run this model. This component embeds a JMS Connection,

and is able to create JMS destinations (Topic and Queue),

JMS MessageConsumers, JMS MessageProducers, and JMS

Messages. We validate our JMS binding model with the

integration of JORAM3, ActiveMQ4 and OpenJMS5, which

are three existing JMS implementations.

JMS Interface binding components provide JMS Message-

Producer and MessageConsumer interfaces. JMS protocol

binding components use a JMS BytesMessage6 in order to save

or get a serialized Envelope. All JMS quality of services (QoS)

from JMS messages are converted to R-MOM QoS values and

saved in the Envelope, but only Envelope QoS which are JMS

QoS too, are stored into JMS messages during JMS message

distribution.

Respecting the JMS specification, the implementation of the

Protocol interface uses two fields, a destination type (Queue

or Topic), and a destination name.

An example of the interoperability between JMS and Ac-

tiveMQ is detailed in the Subsection IV-B.

B. DDS - Data Distribution Service

DDS [16] is an OMG specification, for a publish/subscribe

data-oriented model. Data description is possible thanks to an

IDL7 file. Six concepts are required to publish or subscribe

data: a DomainParticipant, a Publisher, a Subscriber, a Topic,

a DataWriter and a DataReader. A DomainParticipant be-

longs to a domain in order to notify a DDS system that we

3http://joram.ow2.org/
4http://activemq.apache.org/
5http://openjms.sourceforge.net/
6JMS message containing an array of bytes
7Interface Description Language.

want to participate over a domain. A Topic is the information

related to a data type. A DataWriter depends on both Publisher

and Topic, and is in charge to write data to its Publisher.

A DataReader depends on both Subscriber and Topic, and

reads data from its Subscriber (common quality of services to

DataWriter and DataReader must match in order to perform

data send).

DDS interface binding components provide DataWriter and

DataReader interfaces. DDS protocol binding components

contains optional references to DomainParticipant, Publisher,

Subscriber and Topic in order to respect the DDS entity model.

We respect data description in defining the Envelope with IDL

files. The message content type is of CORBA type ”any”. A

default topic is known over the system, able to be interested

by all of these untyped Envelope. Users have to specialize the

type of the embedded message into the Envelope in order to

not be subscribed to all sent Envelopes.

The DDS Protocol interface implementation contains a

domain name, a list of partition names, a topic name and

(optionally) quality of services related to publication or sub-

scription operations, and optionally, is able to create locally

related entities (DomainParticipant, Publisher, Subscriber and

Topic). Therefore, with the same result and control over the

DDS API, our solution simplifies its use and configuration, in

focusing on data distribution, and in using the simple DDS

Protocol with three fields instead of manage the lifespan of

five entities.

C. RabbitMQ/AMQP

AMQP is a specification of the Advanced Message Queuing

Protocol [3]. It focuses only on message exchange protocol,

and does not provide any API, contrary to JMS and DDS.

RabbitMQ is an AMQP compliant solution. In AMQP, only

a Channel and a ConsumerListener are required to exchange

messages. A Channel declares or deletes ”Exchange” and

”Queue” brokers between message consumers and producers.

A Channel also sends arrays of bytes (no message serialization

here) to an ”Exchange”, or to a ”Queue”, and a ConsumerLis-

tener receives data only from a ”Queue”.

RabbitMQ interface binding components implement Chan-

nel interface for data producing, and require ConsumerListener

interface in order to receive data. RabbitMQ protocol binding

components contain a Channel. RabbitMQ Protocol interface

implementation contains only one field which corresponds to

the channel name, as an ”Exchange” for an EnvelopeSender

and a ”Queue” for an EnvelopeReceiver.

IV. IMPLEMENTATION

This section presents our R-MOM implementation, written

in Java, and using FraSCAti [21] [2]. FraSCAti is a reflec-

tive implementation of the Service Component Architecture

(SCA) specification [13]. Therefore, R-MOM is configurable

thanks to platform independent model configuration files (SCA

composite files), and uses reconfigurable interface bindings.

The R-MOM implementation is available in the OW2 SVN

repository at the address: http://tinyurl.com/6v6hsqa.



7

All interfaces presented in Subsection II-A5 such as the

JMS API and component implementations are defined in a

project independent from FraSCAti. Component are deployed

thanks to Injection of Control (IoC) [6] mechanisms provided

by FraSCAti coupled with SCA composite configuration files,

in preserving R-MOM source codes from component model

specificities.

A. Supported MOM technologies

Ten asynchronous communication technologies are sup-

ported by our implementation: JGroups8, JBossMQ9, JO-

RAM10, ActiveMQ11, OpenJMS12, RabbitMQ13, Open-

Splice14, 0MQ15, KryoNet16, and Esper17. UDP and TCP

are also supported for fast and simple exchanges. Even if

KryoNet and Esper are not stricto sensus MOM, we reuse

their send/receive API and develop bindings (see section III)

in order to exchange data with all of them.

Three serialization libraries are reused through Envelope-

ToMessage and MessageToEnvelope components: Java Seri-

alization, ProtoBuf18 (hosted by the Protostuff19 library) and

Kryo20.

B. ActiveMQ/JMS example

Figure 4 is an example of an SCA configuration for a R-

MOM core node with ActiveMQ/JMS binding components.

In this SCA composite, there are two JMS binding com-

ponents (”producer” in lines 8-13 and ”sender” in lines 18-

23), one JMS DestinationFactory component (”destinationFac-

tory” in lines 4-7, see Subsection III-A) and two convertor

components (”jmsMessageToEnvelope” in lines 14-17 and

”envelopeToBuffer” in lines 24-27, see Subsections II-A2 and

II-A4) are defined. The ”producer” component implements

the JMS message producer interface (line 9), and references

the ”jmsMessageToEnvelope” (line 12) and the ”sender” com-

ponents (line 11). ”jmsMessageToEnvelope” converts a JMS

Message to an Envelope. ”sender” uses ”envelopeToBuffer” to

serialize input Envelopes and send them through ActiveMQ

protocol, where JMS destinations are initialized thanks to the

”destinationFactory” component (lines 4-7) (which is the only

one component related to ActiveMQ, other ones use JMS

API in order to initialize their properties). Finally, only the

”producer” component is promoted by the composite (line 3).

8http://www.jgroups.org/
9http://www.jboss.org/
10http://joram.ow2.org/
11http://activemq.apache.org/
12http://openjms.sourceforge.net/
13http://www.rabbitmq.com/
14http://www.opensplice.com
15http://www.zeromq.org/
16http://code.google.com/p/kryonet/
17http://esper.codehaus.org/
18http://code.google.com/p/protobuf/
19http://code.google.com/p/protostuff/.
20http://code.google.com/p/kryo/

Fig. 4. SCA R-MOM core node composite - JMS interface/protocol binding
message producer without QoS processing

V. EVALUATION

We highlight in this section the interoperability capability

efficiency provided by R-MOM compared to existing MOM.

First we present the description of a SoS architecture, then we

compare the design and the execution of this SoS with (i) and

without (ii) R-MOM.

A. Description

Figures 5 presents the SoS architecture. The scenario con-

sists to check activity in a room. A movement sensor (m) and a

video camera (v) send respectively events via UDP and images

via DDS, to an alarm terminal (a). (a) verifies if (m) checks

out movement from the room, and if true, sends information

from sensors with the current date to a Control Terminal (c)

via JMS or AMQP. Finally, (c) processes received information

with a MessageProcessing component in order to fire a critical

or minor alert.

The whole system is deployed on four Linux Ubuntu 11.10

virtual machines, one per sub-system node, over a MacBook

Pro with the MacOSX 10.7.2 operating system installed on the

following architecture; Processor: 3.06 GHz Intel Core 2 Duo,

Memory: 4 GB 1067 MHz DDR3. System clock of virtual

machines is synchronized with the hosted machine. MOM

technologies and R-MOM bindings used are OpenSplice/DDS,

ActiveMQ/JMS and RabbitMQ/AMQP.

B. Comparison

During the design phase, only adapter component imple-

mentations (A) are different in (i) and (ii). R-MOM is used in



8

(i) such as a smart adapter, instead of in (ii) which uses simple

adapters. Therefore, in our architecture view (see Figure 5),

there is no concrete difference between (i) and (ii). In this use

case, R-MOM is portable to legacy systems. At run-time, (i)

provides much possibilities than (ii) detailed in this subsection.

Figure 6 shows the timeline scenario related to our evalu-

ation case, during 1 minute. The goal is to realize different

adaptation tasks. That is to say to modify (D) dynamic

and (S) static properties for all data transmission protocol

(UDP, DDS, JMS and AMQP), and (P) to change of data

transmission protocol (change JMS by AMQP) between (a)

and (c). (D), (S) and (P) are usually done for scalable reasons.

For example, they consist to modify quality of services. (S) is

a redeployment task.

Alarm Terminal

Message 
transformation

Control Terminal

Message 
Reception

Video 
Camera

Movement 
Sensor

UDP

DDS

Message 
Processing

JMS[1]

AMQP
[2](v)

(m)

(a) (c)

Componentmessage transmission (A)Adapterdevice

(A)

(A)

(…) sub-system

Legend

Fig. 5. Architecture of the SoS use case - Security Device processing and
change of MOM at run-time from JMS [1] to AMQP [2]

(m) (a)

(v) (a)

(a) (c)
(a) (c)

UDP

DDS

JMS
AMQP

0s 1mn30s10s 20s 40s 50s
time

(D) (S) (P) (D) (S)

data transmission from (x) 
to (z) with the protocol Y

Legend

Y(x)
(z)

(D) Dynamic (S) Static 
property modification

(P) Protocol 
change

Fig. 6. SoS Timeline - during 1 minute

Before analyzing the micro-benchmarks related to the ex-

ecution time of the adaptation tasks and data transmission,

it is important to understand that (P) brings a consequence

about system availability time. In (i), (P) consists to add

AMQP bindings into adapter components, and so, to avoid

to loose data thanks to JMS bindings. In (ii), (P) consists to

change adapter components, and the consequence is an system

unavailability time which corresponds to component change

time and AMQP starting time.

Let’s see what is the overhead on data transmission intro-

duced by R-MOM, and (P) time in (ii).

Figures 7, 8, 9 and 10 show micro-benchmarks related

to data sending and reception time for each one of data

transmission protocols. Results are an average on 10 sessions

of 10,000 exchanged data, with data size variation: 8B, 512B,

1KB and 32KB.

One general remark is that the R-MOM reconfigurable

component model layer takes from 5 to 15 µs more time to

process a message than direct call to communication layers.

Therefore, in the case of a very fast transport layer such as

UDP which takes about the same time to process sending

Fig. 7. Average time about 10 times 10.000 data sending (-S) and

reception (-R) with UDP and related R-MOM bindings - data of size
8B, 512B, 1KB and 32KB

and reception tasks than R-MOM, UDP is half as long for

data lesser than 1KB (see Figure 7). Otherwise, processing

times depend on data packets serialization size, communi-

cation technology layer complexity and constant component

service call duration. Micro-benchmarks about DDS, JMS and

AMQP (see Figures 8, 9 and 10) ensure this remark. More

data packets serialization size and communication technology

layer complexity increases, more (i) and (ii) processing time

difference decreases. For example, with DDS, the fastest

evaluated MOM solution, time process becomes negligible,

i.e. bindings use time average is sometime lesser than in (ii)

for the DDS micro-benchmark about reception processing time

for data size of 1KB.

Fig. 8. Average time about 10 times 10.000 data sending (-S) and

reception (-R) with DDS and related R-MOM bindings - data of size
8B, 512B, 1KB and 32KB

Table II shows adaptation task durations for (i) and (ii). (i)

is 5 to 300 µs more longer than (ii), because it consists also to

initialize all component layers. As said previously, (P) imposes

system unavailability time only in (ii), i.e. component change

processing time plus deployment time of AMQP components

(about 500 µs for a sender and 2 ms for a receiver).

C. Conclusion

Instead of usual solutions, R-MOM adaptive capabilities

permit to avoid system unavailability time, and to exchange

messages with a negligible overhead inducted from the inter-

operability. Therefore R-MOM is an interoperable and useable

solution for MOM communications in distributed systems.



9

Fig. 9. Average time about 10 times 10.000 data sending (-S) and

reception (-R) with JMS and related R-MOM bindings - data of size
8B, 512B, 1KB and 32KB

Fig. 10. Average time about 10 times 10.000 data sending (-S) and
reception (-R) with AMQP and related R-MOM bindings - data of size
8B, 512B, 1KB and 32KB

VI. RELATED WORK

This section compares R-MOM with related work about

interoperability for MOM solutions. Interoperability compar-

ison is made over three high to low levels: architecture,

business/operational and protocol.

A. At the architecture level

Since 2007, the OSOA Service Component Architecture

(SCA) specification [5] provides an architecture and program-

ming models for distributed systems which have been endorsed

by the OASIS consortium [13]. Even if an OSOA SCA event

specification [4] exists, no implementation is known at the

time of the writing of this paper. However the specification

imposes to use channels which correspond to our couple of

EnvelopeQoSManager and EnvelopeConsumerManager com-

ponents in order to configure local distribution and message

filtering. Adaptive concerns are ensured by binding such as

EnvelopeProducer and EnvelopeConsumer components and

their specialization.

B. At the business/operational level

The OMG’s CORBA Component Model (CCM) specifica-

tion [15] provides communication through Remote Procedure

Call (RPC - facet and receptacle ports) and Event (sources

and sinks). In order to reuse legacy systems or use new

MOM features as realized with large sets of Quality of

TABLE II
AVERAGE TIME IN µs FOR 10 DEPLOYMENT1 OPERATION AND 20
DYNAMIC2 AND STATIC3 PROPERTY MODIFICATIONS FOR MOM

SOLUTIONS AND R-MOM BINDINGS

Kind NODE TYPE DEP1 DYN2 STAT3

UDP

Sender 110 5 15
EnvelopeSender 140 20 30
Receiver 220 5 20
EnvelopeReceiver 260 10 25

JMS

MessageProducer 2212 942 994
EnvelopeSender 2198 970 908
MessageConsumer 3148 1051 960
EnvelopeReceiver 3347 1049 1004

AMQP

MessageProducer 524 16 29
EnvelopeSender 719 17 33
MessageConsumer 2117 1 12
EnvelopeReceiver 2331 20 30

DDS

DataWriter 50 2 45
EnvelopeSender 76 20 62
DataReader 123 5 101
EnvelopeReceiver 155 17 135

Services (QoS) from the OMG’s Data Distribution Service

(DDS), system developers have to develop connectors [17].

They become a new communication means, between CORBA

and the other middleware solutions, but not integrated to the

CORBA event based layer. Even if the business is close, a gap

is inducted from the architecture.

In 2004 [12] presents three interesting approaches about

the use of interoperability in MOM/Event models thanks to

Java CORBA and IIOP as an interoperable communication

protocol, but the system consists to interoperate with event

channels, and not at the level of message consumer and

producer, and neither for quality of services.

DREAM [9] is a component framework for the construction

of reconfigurable MOMs. DREAM and R-MOM are based on

a reflective component model, but DREAM imposes a complex

API in order to manage messages (in recycling messages, and

adding chunks and messages to one message) which is not

required by all MOM platforms. Even if DREAM can use

bindings in order to resolve interoperability, it does not provide

an adaptive structure as the R-MOM Envelope, and the simple

Envelope processing API eases the integration of technology

and adaptation tasks related to specific behaviours.

PolyORB [23], the schizophrenic middleware with multiple

applicative personalities, describes solutions and implementa-

tions able to interoperate with other RPC, MOM or Distributed

Shared Memory models, and keeps safe personality whatever

the used technology. Proposed as a smart adapter, its ”neutral

layer” corresponds to our couple of EnvelopeQoSManager and

EnvelopeConsumerManager components. But request process-

ing is the same for all communication paradigms. Therefore,

this is its strength and weakness, because it does not support

dynamic quality of services processing, message description,

filtering as R-MOM where the corresponding ”neutral layer” is

configurable and reconfigurable at run-time. Data serialization

is not as configurable as in R-MOM, i.e. not concerned by

system requirements in terms of encryption or size content.



10

C. At the protocol level

Unlike previous MOM, the open Internet protocol for busi-

ness messaging AMQP [3] aims to describe a specification

about an interoperable protocol used to exchange messages,

with its contents and additional features. Unfortunately, the

AMQP does not provide evolution for message structure, as

proposed by Google ProtoBuf [1], or about quality of services,

and imposes to use some of them (as persistency for example),

or a maximum which has to be serialized on at most 1012

bytes (see sub-section II-D).

VII. CONCLUSION

This paper presents R-MOM an interoperable and adaptive

component-based framework for asynchronous communica-

tions in distributed systems, from the architecture level to the

transport layer (see Section II). It simplifies complex archi-

tecture imposed by asynchronous communications in focusing

only on sending and reception data (see Section III) and in us-

ing Protocols (see Subsection II-A5). It makes interoperability

between ten different asynchronous communication solutions

(see Section IV). Thanks to memory and efficiency concerns,

R-MOM aims to be applied on several different systems, from

embedded to IT systems. R-MOM is flexible enough to make

enable at run-time with negligible processing time and avoid

system unavailability time (see Section V). Finally, even if

some existing solutions propose interoperability, there is no

solution as complete as R-MOM in terms of interoperability

and adaptive concerns (see Section VI).

In order to extend this work on adaptive distributed systems,

we propose three perspectives:

• add a local event layer in order to be notified about

envelope processing errors and keep safe R-MOM node

from inconsistency states related to bound technologies

or QoS processing.

• use R-MOM to provide an introspection mechanism for

distributed systems using reflective components. Also,

all components use R-MOM to notify the whole system

about its status information.

• add connection components in charge to create a solid

communication adapter between R-MOM nodes for se-

curity reasons.

ACKNOWLEDGMENTS

This work is partially funded by the French Ministry of

Higher Education and Research, Nord–Pas de Calais Regional

Council and FEDER through the Contrat de Projets Etat

Region Campus Intelligence Ambiante (CPER–CIA) 2007-

2013 and the grant agreement no. ANR–08–SEGI–010–01

(ITEmIS).

REFERENCES

[1] Google Inc. ProtoBuf - Protocol Buffers - Google’s data interchange
format - http://code.google.com/p/protobuf/. WebSite, February 2011.

[2] ADAM. Inria/FraSCAti home page - http://frascati.ow2.org/.

[3] AMQP Working Group. AMQP Recommendation, August 2010.

[4] Michael Beisiegel, Vladislav Bezrukhov, Dave Booz, Martin Chapman,
Mike Edwards, Anish Karmarkar, Ashok Malhotra, Peter Niblett, Sanjay
Patil, and Scott Vorthmann. SCA - Assembly Model Specification

Extensions for Event Processing and Pub/Sub. OSOA Community, April
2009.

[5] Michael Beisiegel, Henning Blohm, Dave Booz, Mike Edwards, Oisin
Hurley, Sabin Ielceanu, Alex Miller, Anish Karmarkar, Ashok Malhotra,
Jim Marino, Martin Nally, Eric Newcomer, Sanjay Patil, Greg Pavlik,
Martin Raepple, Michael Rowley, Ken Tam, Scott Vorthmann, Peter
Walker, and Lance Waterman. SCA - Assembly Model Specification.
OSOA Community, March 2007.

[6] Dearle, Alan. Software Deployment, Past, Present and Future. In 2007

Future of Software Engineering, FOSE ’07, pages 269–284, Washington,
DC, USA, 2007. IEEE Computer Society.

[7] Mark Hapner, Rich Burridge, Rahul Sharma, Joseph Fialli, and Kate
Stout. Java Message Service Specification. Sun Microsystems, 901 San
Antonio Road, Palo Alto, CA 94303 U.S.A., April 2002.

[8] Mohammad Hassan, Biao Song, and Eui-Nam Huh. A dynamic and
fast event matching algorithm for a content-based publish/subscribe
information dissemination system in Sensor-Grid. The Journal of

Supercomputing, 54:330–365, 2010. 10.1007/s11227-009-0327-0.
[9] Matthieu Leclercq, Vivien Quéma, and Jean-Bernard Stefani. DREAM:

a component framework for the construction of resource-aware, recon-
figurable MOMs. In Proceedings of the 3rd workshop on Adaptive and

reflective middleware, ARM’04, pages 250–255, New York, NY, USA,
2004. ACM.

[10] Shen Lin, François Taı̈ani, and Gordon S. Blair. Facilitating Gossip
Programming with the Gossipkit Framework. In René Meier and Sotirios
Terzis, editors, Distributed Applications and Interoperable Systems 8th

IFIP WG 6.1 International Conference, DAIS 2008, Oslo, Norway, June

4-6, 2008., volume 5053/2008. Springer Berlin / Heidelberg, May 2008.
[11] Jane W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle

River, NJ, USA, 1st edition, 2000.
[12] Gil Seong Na and Sang Ho Lee. Interoperability of Event Service in Java

ORB Environment. In Proceedings of Tenth International Workshop on

Database and Expert Systems Applications, pages 29–33. IEEE, 2002.
[13] OASIS. Service Component Architecture Assembly Model Specification.

OASIS, January 2010.
[14] James A. O’Brien and George Marakas. Introduction to Information

Systems. New York, NY, USA, 2007. McGraw-Hill, Inc.
[15] OMG. Corba Component Model Specification, 4 edition, June 2001.
[16] OMG. Data Distribution Service for Real-time Systems. OMG, January

2007.
[17] OMG. DDS for Lightweight CCM. OMG, February 2009.
[18] OMG. The Real-time Publish-Subscribe Wire Protocol DDS Interoper-

ability Wire Protocol Specification. OMG, January 2009.
[19] Andy Oram, editor. Peer-to-Peer: Harnessing the Power of Disruptive

Technologies. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2001.
[20] Mike Papazoglou and Willem-Jan van den Heuvel. Service oriented

architectures: approaches, technologies and research issues. The VLDB

Journal, 16:389–415, June 2007. 10.1007/s00778-007-0044-3.
[21] Lionel Seinturier, Philippe Merle, Romain Rouvoy, Daniel Romero,

Valerio Schiavoni, and Jean Bernard Stefani. A Component-Based
Middleware Platform for Reconfigurable Service-Oriented Architectures.
Software: Practice and Experience, 42, 2012.

[22] Amirhosein Taherkordi, Frédéric Loiret, Azadeh Abdolrazaghi, Romain
Rouvoy, Quan Le-Trung, and Frank Eliassen. Programming Sensor Net-
works Using REMORA Component Model. In LNCS 6131 (Springer),
editor, 6th IEEE International Conference on Distributed Computing in

Sensor Systems (DCOSS’10), volume 6, pages 45–62, Santa Barbara,
California, USA, June 2010.

[23] Thomas Vergnaud, Jérôme Hugues, Laurent Pautet, and Fabrice Kor-
don. Polyorb: a schizophrenic middleware to build versatile reliable
distributed applications. Reliable Software Technologies-Ada-Europe

2004, pages 106–119, 2004.
[24] W.M.P. and van der Aalst. Formalization and verification of event-driven

process chains. Information and Software Technology, 41(10):639–650,
1999.

[25] P. Wolfgang. Design patterns for object-oriented software development.
Reading, Mass.: Addison-Wesley, 1994.


