J. Audibert, R. Munos, and C. Szepesvari, Use of variance estimation in the multi-armed bandit problem, NIPS 2006 Workshop on On-line Trading of Exploration and Exploitation, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00203496

P. Auer, Using confidence bounds for exploitation-exploration trade-offs, The Journal of Machine Learning Research, vol.3, pp.397-422, 2003.

K. Becker, Teaching with games: the minesweeper and asteroids experience, J. Comput. Small Coll, vol.17, pp.23-33, 2001.

M. M. Ben-ari, Minesweeper as an NP-complete problem, ACM SIGCSE Bulletin, vol.37, issue.4, pp.39-40, 2005.
DOI : 10.1145/1113847.1113873

D. Bertsekas and J. Tsitsiklis, Neuro-dynamic Programming, Athena Scientific, 1996.

L. P. Castillo, Learning minesweeper with multirelational learning, Proc. of the 18th IJCAI, pp.533-538, 2003.

A. Couetoux, J. Hoock, N. Sokolovska, O. Teytaud, and N. Bonnard, Continuous Upper Confidence Trees, LION'11: Proceedings of the 5th International Conference on Learning and Intelligent OptimizatioN, p.page TBA, 2011.
DOI : 10.1016/0196-8858(85)90002-8

URL : https://hal.archives-ouvertes.fr/hal-00835352

A. Couetoux, M. Milone, and O. Teytaud, Consistent Belief State Estimation, with Application to Mines, 2011 International Conference on Technologies and Applications of Artificial Intelligence, p.page in press, 2011.
DOI : 10.1109/TAAI.2011.55

URL : https://hal.archives-ouvertes.fr/hal-00712388

R. Coulom, Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search, Proceedings of the 5th International Conference on Computers and Games, pp.72-83, 2006.
DOI : 10.1007/978-3-540-75538-8_7

URL : https://hal.archives-ouvertes.fr/inria-00116992

M. Gordon and G. Gordon, Quantum computer games: quantum minesweeper, Physics Education, vol.45, issue.4, p.372, 2010.
DOI : 10.1088/0031-9120/45/4/008

K. B. Hein and R. Weiss, Minesweeper for Sensor Networks--Making Event Detection in Sensor Networks Dependable, 2009 International Conference on Computational Science and Engineering, pp.388-393, 2009.
DOI : 10.1109/CSE.2009.146

R. Kaye, Minesweeper is NP-complete, The Mathematical Intelligencer, vol.22, issue.2, p.915, 2000.
DOI : 10.1007/BF03025367

L. Kocsis and C. Szepesvari, Bandit Based Monte-Carlo Planning, 15th European Conference on Machine Learning (ECML), pp.282-293, 2006.
DOI : 10.1007/11871842_29

J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs, 1994.

T. Lai and H. Robbins, Asymptotically efficient adaptive allocation rules, Advances in Applied Mathematics, vol.6, issue.1, pp.4-22, 1985.
DOI : 10.1016/0196-8858(85)90002-8

C. Lee, M. Wang, G. Chaslot, J. Hoock, A. Rimmel et al., The Computational Intelligence of MoGo Revealed in Taiwan's Computer Go Tournaments, IEEE Transactions on Computational Intelligence and AI in games, 2009.

K. Pedersen, The complexity of minesweeper and strategies for game playing, 2004.

P. Rolet, M. Sebag, and O. Teytaud, Optimal active learning through billiards and upper confidence trees in continous domains, Proceedings of the ECML conference, 2009.

P. Rolet, M. Sebag, and O. Teytaud, Optimal robust expensive optimization is tractable, Proceedings of the 11th Annual conference on Genetic and evolutionary computation, GECCO '09, 2009.
DOI : 10.1145/1569901.1570255

URL : https://hal.archives-ouvertes.fr/inria-00374910

C. Studholme, Minesweeper as a constraint satisfaction problem, Unpublished project report, 2000.

F. Teytaud and O. Teytaud, On the huge benefit of decisive moves in Monte-Carlo Tree Search algorithms, Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games, 2010.
DOI : 10.1109/ITW.2010.5593334

URL : https://hal.archives-ouvertes.fr/inria-00495078