Some regularity results for a class of upper semicontinuous functions

Abstract : We study regularity properties enjoyed by a class of real-valued upper semicontinuous functions f : R d ! R whose hypograph satis es a geometric property implying, for each point P on the boundary of hypo f, the existence of a sort of (uniform) subquadratic tangent hypersurface whose intersection with hypo f in a neighbourhood of P reduces to P. This geometric property generalizes both the concepts of semiconcave functions and functions whose hypograph has positive reach in the sense of Federer; the associated class of functions arises in the study of regularity properties for the minimum time function of certain classes of nonlinear control systems and di erential inclusions. We will prove that these functions share several regularity properties with semiconcave functions. In particular, they are locally BV and di erentiable a.e. Our approach consists in providing upper bounds for the dimension of the set of nondi erentiability points. Moreover, a ner classi cation of the singularities can be performed according to the dimension of the normal cone to the hypograph, thus generalizing a similar result proved by Federer for sets with positive reach. Techniques of nonsmooth analysis and geometric measure theory are used.
Type de document :
Pré-publication, Document de travail
To appear in Indiana University Mathematics Journal. 2012
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00713145
Contributeur : Estelle Bouzat <>
Soumis le : vendredi 29 juin 2012 - 14:27:54
Dernière modification le : lundi 12 février 2018 - 14:24:05
Document(s) archivé(s) le : dimanche 30 septembre 2012 - 02:30:24

Fichier

Some_regularity_properties_for...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00713145, version 1

Collections

Citation

Antonio Marigonda, Tien Khai Nguyen, Davide Vittone. Some regularity results for a class of upper semicontinuous functions. To appear in Indiana University Mathematics Journal. 2012. 〈hal-00713145〉

Partager

Métriques

Consultations de la notice

297

Téléchargements de fichiers

87