Scalable structural break detection - Archive ouverte HAL Access content directly
Journal Articles Applied Soft Computing Year : 2012

Scalable structural break detection

(1) , (1) , (1, 2) , (3)
1
2
3

Abstract

This paper deals with a statistical model fitting procedure for non-stationary time series. This procedure selects the parameters of a piecewise autoregressive model using the Minimum Description Length principle. The existing chromosome representation of the piecewise autoregressive model and its corresponding optimisation algorithm are improved. First, we show that our proposed chromosome representation better captures the intrinsic properties of the piecewise autoregressive model. Second, we apply an optimisation algorithm, the Covariance Matrix Adaptation - Evolution Strategy, with which our setup converges faster to the optimal fit. Our proposed method achieves at least one order of magnitude performance improvement compared to the existing solution.
Fichier principal
Vignette du fichier
cmaes_for_segmentation_revision_V7.pdf (362.92 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00711843 , version 1 (25-06-2012)

Identifiers

Cite

Tamas Elteto, Nikolaus Hansen, Cecile Germain-Renaud, Pascal Bondon. Scalable structural break detection. Applied Soft Computing, 2012, ⟨10.1016/j.asoc.2012.06.002⟩. ⟨hal-00711843⟩
614 View
319 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More