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Abstract: In this paper, we derive two models (a static and a dynamical model) based on the
description of the electric potential in a biological cell in order to model the cell electropermeabi-
lization. Existence and uniqueness results are provided for each model, and an accurate numerical
method to compute the solution is described. We then present numerical results that corroborate
the experimental results, which tends to justify the validity of our modeling. We emphasize that
our new models involve very few parameters, compared with the most achieved model but they
describe the same qualitative results. Moreover our numerical results are quantitavely close to the
experimental data.
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Modélisation de l’électroporation cellulaire par micropulses
Résumé : Dans cet article, deux modèles d’électroporation cellulaire sont présentés: un
modèle statique et un modèle dynamique. Ces modèles sont obtenus via une description du
potentiel électrique dans une cellule. Des résultats d’existence et d’unicité sont donnés pour
chaque modèle et une méthode numérique permettant de calculer précisément la solution de
chacun de ces problèmes est décrite. Des simulations numériques qui corroborent les résultats
expérimentaux concluent ce travail, justifiant la validité de la modélisation. Notons que ces
nouveaux modèles ne comportent que peu de paramètres, comparés aux modèles existants, tout
en décrivant les mêmes comportements, avec des résultats proches des résultats expérimentaux.

Mots-clés : Modélisation bio-cellulaire, Equations aux dérivées partielles non linéaires, Méth-
odes de différences finies sur grilles cartésiennes
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1 Introduction
The distribution of the electric potential in a biological cell is important for bio-electromagnetic
investigations. A sufficiently large magnitude of the difference of transmembrane potential (de-
noted from now on by ∆TMP), which is the difference of the electric potentials between both sides
of the cell membrane, leads to an increase of the membrane permeability [19, 23]. Molecules such
as bleomycin can then diffuse across the plasma membrane. This phenomenon, called electrop-
ermeabilization, has already been used in oncology and holds promises in gene therapy [11, 20],
motivating precise assessments of the ∆TMP.

In this paper, we aim at studying theoretically and numerically two non-linear electrical
models (a static and a dynamical model) of biological cells. These models are inspired from the
static model of Ivorra et al. in [10]. They describe the behavior of both electric potential and
membrane conductivity when the cell is submitted to an electric pulse through a few parameters
that will be fitted with the experiments. The inverse problem solving to calibrate the models,
which is the main goal of this research, is not tackled in the present paper. This article is a
first step, in which we present, and study theoretically and numerically new models with a few
parameters, in order to simplify the forthcoming inverse problem solving. We emphasize these
models are phenomenological in the sense that the membrane conductivity is described by an
ad hoc law, which does not come from an homogenization of the nanoscale phenomena. Before
stating the model we are going to study, we now detail the notation of the paper.

Notation 1.1. Throughout this article, we shall use the following conventions and notation:

• We generically denote by n the normal to a closed smooth surface of R3 (or a curve of R2)
outwardly directed from the inside to the outside of the domain enclosed by the surface.

• Let C be a surface embedded in R3, and let u be a sufficiently smooth function (in an
appropriate sense) defined in a tubular neighborhood of C. We define u|C± by

∀x ∈ C, u|C± (x) = lim
τ→0+

u(x± τn(x)).

The notation ∂nu|C± and ∂tu|C± stands for the normal and the tangential components of
∇u:

∀x ∈ C, ∂nu|C± (x) = lim
τ→0+

∇u(x± τn(x)) · n(x),

∂tu|C± (x) = ∇u(x)− ∂nu(x)n(x),

where the dot “ · " denotes the Euclidean scalar product of R3. In the case of R2, the
analogous notation is easily adapted.

• The jump [u]C of a function u defined in a neighborhood of the surface C is defined by

[u]C = u|C+ − u|C− .

1.1 Electric potential in a biological cell
A biological cell is a high contrast medium composed of a conducting cytoplasmOc surrounded by
a thin and very insulating layer, embedded in a bath Oe (see Fig. 1). The plasma membrane is a
phospholipid bilayer, which is sprinkled over with proteins. Due to its thickness and its electrical
properties, the membrane can be modeled as a surface electric material Γ with a capacity Cm

and a surface conductivity Sm. We refer to the seminal articles of Hodgkin, Goldman, Katz, et

Inria
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al. for the electric description of cell membranes [5, 7, 9, 8]. Let σ be the conductivity of the
medium, that is

σ =

{
σe, in the exterior domain Oe,

σc, inside the cell Oc.

∂Ω

(Oc, σc)

(Oe, σe)

(Γ, Sm, Cm)

n

Figure 1: Geometry of the problem. The cell Oc is imbedded in the bath Oe. The whole domain
Ω is defined by Ω = Oe ∪ Oc.

As described by Neu, Krassowska, and DeBruin [14, 3] the electric potential in the whole cell
is the discontinuous solution U to the following problem:

∆U = 0, in Oe ∪ Oc, (1a)
U(0, ·) = 0, and for all t > 0, (1b)
U(t, x) = g(t, x), on ∂Ω, (1c)

with the transmission conditions across the membrane Γ:

[σ∂nU ]Γ = 0, (1d)
Cm∂t [U ]Γ + Sm [U ]Γ = σc∂nU|Γ− . (1e)

Throughout, the paper we denote by Ω the Lipschitz domain

Ω = Oe ∪ Oc

and ∂Ω denotes its boundary. Moreover we define PH1(Ω) as

PH1(Ω) =
{
u ∈ L2(Ω) : u|Oe

∈ H1(Oe), u|Oc
∈ H1(Oc)

}
,

and
PH1

0 (Ω) =
{
u ∈ PH1(Ω) : u|∂Ω = 0

}
.

1.2 Electropermeabilization phenomenon
When submitted to a high electric pulse — i.e. if the magnitude of the pulse g reaches a threshold
value — the cell membrane permeability increases and large molecules that usually cannot diffuse
through the plasma membrane (for instance, plasmids or bleomycin) enter inside the cytoplasm.

RR n° 8005
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This phenomenon is called electroporation or electropermeabilization. For several years, different
membrane models based on hydrodynamic, elasticity, hydroelasticity, viscoelasticity, or aqueous
pore formation have been developed to describe the pore formation on the cell membrane (for
more details, see the review of Pavlin et al. [17]). They all highlight a threshold value of the
electric potential above which the electropermeabilization phenomenon occurs. However, the
critical potential value changes with the models. Theoretical biophysicists consider the aqueous
pore formation model as the most convincing current explanation. Nevertheless, the predictions
of the model do not coincide with experiments either quantitatively or phenomenologically since
no pore has ever been observed. In addition, the models based on the paper of Neu, Krassowska, et
al. [14, 3, 4] are too complex to be parameterized to fit the experiments. Roughly speaking, the
current models provide a qualitative explanation of the electropermeabilization, but the problem
of the quantitative description remains open.

Actually in vitro and in vivo experiments have never proved the electropore formation, which
theoretically could reach detectable size (since macropores could be created according to Smith
et al. [21]); and it seems unclear whether electroporation results from holes punched in a lipid
bilayer, as proposed in the current models (Teissié et al. [23, 22]). Moreover, the experimentally
proved reversible process of the membrane electroporation is not clearly explained by the current
models. In addition, and this is probably one of the main features of the experiments, the vector-
ization of large molecules requires both short time high-voltage pulses and long time low-voltage
pulses (André et al. [1]). Therefore, the presence of pores is still controversial despite structural
changes of the membrane. For all these reasons, we prefer the term electropermeabilization to
electroporation.

1.3 Modeling principle

The probably most achieved electropermeabilization model has been proposed by Neu and Kras-
sowska [14] and precisely described by DeBruin and Krassowska [3, 4]. It consists in adding an
electroporation current Iep in the right-hand side of equation (1e):

Cm∂t [U ]Γ + Sm [U ]Γ = σc∂nU|Γ− + Iep.

The current Iep is given by a highly non-linear pore current iep multiplied by the pore density
Nep. The main drawback of such a model is its complexity since several parameters, such as the
pore radius or the relative entrance length of the pore, which cannot be measured. Moreover,
the mathematical well-posedness of the equations cannot be clearly established. Therefore, the
inverse problem, that consists in fitting the parameters for each cell species, is hardly unsolvable
numerically. In addition, the “philosophy” of the modeling is based on the pore creation, while as
hinted above the very existence of these pores is controversial. For all these reasons, we choose to
present here a new phenomenological model of electropermeabilization that could be fitted with
the experiments. This model describes the membrane resealing and the memory of the applied
pulses.

Our electropermeabilization modeling consists in describing the membrane permeabilization
by choosing an appropriate function for the surface conductivity Sm, instead of adding an elec-
troporation current based on the pore creation as Neu, Krassowska, et al. did (see [14, 3, 21, 15]).
In addition, we propose two models: the first one is a “static” model that describes the electrop-
ermeabilization as being an instantaneous phenomenon for a single time-constant pulse. This
can be seen as a preliminary model that describes the cell potential during the pulse. The sec-
ond model is the time-dependent model of electropermeabilization. For each model, we present
the theoretical results that ensure existence and uniqueness of the solution to the new problems
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and then we present the numerical methods that allow the computation of the equations. We
conclude by comparing our model with the model of Neu, Krassowska, et al.

2 The static equation
Based on the extensive review of Ivorra et al [10], the surface conductivity Sm is a function of
the absolute membrane voltage, which tends to the value SL (the lipid surface conductivity)
below a certain threshold Vrev (the reversible electropermeabilization voltage) and tends to Sir

(the surface conductivity of the irreversibly electropermeabilized region) above this threshold,
with Sir being larger than SL. The “speed of the switch” between these two values is given by a
parameter kep. We may choose the following sigmoid function for Sm:

∀λ ∈ R, Sm(λ) = SL + (Sir − SL)[1 + tanh(kep(|λ| − Vrev))]/2, (2)

however other functions with similar monotonicity properties can be considered. More precisely,
in our model the function Sm will satisfy the following condition:

Sm ∈ C(R), λ 7→ Sm(λ) is even on R,
0 < SL ≤ Sm(λ) ≤ Sir, Sm is non decreasing on [0,+∞),

lim
λ→+∞

Sm(λ) = Sir.

 (3)

In particular, note that the mapping λ 7→ λSm(λ) is increasing on R.
Therefore, the static potential U satisfies the following problem:

∆U = 0, in Oe ∪ Oc, (4a)
[σ∂nU ]Γ = 0, on Γ, (4b)
Sm([U ]Γ) [U ]Γ = σc∂nU|Γ− , on Γ, (4c)

U = g on ∂Ω. (4d)

Remark 2.1. Model (4) can be seen as the limit of the model of Ivorra et al. [10], when the
membrane thickness tends to zero (we refer to [18] for asymptotic expansion of the voltage
potential in high contrast medium with resistive thin layer).

In the following subsections, we study the non-linear problem (4). In particular, we emphasize
that due to the non-linearity of the membrane conductivity, increasing numerically the thickness
of the membrane (as performed in [10]) leads to irrelevant results from the quantitative point
of view. Therefore, we aim at providing efficient numerical methods in order to solve the above
problem.

2.1 Existence and uniqueness of the static potential
This subsection is devoted to the proof of the following result.

Theorem 2.2. Let g ∈ H1/2(∂Ω). There exists a unique U satisfying problem (4). This solution
satisfies

U|Oe
∈ H1(Oe), U|Oc

∈ H2(Oc).

In order to prove this theorem, we proceed as follows. Denote by Λc and Λe the Dirichlet-to-
Neumann operators on Γ (also called Steklov-Poincaré operators) for the Laplacian respectively

RR n° 8005
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in Oc and in Oe. More precisely, denote by nc (resp. ne) the unitary outward normal to Γ
directed from the inside to the outside of Oc (resp.Oe). We define the operators Λc and Λe from
H1/2(Γ) to H−1/2(Γ) as:

∀f ∈ H1/2(Γ), Λc(f) := nc · σc∇vc|
Γ−
, where div(σc∇vc) = 0 in Oc, and vc|Γ

= f, (5a)

Λe(f) := ne · σe∇ve|
Γ+
, where

div(σe∇ve) = 0 in Oe, ve|∂Ω
= 0 and ve|Γ

= f. (5b)

Observe that using Wirtinger–Poincaré’s inequality in the case of Λc, or Poincaré’s inequality in
the case of Λe, together with the continuity of the mapping u 7→ u|∂O fromH1(O) intoH1/2(∂O),
when O is sufficiently smooth, the following inequalities hold:

〈Λcf, f〉 =

∫
Oc

σc(x)∇v(x) · ∇v(x)dx ≥ Cc ‖f −M(f)‖2H1/2(Γ) , (6)

〈Λef, f〉 =

∫
Oe

σe(x)∇ve(x) · ∇ve(x)dx ≥ Ce‖f‖2H1/2(Γ), (7)

where M(f) = |Γ|−1
∫

Γ
f(τ) dτ is the mean value of f on Γ, and Ce and Cc are constants

depending only on Oe and Oc respectively. Moreover, for a function g ∈ H1/2(∂Ω), we define
Λ0(g) by:

Λ0(g) := ne · σe∇v|Γ+
, where

div(σe∇v) = 0 in Oe, v|∂Ω
= g and v|Γ = 0. (8)

It is useful to recall that the operator Λe is invertible, its inverse being given by another Steklov-
Poincaré operator (or what is sometimes called a Neumann-to-Dirichlet operator). Namely, for
any ψ ∈ H−1/2(Γ) given, one has Λ−1

e (ψ) = v|Γ where v ∈ H1(Oe) satisfies the equation

div(σe∇v) = 0 in Oe, v|∂Ω = 0 and ne · σe∇v|Γ+ = ψ.

Consider the Hilbert space H defined by

H = H1/2(Γ)×H1/2(Γ),

with the norm

∀u = (ue, uc) ∈ H, ‖u‖2H = ‖ue‖2H1/2(Γ) + ‖uc‖2H1/2(Γ) .

Problem (4) can be written on the manifold Γ with the help of the above Steklov-Poincaré
operators. More precisely, problem (4) is equivalent to finding (ue, uc) ∈ H such that

Λeue + Sm(ue − uc)(ue − uc) = −Λ0(g),

Λcuc − Sm(ue − uc)(ue − uc) = 0.
(9)

Notation 2.3. Identifying the dual of L2(Γ)× L2(Γ) with L2(Γ)× L2(Γ), we denote by H′ the
dual space of H and by 〈· , ·〉 the duality between H and H′.

The proof of Theorem 2.2 is an obvious application of the following theorem.

Theorem 2.4. Let G = (Ge, Gc) ∈ H′. There exists a unique u0 = (ue, uc) ∈ H such that

Λeue + Sm(ue − uc)(ue − uc) = Ge,

Λcuc − Sm(ue − uc)(ue − uc) = Gc.
(10)

Inria
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Proof. We define the operator Λσ from H into H′ by

∀u ∈ H, Λσu =

(
Λeue

Λcuc

)
=

(
Λe 0
0 Λc

)(
ue

uc

)
. (11)

Thanks to (6) and (7), we have

∀u ∈ H, 〈Λσu,u〉 ≥ Ce ‖ue‖2H1/2(Γ) + Cc ‖uc −M(uc)‖2H1/2(Γ) . (12)

Since the function Sm satisfies conditions (3), we introduce the function F defined by

∀ s ∈ R, F (s) =

∫ s

0

Sm(z)z dz.

Note that F is even, that is F (−s) = F (s). Let J1 be the function defined on H by

∀u ∈ H, J1(u) = J1(ue, uc) =

∫
Γ

F
(
ue(τ)− uc(τ)

)
dτ.

One easily checks that J1 is a C1 function on H and

J1(u) ≥ 1

2
SL

∫
Γ

|ue(τ)− uc(τ)|2dτ.

Observe that, for any u ∈ H, the derivative J′1(u) of J1 at u is the linear map defined by

∀h ∈ H, J′1(u).h =

∫
Γ

Sm
(
ue(τ)− uc(τ)

)
(ue(τ)− uc(τ))(he(τ)− hc(τ))dτ.

Let J be defined by

∀u ∈ H, J(u) =
1

2
〈Λσu,u〉+ J1(u)− 〈G,u〉.

J is of class C 1 on H and J′ is given by

∀u ∈ H, J′(u) =

(
Λeue + Sm(ue − uc)(ue − uc)−Ge

Λcuc − Sm(ue − uc)(ue − uc)−Gc

)
. (13)

In order to show that J′ is a monotone operator, we define the nonlinear operator B from H2

into R by

∀(u,v) ∈ H2, B(u,v) = Sm([u])[u]
2

(
1− [v]

[u]

)(
1− Sm([v])

Sm([u])

[v]

[u]

)
, (14)

where for simplicity we denote by [u] = ue − uc for u = (ue, uc) ∈ H. Taking into account the
fact that Sm satisfies (3), one checks easily that B(u,v) ≥ 0. According to (12) and (13), for
(u,v) ∈ H2 we have

〈J′(u)− J′(v),u− v〉 = 〈Λσ(u− v),u− v〉+

∫
Γ

B
(
u(s),v(s)

)
ds, (15)

from which we infer that J′ is a monotone operator. Therefore J is convex. In order to see the
strict convexity of J, that is the strict monotonicity of J′, we have to show that if for a given

RR n° 8005
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u,v ∈ H we have 〈J′(u)− J′(v),u− v〉 = 0, then we have u = v. Observe first that, since
λ 7→ λSm(λ) is increasing, we have that

B(u,v) = 0 =⇒ [u] = [v].

In particular, for these u,v, we have B(u,v) = 0, which implies [u] = [v], hence ue−ve = uc−vc.
On the other hand, since

〈Λe(ue − ve), ue − ve〉 = 〈Λc(uc − vc), uc − vc〉 = 0,

and since Λe is coercive, we conclude that ue − ve = 0, which in turn implies that uc − vc = 0.
Finally, this shows that

〈J′(u)− J′(v),u− v〉 = 0 =⇒ u = v.

Therefore, J′ is strictly monotone and J is strictly convex.
In order to show the coerciveness of J, that is J(u)→ +∞ when ‖u‖H →∞, we proceed as

follows. Observe first that

|〈Gc,M(uc)〉| ≤ ‖Gc‖H−1/2(Γ) ‖M(ue − uc)‖H1/2(Γ)

+ ‖Gc‖H−1/2(Γ) ‖M(ue)‖H1/2(Γ) ,

≤ ‖Gc‖H−1/2(Γ) ‖M(ue − uc)‖H1/2(Γ)

+ ‖Gc‖H−1/2(Γ) ‖ue‖H1/2(Γ) ,

hence

|〈G,u〉| ≤
(
‖Ge‖H−1/2(Γ) + ‖Gc‖H−1/2(Γ)

)
‖ue‖H1/2(Γ)

+ ‖Gc‖H−1/2(Γ) ‖uc −M(uc)‖H1/2(Γ)

+ ‖Gc‖H−1/2(Γ) ‖M(ue − uc)‖H1/2(Γ) .

Using Young’s inequality (ab ≤ εa2 + C(ε)b2, for ε > 0 and C(ε) := (4ε)−1) we infer

|〈G,u〉| ≤ ε ‖ue‖2H1/2(Γ) + ε ‖uc −M(uc)‖2H1/2(Γ) + 2C(ε)‖G‖2H′
+ ‖Gc‖H−1/2(Γ) ‖M(ue − uc)‖H1/2(Γ) .

(16)

On the other hand, using the fact that 2F (s) ≥ SLs
2 for s ∈ R, we deduce that

J1(u) ≥ 1

2
SL

∫
Γ

|ue(τ)− uc(τ)|2dτ

≥ 1

2
SL

(∫
Γ

|(ue − uc)−M(ue − uc)|2dτ +

∫
Γ

|M(ue − uc)|2dτ

)
.

Using this inequality, together with (16), we obtain a lower bound for J(u) (here a(ε), C(ε) are
positive constants depending on the arbitrary ε > 0, and b > 0 is a constant):

J(u) ≥ a(ε)
(
‖ue‖2H1/2(Γ) + ‖uc −M(uc)‖2H1/2(Γ)

)
+ b

∫
Γ

|M(ue − uc)|2dτ − ‖Gc‖H−1/2(Γ) ‖M(ue − uc)‖H1/2(Γ)

− C(ε)‖G‖2H′ .

(17)
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Since M(ue − uc) is a constant, we observe that one has ‖M(ue − uc)‖H1/2(Γ) = c∗‖M(ue −
uc)‖L2(Γ) for some positive constant c∗ independent of u. Consequentely, for any ε > 0 so that
b− ε > 0, there exists a constant c(ε) such that

b

∫
Γ

|M(ue − uc)|2dτ − ‖Gc‖H−1/2(Γ) ‖M(ue − uc)‖H1/2(Γ) ≥

(b− ε)‖M(ue − uc)‖2H1/2(Γ) − c(ε)‖Gc‖2H−1/2(Γ).

Using this inequality in the lower bound (17), we conclude that

lim
‖u‖H→+∞

J(u) = +∞

hence J achieves its minimum at a unique point u0 ∈ H, which satisfies equation (10).

3 The dynamical model
In this section, we focus on the dynamical description of the electropermeabilization. Our model
is based on the description of two quantities: the time-dependent electric potential and the ratio
of the electropermeabilized region over the total membrane area, which is also time-dependent.
In subsection 3.1, we present the main considerations that lead to our model. We then study its
solvability: existence and uniqueness results are presented in subsection 3.4.

3.1 Heuristics of the modeling
Experimental observations suggest that the permeabilization process at a certain location de-
pends on whether the membrane conductivity is above a certain threshold or not. This leads us
to define the surface membrane conductivity as an interpolation between the two values Sir and
SL, the interpolation parameter ξ(t, s) ∈ [0, 1] being itself a function of time and of the point
s on the membrane Γ. In our interpretation, the parameter ξ(t, s) measures in some way the
likelihood that a given infinitesimal portion of the membrane is going to be electropermeabilized.
More precisely, when ξ(t, s) equals 0 at a given point s ∈ Γ, the membrane conductivity equals
the lipid conductivity at this point (thus there is no electropermeabilization), while for ξ(t, s) = 1
it corresponds to the maximal value of the membrane surface conductivity above which electrop-
ermeabilization is irreversible. Thus the time-dependent membrane conductivity, denoted by Sm

writes

∀(t, s) ∈ (0,+∞)× Γ, Sm(t, s) = SL + ξ(t, s)(Sir − SL). (18)

On the other hand, the changes in the conductivity at a certain location s ∈ Γ depend on the
transmembrane voltage. Denoting by [u] := ue−uc the jump in the potential between the outside
and the inside of the cell for u := (ue, uc) ∈ H (as we did in the previous sections), we therefore
assume that

ξ(t, s) = X(t, [u(t, s)]), (19)

where the function (t, λ) 7→ X(t, λ) will be defined below.
The main idea of the modeling consists in writing a differential equation that describes the

dynamics of (t, λ) 7→ X(t, λ) similarly to a sliding door model. Let β be a function satisfying

β ∈W 1,∞(R), λ 7→ β(λ) is even on R,
λ 7→ λβ′(λ) belongs to L∞(R),

0 ≤ β(λ) ≤ 1, β is non decreasing on (0,+∞),

lim
λ→+∞

β(λ) = 1.

 (20)
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An example of such a function would be

∀λ ∈ R, β(λ) := (1 + tanh(kep(|λ| − Vrev))/2.

Let us describe now the evolution of X. For λ0 ∈ R, which will stand for a given ∆TMP, and for
an initial value X0 ∈ [0, 1] of X, set β0 := β(λ0). Then we consider the following two possibilities:

• Either β0−X0 is positive, in which case the electric pulse is sufficiently high to enlarge the
electropermeabilized region, with a characteristic time of electropermeabilization of order
τep.

• Or β0 − X0 is negative, in which case we consider that the pulse is not high enough
to increase the electropermeabilization. Therefore, the membrane tries to reseal with a
characteristic resealing time of order τres. Since experimental observations suggest that this
phenomenon takes much more time than the electropermeabilization process, we assume
that τres > τep.

Remark that when a cell is at rest, X0 equals zero, but if high voltage pulses have been applied
earlier than the initial time, X0 might not be equal to zero.

Based on these considerations, for any λ0 ∈ R, we assume that X(·, λ0) satisfies the following
differential equation:

∂X

∂t
(t, λ0) = max

(
β(λ0)−X(t, λ0)

τep
;
β(λ0)−X(t, λ0)

τres

)
, ∀t > 0,

X (0, λ0) = X0.
(21)

3.2 Statement of the mathematical problem

We first write the equation satisfied by the potential U defined on the domain Oe ∪ Oc. We
assume that before the imposition of the electrical pulses g on the external boundary ∂Ω, the
cell potential is at rest and given by U0 ∈ H1(Ω). This resting potential translates the ionic
exchanges through the membrane. According to equalities (18)–(19), the membrane conductivity
S̃m is defined by:

S̃m(t, λ) := SL + (Sir − SL)X(t, λ). (22)

We seek the solution (U,X) to the following system of equations: for (U0, X0) given, the pair of
functions (U,X) satisfy:

U |t=0 = U0, and for any t > 0,
∆U = 0, in (0, T )× (Oe ∪ Oc) , U(t, ·) = g(t, ·) on (0,+∞)× ∂Ω, (23a)
[σ∂nU ] = 0, on (0, T )× Γ, (23b)

Cm∂t[U ](t, ·) + S̃m(t, [U ])[U ] = σc∂nU(t, ·)|Γ− , on (0, T )× Γ, (23c)

where, writing λ = [U ](t, s), the function X appearing in (22) satisfies the differential equation

∂X(t, λ)

∂t
= max

(
β(λ)−X(t, λ)

τep
;
β(λ)−X(t, λ)

τres

)
, t > 0, (24a)

X(0, λ) = X0. (24b)
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Cell electroporation modeling 13

Remark 3.1. Observe that if the source g does not depend on the time t, the stationary point
(U∗, X∗) of the system (23)–(24a) is the unique solution to

∆U∗ = 0, in (Oe ∪ Oc) , U∗|∂Ω = g on ∂Ω,

[σ∂nU
∗] = 0, on Γ,

(SL + (Sir − SL)X∗) [U∗] = σc∂nU
∗
|Γ−

, on Γ,

where

X∗ = β([U∗(s)]),

which coincides with the static model (2).

3.3 Properties of the function X

Let us state the following lemma regarding the solution to equation (24):

Lemma 3.2. Let T > 0 be fixed and let β satisfy condition (20). For T > 0 and any λ ∈ R, the
following differential equation

∂X(t, λ)

∂t
= max

(
β(λ)−X(t, λ)

τep
;
β(λ)−X(t, λ)

τres

)
, ∀t ∈ (0, T ),

X(0, λ) = X0 ∈ [0, 1],
(25)

has a unique solution X(·, λ) ∈ C1([0, T ]). Moreover one has

0 ≤ X(t, λ) = X(t,−λ) = X(t, |λ|) ≤ 1, ∀t ∈ [0, T ], ∀λ ∈ R.

In addition, there exists a constant K(T ) > 0 such that for any λ1, λ2 ∈ R we have

∀t ∈ [0, T ], |λ1X(t, λ1)− λ2X(t, λ2)| ≤ K(T ) |λ1 − λ2| . (26)

Proof. The mapping X 7→ max([β(λ) − X]/τep, [β(λ) − X]/τres), defined from R into itself, is
clearly Lipschitz for all fixed λ. Therefore, the differential equation (25) has a unique solution
X ∈ C1([0, T ]), for any given X0 ∈ R.

Assuming now that 0 ≤ X0 ≤ 1, multiplying the equation (25) by X− := max(−X, 0), and
using the fact that β ≥ 0, one gets

1

2
∂t|X−|2 ≤ 0.

Thus X−(·, λ) ≡ 0 on [0, T ]. Similarly, using the fact that β − 1 ≤ 0, and multiplying the
equation by (X − 1)+ = max(X − 1, 0), one sees that

∂t|(X − 1)+|2 ≤ 0,

and finally 0 ≤ X(t, λ) ≤ 1, for any t ∈ [0, T ].
In order to show the estimate (26), we proceed as follows. For λ ∈ R denote by Y (t, λ) :=

λX(t, λ). Since for any (a, b) ∈ R, we have max(a, b) = a+ (a− b)−, assuming for instance that
τep < τres we observe that

max(a/τep, a/τres) =
a

τep
+
(
τ−1
ep − τ−1

res

)
a−,
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and using the equality a− = (|a| − a) /2 we get

max(a/τep, a/τres) = a
(
τ−1
ep + τ−1

res

)
/2 + |a|

(
τ−1
ep − τ−1

res

)
/2.

From this we induce that Y satisfies the following O.D.E
∂Y (t, ·)
∂t

= H(λ, Y ), ∀t ∈ (0, T ),

Y (0, λ) = Y0 = λX0,
(27)

where the function H is defined by

H : (λ, Y ) 7→ H(λ, Y ) = (λβ(λ)− Y )
(
τ−1
ep + τ−1

res

)
/2 + λ |β(λ)− Y/λ|

(
τ−1
ep − τ−1

res

)
/2. (28)

In order to see that the mapping λ 7→ H(λ, Y ) is globally Lipschitz on R, since by our assumptions
on the function β we know that λβ′(λ) is uniformly bounded on R, the function λ 7→ λβ(λ) is Lip-
schitz on R, and thus we have only to verify that the function h : λ 7→ h(λ, Y ) = λ |β(λ)− Y/λ|
is Lipschitz on R. Indeed, this is the case as one can see by a simple computation that

∂h

∂λ
= |β(λ)− Y/λ|+ (λβ′(λ) + Y/λ)

β(λ)− Y/λ
|β(λ)− Y/λ|

,

= (β(λ) + λβ′(λ))
β(λ)− Y/λ
|β(λ)− Y/λ|

,

and therefore ∣∣∣∣∂h∂λ (λ, Y )

∣∣∣∣ ≤ |β(λ) + λβ′(λ)| .

From this, one infers clearly that the mapping (λ, Y ) 7→ H(λ, Y ) is globally Lipschitz on R×R.
Writing

Y (t, λ1)− Y (t, λ2) =

∫ t

0

(H(λ1, Y1)−H(λ2, Y2)) (t)dt+ (λ1 − λ2)X0;

we conclude that
∀t ∈ (0, T ), |Y (t, λ1)− Y (t, λ2)| ≤ K(T ) |λ1 − λ2| ,

thanks to an invocation of Gronwall lemma.

3.4 Existence and uniqueness of the dynamical potential
Since the non-linearity of problem (23) appears in the transmission condition (23c), we are going
to rewrite it on the surface Γ using the Steklov-Poincaré operators, in the same manner as we
did in the previous section for the static model. We first prove the following property:

Lemma 3.3. The operator Λe + Λc is positive, selfadjoint and invertible from H1/2(Γ) into
H−1/2(Γ). The operator

B := Id +Λ−1
e Λc

is therefore invertible, from H1/2(Γ) into itself.
Moreover, define the domain D(ΛcB−1) as

D(ΛcB−1) =
{
ϕ ∈ H1/2(Γ) : ΛcB−1ϕ ∈ L2(Γ)

}
.

The operator
(
ΛcB−1, D(ΛcB−1)

)
is m–accretive (more precisely D(ΛcB−1) = H1(Γ)).
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Cell electroporation modeling 15

Proof. That Λe + Λc is invertible is an easy consequence of the fact that the operator Λe is
a positive, selfadjoint and invertible operator while Λc is non-negative and selfadjoint. Thus,
Λe + Λc is also a positive selfadjoint invertible operator.

Let ϕ ∈ D(ΛcB−1). Then, by definition (and invertibility) of B (i.e. Id =
(
Id +Λ−1

e Λc

)
B−1)

we have

〈ΛcB−1ϕ,ϕ〉 = 〈ΛcB−1ϕ,ϕ〉,
= 〈ΛcB−1ϕ,B−1ϕ〉+ 〈ΛcB−1ϕ,Λ−1

e ΛcB−1ϕ〉,
= 〈ΛcB−1ϕ,B−1ϕ〉+ 〈ΛeΛ−1

e ΛcB−1ϕ,Λ−1
e ΛcB−1ϕ〉

≥ 0.

ΛcB−1 is therefore accretive. Let f ∈ L2(Γ), let λ > 0 and let U be the unique solution in
PH1

0 (Ω) to the following problem:

−∆U = 0, in Oe ∪ Oc, U|∂Ω
= 0,

σe∂nU|Γ+
= σc∂nU|Γ− ,

λσc∂nU|Γ− + U|Γ− − U|Γ+
= f.

Therefore, setting v := U|Γ− − U|Γ+
, v satisfies

v + λΛcB−1v = f.

In addition, since ΛcB−1 is nonnegative , we have ‖v‖L2(Γ) ≤ ‖f‖L2(Γ). Therefore, ΛcB−1 is
m–accretive.

Lemma 3.4. Let U0 and X0 be two enough regular functions defined respectively in Ω and on
Γ, and recall that S̃m(t, λ) := SL + (Sir − SL)X(t, λ) is defined in (22). Finding the solution
(U,X) to problem (23)–(24), if it exists, is equivalent to finding (ue, uc, X), with ue = U|Γ+ and
uc = U|Γ− satisfying:

ue = uc − v, (29)

uc = B−1
(
v − Λ−1

e Λ0g
)
, (30)

where v is the solution to

Cm∂tv + ΛcB−1v + S̃m(t, v)v = G,

v(0, ·) = ϕ,
(31)

with ϕ and G being defined as

ϕ = U0|Γ+
− U0|Γ− , G := ΛcB−1Λ−1

e Λ0g,

and where, writing λ = v(t, s), a.e.(t, s) ∈ (0, T )× Γ, X satisfies∂tX(t, λ) = max

(
β(λ)−X(t, λ)

τep
;
β(λ)−X(t, λ)

τres

)
, ∀t > 0,

X(0, λ) = X0.
(32)
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Proof. The lemma is a straightforward consequence of the definition of the Steklov-Poincaré
operators Λc,Λe,Λ0, and of the invertibility of Λe. Indeed, condition (23b), that is the continuity
of the flux across Γ, boils down to

Λeue + Λ0g + Λcuc = 0,

from which, thanks to the invertibility of Λe, we infer that

ue − uc = −
(
Buc + Λ−1

e Λ0g
)

= −v.

In addition, by definition of v, we have

Λcuc = ΛcB−1v − ΛcB−1Λ−1
e Λ0g = ΛcB−1v −G.

Then, the transmission condition (23c) (multiplied by (−1)) reads (31), provided we recall that
β is an even function and that S̃m is defined by (22).

We now show that the evolution equations appearing in lemma 3.4 have a unique solution.

Theorem 3.5. Assume that β satisfies (20), G ∈ Lp((0, T );L2(Γ)) for some p > 1, and that
ϕ ∈ L2(Γ) is given. Let X0 ∈ L∞(Γ) such that 0 ≤ X0 ≤ 1 on Γ, and let S̃m be defined as in
(22).

Then, there exists a unique function v ∈ C([0, T ];L2(Γ)), mild solution to the system{
Cm∂tv + ΛcB−1v + S̃m(t, v)v = G, ∀t ∈ (0, T ),

v(0) = ϕ,
(33)

where S̃m is given by (22), and writing λ = v(t, s), a.e (t, s) ∈ (0, T )× Γ, one has

∂tX(t, λ) = max

(
β(λ)−X(t, λ)

τep
;
β(λ)−X(t, λ)

τres

)
, ∀t ∈ (0, T ),

X(0, λ) = X0.
(34)

Moreover, if ϕ ∈ H1(Γ) and G ∈ W 1,1((0, T );L2(Γ)), the above mild solution is a classical
solution to (33), in the sense that

v ∈ C([0, T ];H1(Γ)) ∩ C1([0, T ];L2(Γ)).

Proof. To simplify the notations we denote by A the operator

A =
1

Cm
ΛcB−1.

In a first step, we are going to show existence and uniqueness of a mild solution to (33) in
C([0, T ];L2(Γ)). Thanks to lemma 3.2, we know that for any λ ∈ R, the solution to∂tX(t, λ) = max

(
β(λ)−X(t, λ)

τep
;
β(λ)−X(t, λ)

τres

)
,∀t > 0,

X|t=0 = X0,
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Cell electroporation modeling 17

exists and belongs to C1([0, T ]). Moreover, 0 ≤ X ≤ 1, and the mappings λ 7→ X and λ 7→ λX
are Lipschitz. Now, upon setting

F(t, v) := −S̃m(t, v)v +G = − (SL + (Sir − SL)X(t, v)) v +G,

solving equations (33) is equivalent to finding v ∈ C([0, T ];L2(Γ)) solution to the following
equation, which is the mild version of equation (33):

v = e−tAϕ+
1

Cm

∫ t

0

exp (−(t− τ)A)F(τ, v)dτ. (35)

Thanks to inequality (26) of lemma 3.2, it is clear that the mapping

v 7→ F(·, v),

is Lipschitz from the space
E := C([0, T ];L2(Γ))

into itself. This means that there exists K1 > 0 such that for any v, w ∈ C([0, T ];L2(Γ)) we have

‖F(·, v)−F(·, w)‖L∞((0,T );L2(Γ)) ≤ K1 ‖v − w‖L∞((0,T );L2(Γ)).

We shall endow the space E with the norm

‖ψ‖E := sup
t∈[0,T ]

e−αt‖ψ(t, ·)‖L2(Γ),

for some α > 0, which will be chosen below. If we set

Φ(Uc)(t) := e−tAϕ+
1

Cm

∫ t

0

exp (−(t− τ)A)F(τ, Uc(τ))dτ,

then Φ : E −→ E is a continuous mapping. We shall check that, upon choosing α appropriately,
it is a strict contraction. Thus, it has a unique fixed point, providing the unique solution of (35).
Indeed

Φ(Uc)(t)− Φ(V )(t) =

∫ t

0

exp

(
− t− τ
Cm

ΛcB−1

)
[F(τ, Uc)−F(τ, V )] dτ.

Since the operator ΛcB−1 is m–accretive, the operator A generates a contraction semi-group and
the following estimate holds

‖e−(t−τ)A [F(τ, Uc)−F(τ, V )] ‖L2(Γ) ≤ ‖[F(τ, Uc)−F(τ, V )]‖L2(Γ) .

Therefore, we infer

‖Φ(Uc)(t)− Φ(V )(t)‖L2(Γ) ≤ ‖
∫ t

0

‖F(τ, Uc)−F(τ, V )‖L2(Γ)dτ,

≤ K1‖Uc − V ‖E
∫ t

0

eατdτ,

≤ C(p)K1 α
−1 eαt‖Uc − V ‖E,

from which we conclude that

‖Φ(Uc)− Φ(V )‖E ≤ α−1 C(p)K1 ‖Uc − V ‖E.
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This implies that for α large enough, the mapping Φ is a strict contraction on E. Equation (33)
has thus a unique mild solution in C([0, T ];L2(Γ)).

Suppose now that G belongs to W 1,1((0, T );L2(Γ)) and that ϕ ∈ H1(Γ). The mild solution
given by formula (35) belongs to C1([0, T ];L2(Γ)) hence we infer

∂tv + S̃m(·, v)v ∈ C([0, T ];L2(Γ)).

Therefore, setting Uc = U|Oc
, we have

∆Uc(t, ·) = 0, inOc, σc∂nUc(t, ·) ∈ L2(Γ),

from which we infer that Uc(t, ·) ∈ H3/2(Oc). Hence we deduce that since the domains are smooth
Uc(t, ·)|Γ− belongs to H1(Γ). Similar reasoning for Ue = U|Oe

implies that Ue(t, ·)|Γ+ belongs to
H1(Γ), and therefore the jump v belongs to C([0, T ];H1(Γ)), which ends the proof.

4 Numerical simulations
In this section, we provide some numerical results that show the consistency of our models. In
order to solve both static and dynamical problems, we first present the finite-difference method
on a cartesian grid adapted from the second-order scheme of Cisternino and Weynans [2]. Note
that it is not the scope of this paper to prove rigorously that our scheme is of order two, however
numerical simulations of Fig 3(b) seems to confirm this order. The rigorous numerical analysis
of the method will be performed in a forthcoming work. Since the long-term goal of this work
is to fit the models with the experimental data, and since experiments are performed with
several thousands of cells per cm2, parallel computing will be necessary to solve the inverse
problem. Therefore, we choose to use accurate schemes on cartesian grids, such as the scheme
of [2], for which the accuracy has been shown and the parallelization has be already performed,
despite Galerkin formulations might be more adapted to the single cell problem, since variational
formulation holds.

4.1 Spatial discretization
We perform the discretization on a cartesian grid covering the domain Ω = Oe ∪ Oc, which is a
square domain of length L (L equals 200 µm for the computations, see Table 1). The interface
is described by a level-set function [16], which separates the extra- and intra-cellular domains
by the use of a signed distance function ϕ. The normal to the interface n(x) outwardly directed
from the inner to the outer of the cell is directly obtained by computing numerically ∇ϕ(x).

The grid spacing is denoted by h, and N is the number of points such as

N = L/h.

For any (i, j) ∈ N2 we denote by Mij the grid points defined by

Mi,j = (xi, yj), where xi = ihx, yj = jhy, ∀(i, j) ∈ N2.

The numerical approximation of the solution to the static or to the dynamical model at the point
(xi, yj) is generically denoted by uij .

Standard approximation of the Laplacian is used in the discretized domains Oe and Oc far
from the interface, which is the cell membrane Γ. However, due to the jump conditions, a special
treatment of the approximation of the Laplacian and of the computation of the fluxes is needed
at the points nearing the cell membrane.
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Cell electroporation modeling 19

If the intersection of the interface and [MijMi+1j ] exists, then we define the interface point
Ii+1/2, j = (x̃i+1/2 ,j , yj) as this intersection. We create two additional unknowns at this interface
point, called interface unknowns, and denoted by ũe

i+1/2 ,j and ũc
i+1/2 ,j . The interface point

Ii, j+1/2 = (xi, ỹi, j+1/2) is similarly defined as the intersection of Γ and the segment [MijMij+1].
An example of the discretization method is given by Figure 2. On regular grid points, that are

not neighboring the interface, the Laplacian is discretized with a standard centered second-order
finite-difference scheme. A specific five points stencil including the interface points is used for
neighboring points, as shown in Figure 2(a).

Figure 2(b) provides an example of the discretization of ∇U on both sides of the interface.
The x-derivative of U can be computed with second-order accuracy using a one-sided formula
involving three grid points. For example we approximate the flux on the left (for instance
exterior) side of the interface with the points Mi−1j , Mij and Ii+1/2 ,j by:

∂U

∂x
(x̃, yj) ≈

(ui−1j − ũe
i+1/2 ,j)(xi − x̃)

hx(xi−1 − x̃)
−

(uij − ũe
i+1/2 ,j)(xi−1 − x̃)

hx(xi − x̃)
, (36)

where for the sake of brevity, we have replaced x̃i+1/2 ,j by x̃. The y–derivative cannot be
obtained in the same way, since there are no grid points aligned with the interface point in the
y–direction. We therefore use a linear combination of (∂yu)ij and (∂yu)i−1j , defined respectively
as second order approximations of the y–derivative on Mij and Mi−1j . We obtain

∂U e

∂y
(x̃, yj) ≈ x̃− xi−1

hx
(∂yu)ij −

x̃− xi
hx

(∂yu)i−1j . (37)

The formulas for (∂yu)ij and (∂yu)i−1j depend on the local configuration on the interface, but
they are based on the same principle as for (36). The scheme is stabilized by using a shifted
y–stencil if two interface points are involved in the same flux discretization, as illustrated by
Figure 2(c).

j

j+1

j-1

ii-1 i+1 i+2

I i+1/2,j

(a) Discretization of the Laplacian
on the points at the interface.

j

j+1

j-1

ii-1 i+1 i+2

I i+1/2,j

(b) Discretization of∇U at the in-
terface: non-stabilized stencil.

j+1

j

j-1

i-1 i i+1 i+2

I i+1,j,S

j+2

i,j,EI 

(c) Discretization of ∇U at the in-
terface: stabilized stencil.

Figure 2: Discretizations of the Laplacian and of the gradient of U at the interface. The first
y–derivative stencil on the right side is shifted to avoid an ill-conditioned discretization.

4.2 Accuracy of the finite difference method
In order to show the accuracy of the numerical method, we compare both explicit and numerical
solutions to the linear static problem (4), i.e without electroporation. This means that in (4c),
Sm is constant equal to SL.
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Consider a domain composed of two concentric disks. The cell is the disk of radius R1,
centered at 0. The domain Ω is the disk with the same center as the cell, and whose radius R2 is
stricly greater than R1. The boundary data g equals ER2 cos θ, such that the cell is embbeded
in a uniform electric field of magnitude E in the x–direction. The exact solution Ũ to (4) is then
explicitely given by

∀(r, θ) ∈ (R1, R2)× [0, 2π], Ũe(r, θ) = (αer + βer
−1) cos θ,

∀(r, θ) ∈ (0, R1)× [0, 2π], Ũc(r, θ) = αcr cos θ,
(38)

where αe, βe, and αc are given by

αc =

((
σc

SLR1
+ 1 +

σc

σe

)
R2 +

(
σc

SLR1
+ 1− σc

σe

)
R2

1

R2

)−1

g,

αe =
1

2

(
σc

SLR1
+ 1 +

σc

σe

)
αc,

βe =
1

2

(
σc

SLR1
+ 1− σc

σe

)
αcR

2
1.

This analytic solution is projected on the edges of the square QL centered at 0, and whose
characteristic length L satisfies R1 < L/2 < L

√
2/2 < R2 (see Fig 3(a)).

In order to verify the accuracy of the space discretization, at least in this configuration, we
solve numerically problem (4) in the square QL, with the trace Ũ |∂QL

of the analytic solution
Ũ on the edges of QL as Dirichlet boundary condition for different grid spacings h. We set the
parameters equal to

R2 = 150 µm, R1 = 50 µm, L = 200 µm, E = 400 V/cm,

the electric parameters being given by Table 1. These parameters come from the values given
by DeBruin and Krassowska, see Table 1 of [3].

We then compare the numerical solution Uh to Ũ . The relative error is computed using both
grid and interface points:

E(Ũ , Uh) :=
||Uh − Ũ ||L2(Ω) + |Uh − Ũ |L2(Γ)

||Ũ ||L2(Ω) + |Ũ |L2(Γ)

. (39)

We denote by hr the relative grid spacing defined by

hr = h/L.

Figure 3(b) shows the behavior of E(Ũ , Uh) with respect to hr: the space discretization is of
order two for this specific case. Note Cisternino and Weynans [2] have shown the second order
accuracy of their method, therefore despite we have adapted the scheme to our problem, we are
confident in the good accuracy of the numerical method.

4.3 Computation of the non-linear static model

When solving the static equation (4), if one uses the following naive iterative method:

Sm([Un])[Un+1] = σc∂nU
n+1
c ,
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Γ
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L

x
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(a) Domains of calculation of the ana-
lytic and of the numerical solutions.
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(b) Log-log diagram of the error E(Ũ , Uh) given by (39) with respect
to hr.

Figure 3: Numerical estimation of the order of accuracy of the method. The analytic solution to
the linear problem is calculated in concentric circular domains. The restriction of this solution
to the boundary of the computational domain (dashed line) provides the Dirichlet data for the
numerical solution. Relative error between the two solutions with respect to the grid spacing is
plotted in Figure 3(b).

one finds that the iterative scheme oscillates between two values. This might be a consequence of
the fact that the membrane conductivity takes its extreme values SL and Sir instead of reaching
an intermediate state. Another issue might be that the mapping Lg defined by

Lg : v 7→ u,
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where u ∈ PH1(Ω) is solution to{
∆u = 0, in Oe ∪ Oc, u|∂Ω

= g,

[σ∂nu]Γ = 0, Sm

(
[v]Γ

)
[u]Γ = σc∂nu|Γ,

is not a contraction, since the Lipschitz constant of Sm is of order kepSm � 1.
We use a modified mapping Lρ,g:

Lρ,g : v 7→ u,

where u ∈ PH1(Ω) is solution to{
∆u = 0, in Oe ∪ Oc, u|∂Ω

= g,

[σ∂nu]Γ = 0, [u]Γ + ρSm

(
[v]Γ

)
[u]Γ − ρσc∂nu|Γ = [v]Γ,

where ρ is a small positive parameter chosen so as Lρ,g be a contractive operator. The following
iteration process is used:

U0 given, and for any n ≥ 0 Un+1 = Lρ,g(Un).

For the simulations we set the stopping criterion of the scheme at γ = 10−12, meaning that the
numerical solution is obtained when the relative error E(Un+1, Un) is smaller that γ.

4.3.1 Influence of the parameter Sir

The parameter Sir, which is the conductivity of the fully “electroporated” membrane is hardly
measurable by the experiments. It is therefore important to investigate its influence on the
model. Figure 4 shows that Sir has a little influence on the membrane conductivity Sm, as the
value of X counter-balance the variation of Sir. Therefore, the numerical criterion to define the
electroporation should involve the parameter Sm.

4.3.2 Comparison with the model of Ivorra, Mir and Villemejeane

We compare our results with the simulations of Ivorra et al. by studying the influence of the
extracellular medium conductivity on the membrane conductivity. In Figure 5, we show results
similar to those presented in Figure 7 of [10]. Note that to perform their simulations, Ivorra et
al. have multiplied by ten the membrane thickness. This is the reason why their permeabilizing
field is of order of magnitude of 2MV/m, which is much higher than the magnitude used in the
experiments, typically [12, 13, 6] to the range 20 to 30 kV/m. In contrast, our model provides
more realistic conditions of electropermeabilization.

4.4 Computation of the dynamical problem
4.4.1 Time-discretization of the model

The time-derivative ∂t[U ] of (23) is discretized using the following scheme:

Cm
[U ]n+1 − [U ]n

dt
− σc∂nU

n+1
c + S̃m(tn, [U ]n)[U ]n = 0. (40)

The Runge-Kutta method of order 4 is used to compute the variable X, with time steps dt.
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Figure 4: Membrane surface conductivity Sm at the pole of the cell (θ = 0) obtained by solving
the static equation with different values of Sir for pulse magnitudes from 10 to 50 kV/m (the
numerical values of the other parameters are given in Table 1).
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(b) Pointwise value of Sm at the cell pole.

Figure 5: Non-linear membrane conductivity of the static model for 4 different extracellular
conductivity: σe = 1 S/m (•), σe = 0.1 S/m (◦), σe = 0.01 S/m (�), σe = 0.001 S/m (�).
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Table 1: Parameters set to fit to the results given by [14, 3]. (EP stands for electropermeabiliza-
tion, and EPd stands for electropermeabilized).

Variable Symbol Value Unit

Biological parameters:
Extracellular conductivity σe 5 S/m
Intracellular conductivity σc 0.455 S/m
Capacitance Cm 9.5× 10−3 F/m2

Membrane surface conductivity SL 1.9 S/m2

Cell radius r 50 µm
Membrane thickness δ 5 nm

Specific parameters of the model:
EP threshold Vrev 1,5 V
EP switch speed kep 40 V−1

EP characteristic time τep 1× 10−6 s
Resealing characteristic time τres 1× 10−3 s
EPd membrane surface conductivity Sir 2.5× 108 S/m2

Numerical parameters:
Simulation box size L 200 µm
Grid points (each side) N 50
Time step ∆t 20 ns
Pulse duration Tp 100 µs
Duration of simulation Tf 150 µs
Number of time steps NT 7500
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Figure 6(a) and 6(b) show the numerical results at t = 100 µs using the parameters of Table 1.
In order to visualize the membrane electropermeabilization, we depict it with boxes, which are
colored and sized according to the values of S̃m at each point of Γ and at t = 100 µs. We
emphasize this is a visualization artefact: in our model, the cell membrane is a surface without
any thickness.

(a) Solution to the dynamical model for
a circular cell.

(b) Solution to the dynamical model for
a smooth non-convex cell shape.

Figure 6: Solution to the dynamical problem with two different cell shapes at t = 100 µs. The
numerical parameters are given by Table 1. Fig. 6(b) shows that the electropermeabilized regions
depend on the shape and orientation of Γ.

4.4.2 Main parameters influence

The key parameters of the model define the electropermeabilization coefficient S̃m, that is kep,
Vrev, Sir and the characteristic times τep and τres. A numerical sensitivity analysis was led to
determine how the behavior of the solution with respect to a variation of each specific parameter,
as shown on Figure 7. All the parameters defining the function β have a very small influence
on the average X of X over the cell membrane. Even for small values of kep, the values of X
are only modified by a factor 2 (Figure 7(a)). On the other hand, the “fully electroporated”
membrane conductivity Sir, which was first taken as (σc + σe)/(2δ), affects greatly the order of
magnitude of X, changing from 10−6 to 10−2 (Figure 7(d)). Therefore, as for the static case the
relevant quantity to observe the phenomenon is S̃m.

4.4.3 Comparison with the model of Neu, Krassowska, and Debruin

The main difference between the model of Neu, Krassowska, et al. and ours resides in the addition
of an electroporation current Iep = Nepiep, instead of a direct description of the variations of the
surface membrane conductivity S̃m.

The equation satisfied by the transmembrane voltage in the model of Neu, Krassowska, et
al. [3] reads

−σc∂nUc = Cm∂t[U ] + SL[U ] +Nepiep, (41)

where the ionic reversal currents have been neglected. Nep is the pore density, obeying the
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Figure 7: Influence of each parameter on the mean value S̃m of S̃m (Fig. 7(a)–7(b)–7(c)), and
on the mean value X of X (Fig. 7(d)) at t = 100 µs. Three magnitudes of electric pulses are
considered: 10, 25 and 40 kV/m.
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ordinary differential equation (parameters are emphasized in bold):

dNep

dt
= αe([U ]/Vrev)

(
1− Nep

N0
e−q([U ]/Vrev)2

)
, (42)

and iep is the current flowing through a single pore:

iep(vm) =
πr2mσRT

Fδ

vm(evm − 1)

w0ew0−nvm − nvm

w0 − nvm
evm − w0ew0+nvm + nvm

w0 + nvm

, (43)

with vm = [U ]× F/RT the adimensionalized transmembrane voltage.
The numerical parameters for the model of Neu, Krassowska, et al. are those of Table 1

page 1215 of [3]. Our model reproduces qualitatively the behavior of ∆TMP as shown in Figure 8.
In Figure 9, we show that the variation of the membrane current density S̃m[U ] of our modeling
is similar to the electroporation current density Nepiep of [3].
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(a) Evolution of the ∆TMP at the cell’s pole.
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(b) Values of the ∆TMP after 100 µs along the
perimeter of the circular cell.

Figure 8: Comparison of the ∆TMP obtained respectively with our model (solid lines) and with
the model of Neu, Krassowska, et al. (dashed), with parameters from table 1.

4.4.4 Long-time behavior of the numerical solution to the dynamical model

In this paragraph, we compare the long-time behavior of the solution Udyn to the dynamic model
for a constant pulse with the solution Ustat to the static model.

Simulations are done in order to reach the time scale of the resealing characteristic time τres

(Figure 10). A constant pulse g is applied until the steady state of the dynamical system is
reached. Observe that the stationary value of S̃m, which is reached after about 500 µs is lower
than the value of S̃m a few tens of microseconds after the begining of the pulse delivery. For
pulses of short duration, it is therefore important to simulate our new dynamical model instead
of the steady model of Ivorra et al. [10].

5 Conclusion
In this paper, we introduce two models describing the electropermeabilization of a single cell.
We first study the static model, which is inspired by Ivorra et al., and we show existence and
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Figure 9: Current density through the membrane of the model of Neu, Krassowska, et al., that
is Jep = Nepiep (in dashed line), compared with the membrane current density of our model (in
solid line), Jep = S̃m [U ], along the the cell membrane at 100 µs.
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Figure 10: Averaged membrane conductivity S̃m during long-time simulations. Steady state is
reached after several hundreds of microseconds, which is larger than usual pulse duration.
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uniqueness results. We then derive a new dynamic model of cell electropermeabilization, which
takes the permeabilizing time into account. We studied mathematical properties of this new
model. We then provided an accurate finite-difference method on cartesian grid to compute
these models, and we eventually presented numerical simulations for both static and dynamic
models, that corroborate the results of the most achieved model of Neu, Krassowska, et al.

The main feature of our models lies in the fact that without loss of accuracy it is composed by
a small number of parameters (mainly 4 parameters: Sir, Vrev, and τep, and τres for the dynamical
system) compared with the sophisticated models with tens of hardly measurable parameters of
Neu, Krassowska, et al. Therefore, a forthcoming fitting of our models with the experimental
data seems feasible, which is hardly the case for models with a large number of parameters.

From the biological point of view, we highlight the fact that the static model can be used for
very long pulses (around 1 ms) but, for short pulses around 10 µs and below, the dynamics of
the phenomenon have to be considered.
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