Population density models of integrate-and- fire neurons with jumps: Well-posedness

Abstract : In this paper we study the well-posedness of different models of population of leaky integrate- and- re neurons with a population density approach. The synaptic interaction between neurons is modeled by a potential jump at the reception of a spike. We study populations that are self excitatory or self inhibitory. We distinguish the cases where this interaction is instantaneous from the one where there is a repartition of conduction delays. In the case of a bounded density of delays both excitatory and inhibitory population models are shown to be well-posed. But without conduction delay the solution of the model of self excitatory neurons may blow up. We analyze the di erent behaviours of the model with jumps compared to its di usion approximation.
Type de document :
Article dans une revue
Journal of Mathematical Biology, Springer Verlag (Germany), 2012, 〈10.1007/s00285-012-0554-5〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00711492
Contributeur : Jacques Henry <>
Soumis le : lundi 25 juin 2012 - 10:23:07
Dernière modification le : mardi 17 avril 2018 - 11:27:23
Document(s) archivé(s) le : jeudi 15 décembre 2016 - 18:14:34

Fichier

article-revised-V5.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Grégory Dumont, Jacques Henry. Population density models of integrate-and- fire neurons with jumps: Well-posedness. Journal of Mathematical Biology, Springer Verlag (Germany), 2012, 〈10.1007/s00285-012-0554-5〉. 〈hal-00711492〉

Partager

Métriques

Consultations de la notice

340

Téléchargements de fichiers

314