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Abstract. Despite the valuable contributions on self-adaptation, most
implemented approaches assume adaptation goals and monitoring infras-
tructures as non-mutable, thus constraining their applicability to sys-
tems whose context awareness is restricted to static monitors. Therefore,
separation of concerns, dynamic monitoring, and runtime requirements
variability are critical for satisfying system goals under highly changing
environments. In this chapter we present DYNAMICO, a reference model
for engineering adaptive software that helps guaranteeing the coherence
of (i) adaptation mechanisms with respect to changes in adaptation goals;
and (ii) monitoring mechanisms with respect to changes in both adap-
tation goals and adaptation mechanisms. DYNAMICO improves the en-
gineering of self-adaptive systems by addressing (i) the management of
adaptation properties and goals as control objectives; (ii) the separation
of concerns among feedback loops required to address control objectives
over time; and (iii) the management of dynamic context as an indepen-
dent control function to preserve context-awareness in the adaptation
mechanism.

1 Introduction

The necessity of a change of perspective in the engineering of software systems
has been widely discussed during the last decade by several researchers and prac-
titioners in different software application domains [1-3]. In particular, Truex et
al. posited that software engineering has been based in part on an incorrect set
of goals, from the assumption that software systems should support rigid and
stable business structures and requirements, have low maintenance, and fully
fulfill these requirements from the initial system delivery [4]. In contrast to this
static and “stable” vision, they proposed a new set of goals based on perma-
nent analysis, dynamic requirements negotiation and incomplete requirements



specification. Their proposal is aligned with the vision of self-adaptive systems,
where dynamic adaptation is necessary to ensure the continuous satisfaction of
their functional requirements while preserving the agreed conditions on Quality
of Service (QoS) levels. These QoS levels are usually represented in the form of
Service Level Agreements (SLAs), and their enforcement mechanisms are based
on contracts and policies, among others [5, 6]. To achieve the continuous satisfac-
tion of changing requirements, the development of this kind of systems requires
adaptation mechanisms able to perform short-term adaptations on them, and
manage their long-term evolution [7]. As part of this adaptation and evolution,
system analysis must be performed at runtime, and its requirements satisfaction
must be monitored and regulated by continuously adjusting or enhancing its
behavior [8, 3].

Although the feedback loop model of control theory has been used as a refer-
ence in many self-adaptive systems in different application domains, the visibil-
ity of the feedback loop as the crucial architectural element to govern software
adaptation remains often hidden. In many cases, the managed application is in-
tertwined with the adaptation mechanism, rendering it as hard to analyze, reuse,
and manipulate [9,8,10]. In other cases, such as those following the multi-layer
architectures (e.g., ACRA [11], FORMS [12] and Kramer and Magee’s [13]), their
designs assume a completely closed and controlled context where monitoring re-
quirements are not subject to change, even though several feedback loops can
be evidenced in them. However, for many systems it is not affordable to discard
unexpected context changes and dynamic changes in adaptation goals and user
requirements, such as SLA re-negotiation at runtime. In these cases, statically
deployed context monitoring elements are not enough to cope with these levels
of dynamics, which are implied by context unpredictability.

Hence, as context information requirements evolve over time, due not only
to changes in the execution environment, but also to the evolution of the adap-
tive system and its requirements, monitoring infrastructures are also required
to be self-adaptive. Furthermore, in these cases the adaptation of the monitor-
ing infrastructure implies to update the context analyzer of the target system’s
adaptation mechanism. Therefore, these changes must be coordinated by an
independent feedback loop, that is, the one that manages changing control ob-
jectives and adaptation goals at runtime, thus preserving context-awareness in
the system evolution.

In this chapter we present DYNAMICO (Dynamic Adaptive, Monitoring
and Control Objectives model), a reference model for engineering context-based
self-adaptive software composed of three types of feedback loops. Each of these
feedback loops manages each of the three levels of dynamics that we characterize
for self-adaptation: (i) the control objectives feedback loop, (ii) the target system
adaptation feedback loop, and (iii) the dynamic monitoring feedback loop. As
a reference model (i.e., a standard decomposition of a known kind of problems
into distinguishable parts, with functionalities and control/data flow that are
well defined [14]), DYNAMICO calls self-adaptive system designers to be aware
whether the objectives, the system, or the monitoring infrastructure must be



adapted. In this sense, our reference model can be used to check if these dimen-
sions are being considered in the designs. Moreover, it defines the elements and
functionalities, as well as the control and data interactions to be implemented,
not only among the feedback loop elements, but also among the three types of
feedback loops. In addition, our characterization of the latter interactions allows
our reference model to be applied partially, that is omitting any of its feedback
loops, targeting self-adaptive systems where supporting changes in any of the
three levels of dynamics is a crucial requirement.

In light of this, we argue that, in order to regulate the satisfaction of adapta-
tion goals and managed application’s requirements continuously, (i) each of the
feedback loop elements and their interactions must be independently analyzable;
and (ii) the monitoring elements must be able to process the different kinds of
information that the varying context can produce appropriately. DYNAMICO
was inspired by classical control theory and the autonomic element proposed
by IBM researchers [15]. With this reference model we aim to contribute to the
design of self-adaptive software by making its instances consider these aspects
explicitly: (i) the achievement of adaptation goals and their usage as the refer-
ence control objectives; (ii) the separation of control concerns by decoupling the
different feedback loops required to satisfy the reference objectives as context
changes; and (iii) the specification of context management as an independent
control function to preserve the contextual relevance with respect to internal
and external context changes.

The remainder of this chapter is organized as follows. Section 2 describes an
industrial-based application example that we use to explain our reference model
and its application. In Sect. 3 we re-visit fundamental ideas and concepts that
have shaped the engineering of self-adaptive software in the last years, and from
which we distill our reference model. Section 4 presents our proposed reference
model including the feedback loop interactions and their governance, as well
as some variations that DYNAMICO admits. Finally, Sect(s). 5 and 6 discuss
related work and conclude the chapter, respectively.

2 Application Example

This section presents a SOA governance application example based on an in-
dustrial case study we conducted in collaboration with the IBM Centre for Ad-
vanced Studies (CAS) Canada.! In this case study, self-adaptation mechanisms
are exploited at runtime to manage service-level agreements (SLAs), and ensure
quality of service (QoS) requirements in service-oriented systems [16]. In SOA
and cloud-based systems QoS is highly affected by, and dependent on context
information. On the one hand, SLAs may be violated at any time during system
execution due to changes in the situation of relevant context entities such as
computational infrastructure components (i.e., internal context), and users (i.e.,
external context). On the other hand, as businesses and users’ requirements are

! http://www-927.ibm.com/ibm/cas/canada/research/index.shtml



evolving continuously, contracted QoS conditions (i.e., adaptation goals) may be
frequently re-negotiated, thus affecting the effectiveness of monitoring and adap-
tation mechanisms. This application example is also based in one of our previous
papers on governance feedback loops [17], where we applied our reference model
to the implementation of a runtime governance infrastructure able to change
monitoring strategies dynamically, as required by changes in adaptation goals
and the adaptive system itself. The proposed self-adaptive governance infras-
tructure aims to ensure contracted conditions such as performance, reliability
and resource consumption in SOA and cloud-based environments, where SLAs
are constantly re-negotiated at runtime [18,17].

Software-as-a-Service (SaaS) is one of the business models in cloud comput-
ing environments. SaaS provides customers with several benefits such as main-
tenance and evolution supported by the cloud provider, high availability, pay-
per-use, and low operational costs. Suppose an SaaS cloud provider, specialized
in large scale e-commerce platforms, is interested in governing the efficiency of
the service-oriented infrastructure with the goal of optimizing operational costs.
Assume that to guarantee low operation costs and thus contracted conditions,
performance governance has been initially defined as the adaptation goal. For
this, a performance SLA defines a service level objective (SLO) to guarantee an
efficiency measurement of at least 90% for a particular service (e.g., Processing-
PurchaseOrder). The metric associated to the SLO is the time behavior metric
(TB) proposed by Lee et al. [19]. We used this metric as an efficiency measure
based on the processing time of service interfaces. Let us assume that initially
the ProcessingPurchaseOrder is composed only of one interface, thus we express
the service efficiency as:

Processing PurchaseOrder inter face execution time

" total ProcessingPurchaseOrder service invocation time (1)

The denominator, total ProcessingPurchaseOrder service invocation time,
represents the total time it takes for the service to respond after the correspond-
ing request. The numerator, ProcessingPurchaseOrder interface execution time,
indicates the time consumed for processing a given interface functionality. Pro-
cessingPurchaseOrder is composed only of one task defined initially as one in-
terface implementation, thus the numerator is the processing time required for
executing that individual task (i.e., total ProcessingPurchaseOrder service
invocation time — waitingtime). TB is in the range 0..1, where higher values
indicate a better measure of performance in terms of time efficiency. Finally,
suppose that an action guarantee, defined as part of the SLA, will trigger a
self-optimizing feature that performs an on-line architectural reconfiguration to
improve the system’s efficiency and capacity.

2.1 The Need for Dynamic Context Monitoring

Using DYNAMICO, runtime SOA governance can be optimized by supporting
adaptive monitoring strategies to address changes in monitoring requirements.



Variations in monitoring requirements can be generated by changes in either the
governance objectives (i.e, adaptation goals), the target system, the adaptation
mechanism, or relevant context entities. The following two use cases illustrate
the need for supporting dynamic monitoring, to preserve the context-awareness
of the adaptation mechanism upon changes in the target system (i.e., changes
in internal context entities) and adaptation goals.

Use Case 1: changes in internal context entities. Suppose that due to self-
adaptation, the ProcessingPurchaseOrder service is replaced by a set of dis-
tributed services intended to enlarge the order processing capacity of the e-
commerce platform. Consequently, the efficiency metric presented in (1) must be
applied to every new service interface. With traditional static monitoring mecha-
nisms, the governance of the performance SLA is compromised as the monitoring
infrastructure was originally implemented to monitor the time efficiency of the
ProcessingPurchaseOrder service interface only. The monitoring of the new in-
terfaces is not supported without manually implementing the required sensors
and monitors. This implies that every time monitoring conditions or the set of
context entities to be monitored change, the monitoring instrumentation must
be adjusted manually. Moreover, the effectiveness in performing these changes
depends on the effectiveness in reporting them. Using our DYNAMICO, our
SOA governance infrastructure is able to deal with changes in monitoring re-
quirements at runtime. Once the new services for purchase order processing are
deployed, adaptation mechanisms will trigger the adaptation of the monitoring
strategy to monitor the new service interfaces. Our monitoring infrastructure
exposes autonomous capabilities to configure and deploy new sensors and mon-
itoring conditions at runtime. Implementation details regarding the dynamic
capabilities of the implemented monitoring infrastructure are discussed in our
MESOCA paper [17].

Use Case 2: changes in adaptation goals. Suppose now that the initial SLA is
re-negotiated. A new service level objective (SLO) on throughput is added to the
efficiency SLO defined originally as the contracted condition of the performance
SLA (cf. (1)). The new throughput SLO defines two different throughput levels,
depending on the applicable context situation, as summarized in Table 1 below.

The original monitoring infrastructure is implemented so that the initial per-
formance SLA supports only the monitoring of the individual ProcessingPur-
chaseOrder interface. Once the SLA is re-negotiated, the adaptation mechanism
is no longer effective as the new monitoring requirements imposed by the new
throughput SLO are not supported. Dynamic changes in the monitoring infras-
tructure may occur at different levels. They may imply either the deployment
of new sensors and new monitoring condition algorithms, or the modification of
existing monitoring thresholds and conditions. In any case, without supporting
changes in monitoring strategies at runtime, the adaptation mechanisms must
be adjusted manually to ensure their relevance with respect to new adaptation
goals. In this example, the new throughput SLO detailed in Table 1 will trigger
the adaptation of the existing monitoring strategy. T'wo new sensors and cor-
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Table 1. The throughput SLO is defined after the performance SLA has been re-
negotiated. The contracted conditions depend on different context situations that must
be monitored.

Throughput SLO of the Performance SLA

Throughput level =~ Monitoring Condition Relevant Context Entities

No. of likes on an A special offer on
offer < 200,000 a social network

Is Black Friday or
Christmas season?

Medium load

Highest peak load Day of the year

responding monitoring conditions must be added. The first one is to monitor
the acceptance of a special offer placed on a social network integrated into the
e-commerce platform. The second one is to keep track of the season. In both
cases, the monitored information is used to anticipate the expected system load
and thus modify the e-commerce platform capacity accordingly.

3 Design Drivers in the Engineering of Self-Adaptive
Software

3.1 Feedback Loops

Feedback loops are the cornerstone of control theory, and as such, they pro-
vide the basis for automation in many fields of engineering and in particular for
self-adaptation in computing and software engineering [20]. In this theory, the
feedback loop or closed loop, as depicted in Fig. 1, is the model used to auto-
mate the control of dynamic systems. These control mechanisms are realized by
comparing the measured outputs (A) of the target system behavior to the control
objectives given as reference inputs (B), yielding the control error (C), and then
adjusting the controlling inputs (D) accordingly for the target system to behave
as defined by the reference input [9]. The measured output can also be affected
by external disturbances (E), or even by the noise (F) caused by the system
adaptation itself. Transducers (G) translate the signals coming from sensors, as
required by the comparison element (H).

To keep objectives controlled in a target system, several strategies have been
proposed. The three most common strategies are (i) the regulatory control, which
ensures that the measured output is as close as possible to the reference input; (ii)
the disturbance rejection, to control the effects of disturbances on the measured
output; and (iii) the optimization control, which continuously seeks to obtain the
best value of the measured output, as effectively as possible [9]. These strategies
imply variations on the controller element but are realizable with the general
structure of the block diagram. To compute the controlling signals, there are
several possible mechanisms. In control theory, the representative mechanism
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Fig. 1. Classical block diagram of a feedback control system [9]

is the system transfer function, a mathematical model built upon the physical
properties and characteristics of the target system. Depending on these char-
acteristics, the transfer function can be built, for instance, with proportional,
derivative and integral (PID) terms. The parameters in a PID controller have
special significance given that there exist precise and sophisticated methods for
tuning their associated parameters.

Even though the application of control theory to industrial processes is well
understood, its application to the control of software systems has at least two
significant challenges: first, control theory is based on continuous mathemat-
ics, and second, it relies on measurements taken from, and actions performed
into, physical, self-contained and self-performing artifacts (e.g., sensors, gauges
and valves/actuators for temperature, pressure and other variables). As their
associated variables are in the continuous-time domain, the use of continuous
mathematics in this theory fits perfectly. In contrast, software systems are com-
posed of intangible artifacts with discrete-time behavior and not always well
characterized properties. Thus, direct sensing must be performed by CPU time-
consuming software artifacts, and the adaptation mechanisms must reason on
the target system’s discrete-time output. Moreover, to exploit the possibilities
of software adaptation fully, the output of the adaptation mechanism must be
more structured than controlling signals to be transduced by electro-mechanical
devices. This output may take the form, for example, of a plan of ordered actions
to be instrumented by the software actuators on the target software components.
Fortunately, there exists also the theory of linear discrete-time systems, which
closely resembles the theory of linear continuous-time systems.

A reference model should not prescribe any particular software self-adaptation
type of control. Instead, we propose DYNAMICO to characterize experimentally
the effect that the controller actions produce in the observed behavior of the tar-
get system.

3.2 Visibility of Feedback Loops

The benefits of integrating feedback loop-based models into the engineering of
self-adaptive software systems have been pointed out by several research pa-
pers [7,20,8, 3]. Oreizy et al. define runtime adaptation in the form of two pro-



cesses that exploit feedback loops to manage adaptation and system evolution,
respectively. The evolution management process feedback loop is in charge of
monitoring the consistency between architectural models and the actual system
implementation. Whenever this consistency is no longer satisfied, the evolution
management process feeds monitored information back to the adaptation man-
agement process feedback loop, which is in charge of reconfiguring the system’s
architecture [7]. Miiller et al. outline on the benefits of specifying the feedback
loops and their major components explicitly and independently. Furthermore,
they articulate the usefulness of defining the interactions among the elements of
a feedback loop explicitly, from analysis and design to implementation [20]. Giese
et al. also argue for the decoupling of feedback loops in control-based reference
architectures to address the satisfaction of quality attributes (control objectives),
the management of the context complexity, and the interactions among multiple
feedback loops and their elements [8]. Cheng et al. also emphasize the impor-
tance of making explicit not only the feedback loops, but also their elements
and properties [3]. In fact, Miiller et al. [20], as well as Kramer and Magee [13]
attest that even though feedback loops have been recognized as fundamental
design elements for self-adaptation, the related design documents and research
publications usually hide the visibility of both the adaptation controller and the
feedback loops. As a result, there currently exists no explicit methods for analy-
sis, validation and verification useful to measure the effectiveness of adaptation
mechanisms in software systems [21]. Based on these remarks, we aim in our
reference model to increase the visibility of the feedback loop components by
making them explicit entities of software architecture design and, thus, directly
analyzable, assessable and comparable.

Valuable papers have been published making significant advances in the area.
For instance, the feedback control architecture for adaptive systems proposed by
Shaw decouples the elements of a feedback loop (i.e., comparison, plan correc-
tion, and effect correction), and identifies the importance of context relevance
for the adaptation process [22,20]. In the same way, the autonomic manager
(MAPE-K loop) presented in Fig. 2, and the autonomic computing reference
architecture (ACRA) are important contributions of IBM that also make the
feedback loops in autonomic systems explicit [11]. On the one hand, as explained
in [10], the autonomic manager is an implementation of the controller element in
the generic control feedback loop depicted in Fig. 1. At the same time, the au-
tonomic manager controls the managed element by implementing an intelligent
control loop composed of the monitor, the analyzer, the planner, the executor,
and the knowledge base elements. This knowledge base is an important ele-
ment to share information along the loop. Moreover, it provides persistence for
historical information and policies required to correlate complex situations. On
the other hand, ACRA provides a reference architecture as a guide to organize
and orchestrate an autonomic system. Autonomic systems based on ACRA are
defined as a set of hierarchically structured building blocks composed of auto-
nomic managers, knowledge sources and manageability endpoints (management
interfaces).
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Fig. 2. The MAPE-K loop [15]

Nonetheless, despite ACRA and the MAPE-K loop that have helped consid-
erably improve the visibility of feedback loops, the internal components of each
control loop, and the control loop itself, still remain hidden inside the autonomic
manager. Certainly, the specification of the autonomic manager, provided in the
IBM architectural blueprint for autonomic computing, characterizes the man-
ager as a component that implements an intelligent control loop [11]. Moreover,
even when the ACRA architecture drivers are clearly the feedback loops in the
form of autonomic managers, their internal elements (i.e., the elements of the
MAPE-K loop) are highly coupled. Therefore, even though the multiple feed-
back loops defined in an ACRA-based model can be distributed —for instance
to improve the system scalability— this distribution is limited by the autonomic
manager boundaries. Each autonomic manager implements the entire cycle to
collect and aggregate information from the environment (monitor), to correlate
the collected information and identify symptoms for supporting the adaptation
decision making (analyzer), to plan the adaptation process (planner), and to
perform the adaptation plan (executor).

The separation of concerns between the monitoring process, the adaptation
controller, and the management of control objectives (adaptation goals) is still
an open challenge. This challenge is crucial for governing the consistency between
adaptation mechanisms and control objectives, while preserving the relevance of
context monitoring of the adaptation mechanism. In light of this, we concluded
that a loose-coupling schema is preferable to a tight-coupling one for the integra-
tion and communication among the feedback loop elements. However, we retain
the idea of composing instances of feedback loops similarly as specified by the
generic hierarchical structure described in ACRA. Finally, while the autonomic
manager, as an implementation of the feedback loop, is the architecture driver
for ACRA, our architecture drivers are the independent MAPE-K loop elements,
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their explicit interactions, and the separation of these elements in three main
groups, as explained in the following section.

3.3 The Three Levels of Dynamics

We identify three levels of dynamics that must be controlled in the engineering
of context-driven self-adaptive software systems: (i) the management of chang-
ing control objectives, (ii) the dynamic behavior of the adaptation mechanism
controlling the target system, and (iii) the management of dynamic context infor-
mation. Each of these levels of dynamics plays an important role in governing the
dynamic nature of the other two levels. In the case of the first level, as business
goals and corresponding control objectives that must drive the behavior of the
adaptive system evolve continuously, context monitoring mechanisms (the third
level of dynamics), and adaptation controllers (the second level) are required to
change accordingly. Furthermore, the management of control objectives may be
affected as a result of monitored observations at the third level of dynamics. For
instance, whenever the system identifies that even though the adaptation mech-
anism is performing properly, control objectives may be reviewed to modify the
adaptation and/or monitoring mechanism due to changes in context situations.

These three levels of dynamics may be clearly illustrated using the applica-
tion example described in Sect. 2. The first level, the management of changing
control objectives, corresponds to the software instrumentation required to iden-
tify changes in adaptation goals. In our example, these changes correspond to the
re-negotiation of the performance SLA by adding a new throughput SLO to the
initial efficiency SLO. The second level, the dynamic behavior of the adaptation
mechanisms, refers to the capability of adaptation strategies to adapt according
to changes in either adaptation goals, or context situations. In the application
example used as illustration in this chapter, the adaptation mechanism does not
expose dynamic behavior. That is, the adaptation strategy is always the same.
The third level, the management of dynamic context information, refers to the
instrumentation required to support changes in monitoring strategies at run-
time. In the application example, the dynamic reconfiguration of the monitoring
strategy is triggered by two different situations. In the first case, new sensors
are deployed at runtime to monitor the new service interfaces that have been
added with the new set of distributed services for processing purchase orders
(cf. Sect. 2.1, Use Case 1). In the second case, new sensors and monitoring con-
ditions are deployed dynamically due to changes in adaptation goals (i.e., the
new throughput SLA). The negotiation of a new throughput SLO requires from
the monitoring infrastructure to keep track of two new context entities, a special
offer placed on a social network and the day of the year (cf. Table 1).

4 DYNAMICO: Our Reference Model

Bass et al. define a reference model in software engineering as a standard decom-
position of a known kind of problems into clearly distinguishable parts [14]. Each
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of these parts has assigned a well defined functionality, and the data flow among
these parts is explicitly specified. Reference models serve as starting points for
software architecture and high-level design specifications.

Following this definition and based on the analysis of the seminal research
presented in Sect. 3, we distill in our reference model the characteristics that
have been commonly discussed and used in other representative research in the
engineering of self-adaptive software. We started by considering the general feed-
back control loop block diagram presented in Fig. 1. In this diagram, the target
system to be controlled, its controller and corresponding transducers are rep-
resented as rectangles. The elements for setting the reference input (set point)
and perform the comparison against the system measurements are combined in
a crossed circle. This block diagram reflects the relative simplicity of the “au-
tonomous” but independent elements used in control engineering. This simplicity
hides the very specific and natural electro-mechanical properties (e.g., resistance,
capacitance, inductance) of these elements. In contrast, in the MAPE-K model
the elements are interdependent and their functions are specified in a general
way. Concerning the characteristics of the different control strategies, control
theory takes advantage of exactly the particular complex properties of the mat-
ter that constitutes both the controller elements, as well as the system to be
controlled. In the case of software artifacts, even though they lack the physical
properties analyzed in control engineering, these artifacts are given particular
properties of behavior by their particular design. Nonetheless, and because of
this, it is practically impossible to generalize them.

Therefore, given the characteristics of software systems (i.e., the systems to
be controlled), we find that the combination of a general specification for the
common elements of both feedback-loops and MAPE-loops together with a loose
coupling scheme, are the best options for DYNAMICO. Figure 3 captures these
decisions, which represents the general component of our reference model. This
diagram clearly results from the merging of the classical feedback-loop and the
MAPE loop model (cf. Fig. 1 and Fig. 2 respectively).

Reference Control Input Adaptation
Noise Measured
Control Control Control Control
Symptoms Error Adaptation Controller ) Input Output
Monitor 3| Analyzer Planner Target
Sensed System
Context
Information PreProcessed

Control Output ControlOutput <

| <€
PreProcessing

Fig. 3. General components of DYNAMICO. Feedback control block diagram with ex-
plicit functional elements and corresponding interactions to control dynamic adaptation
in a software system.
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4.1 Addressing Separation of Concerns

Analyzing Fig. 3 from both the control theory and software architecture perspec-
tive, for a software system (target system) to become effectively context-driven
self-adaptive, it should incorporate at least three subsystems: (i) a control ob-
jectives manager, (i) an adaptation controller mechanism, and (iii) a context
manager or monitoring infrastructure controller mechanism. This design sepa-
rates the concerns with respect to the three levels of dynamics we have proposed
as design drivers for the engineering of context-driven self-adaptive systems: (a)
the regulation of the target system’s functional and non-functional requirements
satisfaction; (b) the continuous accomplishment of adaptation goals and the
preservation of the target system’s properties under changing conditions of exe-
cution; and (c¢) the relevance of the context monitoring infrastructure according
to the varying execution environment (dynamic context monitoring). This sepa-
ration of concerns leads us to abstract the block diagram presented in Fig. 3 into
the block diagram presented in Fig. 4. In this diagram, which constitutes our
reference model as such, each of the three feedback loops, the control objectives
feedback loop (CO-FL), the adaptation feedback loop (A-FL), and the monitoring
feedback loop (M-FL), is an instance of the model depicted in Fig. 3.

The identification of these subsystems as independent feedback loops allows
us to independently analyze, design, implement, and assess the instrumentation
required to address the complexity of changing requirements at each of the three
levels of dynamics. In this way, and depending on the nature of the adaptive
system, this instrumentation can be easily temporal and spatial distributed and
maintained. In addition, the entire software system would be less affected by
the computational effort of each of the three subsystems. The separation of con-
cerns made explicit by the DYNAMICO model is particularly crucial for cases
such as the cloud-based e-commerce platform presented in our application exam-
ple. In this example, the automatic reconfiguration of the monitoring strategy
would not be feasible without having the context manager as an independent
implementation of the adaptation mechanism. In the same way, the explicit con-
trol of changes in SLAs requires separate instrumentation. In the case where a
dynamic adaptation mechanism is necessary, having a self-contained adaptation
strategy (i.e., planner and executor) will contribute to the preservation of desired
properties. The chapter “On Patterns for Decentralized Control in Self-Adaptive
Systems”, by Weyns et al. in this book, presents useful architectural patterns,
that can be combined with our reference model, for implementing distributed
and decentralized feedback loops in self-adaptive software systems.

By applying the separation of concerns introduced in our reference model, it
is possible to support three different types of adaptation, depending on the dif-
ferent interactions implemented among the feedback loops: preventive, corrective
and predictive. In preventive adaptation, the dynamic monitoring feedback loop
notifies the adaptation feedback loop about context events (context symptoms)
that, even when they are causing no effects yet in the target system behavior,
they eventually will. This is the case of the monitoring condition that evaluates
the number of likes of an offer placed on a social network. As the offer becomes
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Reference Control Legend:
Objectives (e.g., SLAS) —> Control/data flow
CO-FL D Feedback loop abstraction

Objectives Feedback Loop

A-FL

Adaptation Feedback Loop

/

(B) (A) T(C) (D)
[m-FL

Monitoring Feedback Loop <

Sensed
Context
Information

Fig. 4. The three levels of dynamics that must be controlled in context-driven self-
adaptive software systems. The control objectives feedback loop, (CO-FL), controls
changes in adaptation goals and monitoring requirements to ensure their fulfillment.
The adaptation feedback loop, (A-FL), controls the adaptive behavior of the target
system and the adaptation mechanism, according to control objectives and taking
into account monitored context events. The dynamic monitoring feedback loop, (M-
FL), manages context information for preserving context relevance of the adaptation
mechanism. Labels (A), (B), (C) and (D) highlight the control/data flow among the
feedback loops, which would require the implementation of the appropriate method
interfaces.

popular, that is, the number of likes is close to 200,000, a predictive adapta-
tion process can be started to take the system to its medium-load capacity (cf.
Table 1 in Sect. 2). Consequently, even though the adaptation subsystem has
not detected any disturbances yet for triggering adaptation in the target sys-
tem, based on this context information, it can minimize the risks of the goal
satisfaction to be violated by performing a system adaptation in advance.

Corrective is the usual type of adaptation that takes place when monitoring
mechanisms supporting the adaptation feedback loop detect adaptation goals
are no longer satisfied. In our application example this can occur when the mon-
itoring feedback loop identifies an SLO violation in either the efficiency of the
ProcessingPurchaseOrder service(s), or the expected minimum number of pur-
chase orders processed per unit of time (cf. Table 1). Any of these situations
requires from the adaptation controller to perform another, perhaps more ag-
gressive, system reconfiguration, or to apply restrictive mechanisms of use to
prevent the system from collapsing before a new adaptation is performed.



14

Predictive adaptation takes advantage of both, historical information to an-
ticipate risks of goal violation, as well as the identification of plausible symptoms
that provide evidence to necessitate adaptation eventually. These symptoms may
be presented in the form of patterns of correlated events that potentially become
significant advice for adaptation. An example of this latter case in our application
scenario is the detection of a low but constant degradation of the ProcessingPur-
chaseOrder service efficiency around significant dates, but without reaching the
critical levels that trigger corrective adaptation. Using this historical informa-
tion, the dynamic monitoring feedback loop can trigger an alert event to indicate
or notify the operators that the negotiated performance SLA should be reviewed
to keep the system operation in a safe state.

Finally, it is worth noting that in Fig. 4 despite this separation of concerns,
the control objectives feedback loop (i.e., CO-FL in the figure), the adapta-
tion feedback loop (i.e., A-FL, including the target system), and the dynamic
monitoring feedback loop (i.e., M-FL) together, also constitute a feedback loop.
Figure 5 presents the detailed view of the reference model where each level of
dynamics is designed as an instance of the general feedback loop with explicit
components required for controlling the self-adaptation in software systems.

4.2 The Control Objectives Feedback Loop (CO-FL)

In DYNAMICO, the regulation of requirements satisfaction and the preserva-
tion of adaptation properties are objectives controlled through the collabora-
tion of the A-FL and the M-FL. We define requirements and adaptation prop-
erties as system variables to be controlled. Throughout the chapter, we refer
to these variables as control objectives and adaptation goals interchangeably.
These requirements can be functional and non-functional, and the target sys-
tem must satisfy them, depending for this on the adaptive capabilities of the
overall system. Adaptation properties refer to the properties that are inherent
in self-adaptive software, and thus, all adaptation mechanisms should expose
these properties [21]. As mentioned in Sect. 3.3, these control objectives are sub-
ject to change by user-level (re)negotiations at runtime and therefore must be
addressed in a consistent and synchronized way by the adaptation mechanism
and the context manager. There may be several causes for these changes. In a
first case, service level agreements with dependencies on context situations can
imply changes in control objectives at runtime. In our application example, this
is the case of the throughput SLO (cf. Table 1). This SLO defines two different
thresholds. The medium load threshold is applicable to those cases where spe-
cial product offers are placed online (e.g., on a social network integrated to the
business e-commerce platform). After placing the offer, it must be monitored
to apply preventive adaptation with the goal of adjusting the system capacity
according to the popularity of the offer. Popular offers are expected to affect the
e-commerce platform load considerably. Similarly, time context must be moni-
tored to keep track of the shopping seasons to apply preventive adaptation to
guarantee the system operation when the system load reaches its highest point
(cf. Table 1). In another case, when the system is in execution, the initial SLA
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Fig. 5. Our DYNAMICO reference model with a detailed view of the controllers for the
three levels of dynamics presented in Fig. 4 realized as the control objectives feedback
loop (CO-FL), the adaptation feedback loop (A-FL), and the monitoring feedback loop
(M-FL), respectively.

conditions can be re-negotiated. An instance of this case occurs in the second
use case of our application example. After the contracted services for the e-
commerce platform have been in production, a new throughput SLA is added
to the efficiency SLO agreed initially. Both the throughput and efficiency SLOs
are managed explicitly as the control objectives for the adaptive system. Thus,
both reference inputs, the A-FL reference control input, and the M-FL reference
context input, should be derived automatically from changes in control objec-
tives and fed into the corresponding feedback loops, as illustrated by interaction
(A) in Fig. 5. All of these changes between SLOs and SLAs, which are treated
as changes in reference inputs, are governed by the CO-FL.

Nonetheless, this explicit management of control reference inputs has two im-
portant implications: (i) it is required to model and express the corresponding
properties quantitatively in terms of quality attributes, and (ii) it is necessary



16

to have a mechanism to measure and update these reference inputs at runtime
whenever they change. Concerning these two implications, we proposed a com-
prehensive evaluation framework composed of a set of adaptation properties and
adaptation goals, and corresponding quality attributes [21]. This catalog is use-
ful for the assessment of self-adaptive software based on the accomplishment
of control objectives and suitability of adaptation mechanisms. Concerning the
second implication, the dynamic adaptation of control reference inputs (control
objectives) is addressed by closing the CO-FL. In the context of the main loop
(the one composed of the three feedback loops), the A-FL receives symptoms
from the M-FL through interaction (C), which in turn adapts its behavior ac-
cording to changes in control objectives to guarantee monitoring relevance along
the adaptation process. Under more dynamic scenarios, the A-FL controller may
be required also to change its adaptation strategy according to changes in con-
trol objectives. Furthermore, as an important concern in service provision is the
fulfillment of SLAs as specified in contracts, a plausible way to express and man-
age these reference goals quantitatively is through contract management and its
explicit modeling.

4.3 The Adaptation Feedback Loop (A-FL)

The adaptation feedback loop, A-FL, serves as a guarantor for regulating the
target system’s requirements satisfaction and preserving the adaptation prop-
erties. Recalling our application example, the efficiency and throughput SLOs
represent system’s requirements. Due to the changing nature of SLAs and con-
text situations, the satisfaction of these requirements depends on the adaptive
capabilities of the e-commerce platform. Among the adaptation properties ap-
plicable to the adaptation mechanism of the application example are settling
time, small overshoot, stability, and reconfiguration termination. In particular,
settling time, the time it takes for the adaptation mechanism to complete the
e-commerce platform reconfiguration, is crucial to guarantee the contracted con-
ditions. Our SEAMS 2011 paper provides a comprehensive catalog of adaptation
properties and corresponding quality attributes and metrics [21].

A-FL follows the separation of concerns criteria of the previous section. In
turn, these criteria conform to the general protocol of control theory, which re-
lies on quantitative expressions to measure the error in the controlled system
variables, and respective reference control inputs for these variables. The A-FL
gathers these measurements continuously from the target system through con-
text monitors. These monitors notify control symptoms for adaptation to the
A-FL analyzer, which determines whether a system adaptation is required (cf.
analyzer in Fig. 3). The simplest case for this occurs when the measured variables
under control, compared to their corresponding reference control inputs, indi-
cate that some control objective is no longer satisfied. Whenever it is relevant,
the A-FL analyzer notifies this fact with the corresponding information to the
system adaptation controller. With this information, the planner element selects
a strategy to adapt the system for it to re-establish the fulfillment of the violated
control objective. A possible result of this strategy is to compute and send a list
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of system architecture reconfiguration actions to the executor (e.g., a set of dis-
tributed services to replace the original ProcessingPurchaseOrder service). The
executor translates these actions to the specific runtime platform and executes
them in the target system, thus closing the main control loop. DYNAMICO
and its A-FL can take advantage of any strategy to perform the target system
adaptation.

4.4 The Monitoring Feedback Loop (M-FL)

The role of the monitoring feedback loop, M-FL, as an independent feedback
control loop is crucial for addressing the dynamic nature of context informa-
tion. In a context-based self-adaptive system, a context manager must be able to
make decisions based on past, current and foreseeable future states of context.
It must analyze context symptoms and facts to support the system adaptation
and the management of control objectives, as explained in Sect. 4.2. Moreover,
the monitoring mechanism must adapt itself to support new context manage-
ment requirements as the common control objectives are re-negotiated, or the
adaptive system evolves. For instance, the context manager for the application
example must be able to deploy new context management instrumentation. In
the first use case, the deployment of the new set of distributed services, caused
by the adaptation of the e-commerce platform, will trigger the deployment of
a new set of time behavior sensors to keep track of the new service interfaces
(cf. Sect. 2.1, Use Case 1). In the second use case, the re-negotiation of the
performance SLA (cf. Sect. 2.1, Use Case 2) will trigger the deployment of the
monitoring infrastructure required to keep track of two new types of context
information, the shopping season (i.e., time context according to our Smarter-
Context taxonomy [23]), and the special product offer (i.e., artificial context).

The M-FL in Fig. 5 represents a context manager that supports dynamic
monitoring. The reference context inputs correspond to the reference context
management objectives derived from the CO-FL reference control objectives.
Context monitors are in charge of gathering primary context information from
the internal and external environment, and the correlation of this information
to infer either, context symptoms that can affect the target system adaptation
process (provided to the A-FL through interaction (C) in Fig. 5), or control
symptoms to decide about the context manager adaptation. This information is
pre-processed by the context control output preprocessing element to generate
numeric observables from physical and logical sensors, and producing comparable
measures by performing basic transformations on them.

The context analyzer performs the context handling process required for the
context adaptation controller to decide about adapting the monitoring strategy,
and for the CO-FL to decide about changing the system objectives (interaction
(B)), as demanded by the current state of the environment and the self-adaptive
system requirements. The change of control objectives can be performed fully-
or semi-automatically, depending on whether it is necessary to re-negotiate the
contracts, and consequently, for the user to intervene (cf. Sect. 4.2). The context
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adaptation controller is responsible for defining and executing the adaptation
plan for the context manager, according to its adaptation strategy.

Finally, the measured control output and the target system’s internal con-
text are used to ensure the context manager goals, thus supporting the system
adaptation process and the management of the system control objectives.

To explicitly manage the relationship between control objectives and moni-
toring requirements in our case study, we proposed context-driven SLAs [17]. A
context-driven SLA is an extension of a traditional SLA where context require-
ments are explicitly mapped to SLOs. In this way, changes in SLOs generated
at runtime will include changes in the context management strategy specified
with the original SLA. Context-driven SLAs are implemented as contertual RDF
graphs based on the SmarterContext ontology. Both contextual RDF graphs and
SmarterContext are results of our research on dynamic context management for
context-aware self-adaptive software systems [23,17].

From the reference context inputs stated with the SLA, it is possible to
generate context models that represent the environmental information relevant
for the adaptation process. In our application example, context models are RDF
graphs that represent a composition of relevant context entities, context sensors,
and monitoring conditions. Whenever new SLAs are defined or existing ones are
re-negotiated, the RDF representation of the monitoring strategy for the corre-
sponding SLOs must be updated accordingly. The contextual RDF graph rep-
resenting the new monitoring requirements is processed by our M-FL analyzer.
Then, the planner element of the M-FL generates the adaptation plan that will
modify the monitoring strategy by deploying new, or modifying existing sensors
and monitoring conditions. The generation of these context adaptation plans at
runtime is based on semantic Web inference rules defined as part of our Smarter-
Context ontology. Further details on the instrumentation of dynamic monitoring
strategies for our case study are available in [17].

4.5 Feedback Loop Interactions

In DYNAMICO, not only are the three described feedback control loops well sep-
arated, but also the elements within each feedback loop. However, even though
control loops are designed independently of each other, they must operate coop-
eratively to achieve the overall system objectives.

As depicted in Figs. 4 and 5, to regulate the satisfaction of the control ob-
jectives, DYNAMICO specifies four interactions among its three feedback loops.
These interactions are labeled (A), (B), (C) and (D) in Fig. 5. We classify inter-
actions (A) and (B) as indirect interactions because they are realized through
the CO-FL, whereas interactions (C) and (D) as direct interactions due to their
direct connections between the M-FL and the A-FL.

Interaction (A) provides the reference context input (i.e., context manager
requirements) for the context manager (M-FL) to (i) maintain its relevance with
respect to the actual context situation and contracted conditions; and (ii) decide
on context management strategies. In the application example, reference context



19

inputs correspond to the context management requirements defined as part of
the SLA in the form of contextual RDF graphs [17].

Interaction (B) enables the control objectives manager (CO-FL) to decide
about the changes in the control objectives, whenever the M-FL detects that,
given the current context, the current set of control objectives should be ad-
justed or re-negotiated dynamically. Common control objectives are crucial for
governing the interactions between the A-FL and the M-FL. We specify common
control objectives in the form of contracts, machine readable SLAs as contextual
RDF-graphs to infer both, adaptation and context monitoring objectives [24, 6,
17]. Thus, a context management infrastructure (i.e., M-FL) must be able to
infer, from contracts and common control objectives, the context management
reference inputs, as well as the required monitoring strategies.

Interaction (C) is triggered by context symptoms that are identified and sent
from the M-FL context monitor to the A-FL analyzer. These context symptoms,
which can be manifested as groups of events presented with different characteris-
tics, are important for decision making in the A-FL. The communication mech-
anism and the information associated with these symptoms depend on the type
of adaptation the system is supporting (i.e., preventive, corrective or predictive).
For example, for a predictive adaptation, the M-FL could trigger symptomatic
events in advance about whether or not to perform a future adaptation. For a
preventive adaptation, the M-FL also sends symptoms, but the adaptation is
performed immediately. In contrast, for corrective adaptation, symptoms are ei-
ther, pushed by the M-FL or pulled by the A-FL depending on who recognizes
the need for adaptation —the context manager or the adaptation controller.

Interaction (D) represents the flow of internal context sensed by the M-FL
from the adaptive system. Monitoring of internal context information is neces-
sary to assess the system consistency after an adaptation. Moreover, by analyzing
internal context information that characterizes the current state of system prop-
erties, the M-FL could provide useful information to understand the relationship
between context symptoms, achievement of system goals, and the preservation
of adaptation properties [21].

4.6 Governing and Controlling Feedback Loop Interactions

According to our reference model, an adaptive system is defined as a collec-
tion of cooperating feedback loops that ensure the achievement of the system
objectives under changing context conditions. However, DYNAMICO can be
combined with other models for adaptive systems. In particular, the IBM archi-
tectural blueprint provides the ACRA model to orchestrate control loops hierar-
chically for autonomic systems [11, 15]. Combined with this model, DYNAMICO
supports the distribution of functions in a more fine-grained level, that is, at the
feedback-loop elements level. More extensive use of knowledge bases, as the ones
proposed for the MAPE-K loop, should also facilitate interactions among con-
trol loops. Such knowledge bases store historical information such as symptoms,
as well as internal and external context facts required by the analyzers in any
of the three types of control loop. Moreover, these persistence mechanisms help
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to fine-tune contracts and policies to achieve the control objectives, and to de-
velop machine-learning based adaptation mechanisms [25]. It is worth noting
that having common control objectives enable the three control loops to reason
consistently about the system goals, and to determine the coordinated control
actions on each of them.

Having common control objectives is important to govern the interactions
among the feedback loops. Figure 6 illustrates DYNAMICO abstracted as a
control objectives feedback loop. The A-FL (adaptation mechanism), the M-
FL (context manager), and the core controlled target system are abstracted
as a whole managed (super target) system. This managed system is governed
by the CO-FL according to changes in contracted conditions. Reference control
objectives (i.e., contracts) are fed into the system through direct user interven-
tion. Changes in these objectives can result from re-negotiations or from context
symptoms received through interaction (B) (cf. Fig. 4). According to Fig. 6,
whenever the objectives change as a result of symptoms received from the context
manager, the control objectives monitor perceives these symptoms as symptoms
of changes in the current set of control objectives. Then, the CO-FL analyzer
makes decisions on the necessity of producing a new set of reference control in-
puts. If applicable, the CO-FL controller produces a new set of reference control
inputs and reference context inputs to be sent to the adaptation mechanism and
the context manager respectively. The measured control objectives feed the sys-
tem back with information about the achievement of the system control goals.
Finally, if the control objectives change as a result of a re-negotiation, the user
is responsible for providing the control objectives analyzer with the new SLAs,
and their corresponding SLOs and context monitoring requirements.
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Fig. 6. DYNAMICO abstracted as a feedback loop for governing the dynamic change
of the system control objectives.
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4.7 Possible DYNAMICO Variations

To deal with out-of-kilter environmental behaviors or perturbations, control com-
munity has developed several variations to modify the control function, such as
the Model Reference Adaptive Control (MRAC) and the Model Identification
Adaptive Control (MIAC) mechanisms [26,27]. The main difference between
MRAC and MIAC is how the reference model is defined—in MIAC directly
inferred from the running process, whereas in MRAC pre-computed using a
mathematical model.

These variations are also applicable to DYNAMICO. Both variations can
be realized, for instance, using a rule-based or policy-based reconfiguration ap-
proach in the planner element of the system adaptation controller, as illustrated
in Fig. 7. In this figure, the CO-FL is represented by the control objectives man-
ager. The adjustment mechanism detects, through the measured control output,
whether the target system is facing an out-of-kilter environmental perturbation
(e.g., an unusual high number of on-line shoppers during the Black Friday sea-
son), or the adaptation strategy is far from being effective. If this is the case, it
modifies either the system adaptation planner (in the adaptation mechanism),
or the context adaptation planner (in the context manager), depending on the
situation. In our application example, the adaptation planner can be adjusted
by replacing the reconfiguration rules in the rule-based subsystem using the con-
troller parameters. Similarly, the context manager’s planner could be modified
by replacing the semantic Web rules, defined as part of the SmarterContext
ontology, to be used to infer changes in monitoring strategies.

Behaviour Measured
Model Control
Control Reference | Output | Adjustment | Output
y —>| Objectives Behaviour | Mechanism
ser Reference Manager
Level Control Model Controller Parametersl

Negotiations  Objectives A
Target System
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Manager || Mechanism

Y
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Fig. 7. Reference model variation for supporting adaptive feedback control loops with
reference behavior models. The control objectives manager feedback loop is abstracted.

5 Discussion of Related Work

Different research communities, related to dynamic software systems, have pro-
posed several examples of the application of feedback loops to concrete imple-
mentations of this type of systems. However, even though in most cases the
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existence of the feedback loop is evident, their designs lack separation of con-
cerns among the multiple feedback loops required to orchestrate the three levels
of dynamics introduced by our reference model (i.e., CO-FL, A-FL, and M-FL).
Moreover, the explicit treatment of the interactions among these three levels
is not generally addressed by existing implementations. Our reference model is
general enough for being applied to different context-driven adaptive systems
in many different application domains, where supporting changes in the three
levels of self-adaptation dynamics is a crucial requirement.

In this section we discuss how DYNAMICO can be used to optimize context
relevance in existing implementations of self-adaptive approaches, as well as the
way different models for self-adaptation address the key drivers addressed by
our reference model.

5.1 Optimizing Existing Implementations

A first example of concrete implementations is Rainbow, the adaptive framework
for implementing self-healing software systems developed by Garlan et al. [28].
Rainbow’s architecture maps directly to the feedback control architecture pro-
posed by Shaw [22,20]. Our contribution complements Garlan’s and Shaw’s ap-
proaches by making explicit not only the feedback loops, but also their internal
components, the interactions among them, as well as the separation of concerns
at the three levels of dynamics proposed by our reference model.

A second interesting instance from a different application domain is the
context-aware dynamic software product line proposed by Parra et al. [29]. They
proposed the introduction of context-aware assets that are dynamically incorpo-
rated into the product line, depending on context changes. Although their ar-
chitecture identifies the main feedback loop elements—a context manager (mon-
itor), a decision maker (analyzer and planner), a runtime platform (executor)
and a knowledge base—DYNAMICO can be used to improve their architecture
by introducing a context monitoring infrastructure governed by an independent
feedback loop, and coordinating the respective feedback loop interactions.

Yet another instance from the autonomic computing community is the real-
time adaptive control approach for autonomic computing environments proposed
by Solomon et al. [30]. Their system aims to control the computing infrastructure
through a mathematical description of the time variation on the number of users
in the system. Based on this function, the system modifies the control structure
of the autonomic computing infrastructure by replacing its controller with one
that matches the variation of the number of users on given time intervals. Fur-
thermore, their adaptive control is based on a multi-layer architecture similar to
ACRA, where the two upper layers correspond, respectively, to the autonomic
system adaptation and the autonomic system layers, and the lowest layer corre-
sponds to the managed infrastructure. The autonomic system adaptation layer
adapts the autonomic system layer whenever the management objectives are
not achieved. In this particular case, DYNAMICO is valuable for addressing the
separation of concerns within the adaptation and autonomic management lay-
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ers, as well as to guarantee the contextual relevance of monitoring mechanisms
according to changes in the management objectives.

In the self-organizing systems community, Caprarescu and Petcu proposed
a decentralized autonomic manager composed of many independent lightweight
feedback loops implemented as agents, where each agent is an implementation of
a MAPE-K loop [31]. Control objectives in this approach are specified as policies.
Moreover, each feedback loop agent uses just one policy that is shared among all
the agents organized in the same group. At the architectural level, this approach
is based on the three-layer model proposed by Kramer and Magee [13], which
was in turn inspired by the three-layer architectures proposed by the artificial
intelligence and robotics community [32]. The system performs its adaptation
based on a process of three phases. The first one separates agents into groups
according to policies (i.e., self-organization phase); the second one ensures that
only one agent can execute changes at a specific time (i.e., management phase);
and the third one keeps the policies of the feedback loop up to date (i.e., policy
update phase). Feedback loops adapt the system by modifying their parame-
ters, adding new components or reconnecting components. The application of
our reference model to this self-organizing system would help tackle the high de-
gree of coupling among the components of each feedback loop, thus making the
system components replaceable, reusable and distributable. An instance of the
application of our reference model to this particular domain is the self-healing
distributed scheduling platform presented by Frincu et al. [33].

5.2 Comparing DYNAMICO to Other Self-Adaption Models

With DYNAMICO we intend to provide software engineers with a simple, but
useful guide to (i) identify the minimum components required for implement-
ing highly dynamic adaptive systems (i.e., facing highly changing contexts); and
(ii) realize and control effectively the interactions among these components at
runtime. Thus, our reference model aims to support software engineers in the
implementation of dynamic mechanisms, by calling their attention to the ne-
cessity of reasoning about changes at the three levels of dynamics introduced
by DYNAMICO. Moreover, our model constitutes a guide to analyze the effect
of these changes in (a) the accomplishment of control objectives, (b) adapta-
tion mechanisms, and (c) context relevance along the system evolution. From
the perspective of this research, highly dynamic adaptive systems are adaptive
systems where changes in control objectives (adaptation goals) are supported
at runtime. As a result, adaptation and monitoring mechanisms are capable of
adjusting themselves, at runtime, accordingly. To address dynamics, feedback
loops, their visibility, and separation of concerns among them and their compo-
nents constitute key runtime drivers in DYNAMICO.

Several contributions have recognized the importance of these drivers in the
engineering of self-adaptive software. Feedback loop models from control theory
address separation of concerns by decoupling controllers from target systems.
From the perspective of adaptive software, this corresponds to a separation of
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concerns between adaptation mechanisms and managed systems [9]. The au-
tonomic manager, as defined by IBM in its autonomic computing vision, goes
further by increasing the visibility of the components that define a controller
in the form of the MAPE-K loop. Moreover, the autonomic manager identifies
the knowledge base as an important element for implementing intra-loop com-
munication and data persistence mechanisms. Similarly to feedback loops, the
autonomic manager addresses separation of concerns by implementing sensors
and effectors as a level of indirection between the adaptation mechanism and
the managed element [15]. A more recent reference model is FORMS, defined by
Weyns et al. [12]. FORMS provides a meta-model based on the MAPE-K model,
and combines it with a formal specification of its elements, which supports the
composition of self-adaptation mechanisms. The FORMS’s static structure di-
agram specifies the types of elements required to implement adaptation mech-
anisms, and the relationships among these elements. Thus, self-adaptive imple-
mentations instantiated from FORMS are based on the MAPE-K loop, and rely
on computational reflection approaches to affect managed elements. The MAPE
components are realized as computations derived from meta-level computations,
whereas the K component is realized in the form of models instantiated from
meta-level models. Meta-level models are key enablers of adaptation mechanisms,
which are supported by meta-level computations [34]. MAPE-K loop implemen-
tations, including hierarchical and decentralized compositions of MAPE-K loop
components can be instantiated directly from FORMS. Therefore, FORMS ad-
dresses separation of concerns and visibility of the feedback loop’s components in
the same way as addressed by the autonomic manager. The FORMS model seems
to be a suitable approach to implement self-adaptation mechanisms by exploit-
ing model-driven engineering technologies. Nevertheless, implementations where
the relevance of adaptation mechanisms and monitoring strategies must be con-
trolled at runtime to address changes in adaptation objectives are not currently
supported by FORMS.

The main contribution of our reference model refers to the separation of
concerns required to deal with the three levels of dynamics in self-adaptation.
In DYNAMICO, separation of concerns goes beyond the decoupling of adap-
tation mechanisms from managed systems. We introduce three different types
of MAPE-K loops that must interact among them to address changes in self-
adaptive approaches at three different levels: control objectives, adaptation, and
monitoring. Our reference model characterizes the elements required to control
adaptation mechanisms under highly changing execution conditions. These ele-
ments are the components of the three types of feedback loops, the control/data
flow among their components, and the control/data flow among the three levels.
DYNAMICO relies on the MAPE-K loop to characterize the components that
define our control objectives, adaptation and monitoring feedback loops. How-
ever, DYNAMICO is independent of the particular strategies and technologies
used for implementing self-adaptation. To characterize the elements of our refer-
ence model and the interactions among them, we analyzed 34 of the most repre-
sentative research approaches to self-adaptation [21]. The surveyed approaches
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range from control theory-based approaches to pure software-based approaches.
In control-based approaches, the managed system’s structure is generally a non-
modifiable structure, and control actions are continuous signals that affect be-
havioral properties of the managed system. In software-based approaches, the
managed system’s structure is commonly a modifiable structure, and control ac-
tions are discrete operations, supported by software models and reflection, that
affect the system’s software architecture. We proposed DYNAMICO to guide
the design and implementation of dynamic control capabilities along the whole
self-adaptive systems spectrum.

A software engineer can use DYNAMICO not only to instantiate, indepen-
dently, each of the three feedback loops, but also to instantiate the interac-
tions among these three feedback loops. Consequently, a DYNAMICO-based
self-adaptive system can support changes in adaptation goals at runtime, as well
as the use of these changes to adapt adaptation mechanisms and monitoring
strategies accordingly. Moreover, this adaptive instrumentation can keep track
of changes in monitoring strategies that could indicate the necessity of revising
adaptation goals. Revisiting the application example used throughout this chap-
ter, an adaptive solution purely based on any the feedback-loop, the MAPE-K
loop, or the FORMS model could not adapt automatically the monitoring strat-
egy after re-negotiating the performance SLA, according to the new context
monitoring requirements stated with the throughput SLO (cf. Sect. 2.1).

According to Bass et al., the process of designing a concrete software architec-
ture for a system should start either from a reference model or an architectural
style, or from both [14]. In either case, the process continues with successive
refinement steps, where each step augments the previous one with additional in-
formation from further analysis of requirements in the problem domain, as well
as global design decisions. In light of this, the application of DYNAMICO must
be complemented with specific design patterns, architectural styles, design pro-
files, frameworks, and even other more specific or domain-dependent reference
models for designing self-adaptive software systems. In particular, architectural
patterns for interacting control loops such as the ones described in Sect. 4 of
the first chapter in this book—the roadmap—constitute a suitable approach ap-
plicable to the design and implementation of feedback loop interactions defined
in our reference model. Similarly, approaches such as the MAPE-K loop exten-
sions proposed by Vromant et al. may be applied together with DYNAMICO,
and selected architectural patterns to support intra- and inter-loop coordina-
tion during the different phases of self-adaptation [35]. Furthermore, due to its
general nature, DYNAMICO supports the engineering of self-adaptive systems
independently of concrete architectural considerations, such as the level of cen-
tralization or decentralization required by the control mechanism, as exemplified
in [34]. UML profiles, such as the one proposed by Hebig et al. [36], provide valu-
able support for the design of UML-based concrete architectures based on our
reference model.
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6 Conclusions and Future Work

In this chapter we have presented DYNAMICO, a reference model for engineering
highly dynamic adaptive software systems. This kind of system must deal with
highly dynamic contexts of execution, and effectively respond to, by evaluating
their own behaviour at runtime and reconfiguring itself whenever it no longer
satisfies its requirements.

A highly dynamic context is characterized by (a) expected and unexpected
changes in context conditions such as user location (in mobile software clients),
network access point, service throughput and load (in the server side), time and
calendar dates, and even user interests associated to specific locations and special
dates; (b) dynamic changes in adaptation goals and user requirements, such as re-
negotiation of QoS levels for specific services; and (c¢) other sensible changes that
affect the satisfaction of system requirements, such as unauthorized intrusions
or faults. In addition, all of these changes are assumed as natural requirements
to be satisfied by the self-adaptive system at runtime.

DYNAMICO helps cope with this kind of dynamic requirements by defining
three types of feedback loops. Each of these feedback loops manages each of the
three levels of context dynamics that we characterized for self-adaptation: (i) the
control objectives feedback loop, for managing changes in adaptation goals and
user requirements; (ii) the target system adaptation feedback loop, to deal with
changes addressable directly at the target system level; and (iii) the dynamic
monitoring feedback loop, to manage changes that require the deployment of
different or additional monitoring infrastructures to those already configured for
execution, thus maintaining its relevance with respect to the changing adap-
tation goals. As a reference model, DYNAMICO reconciles the many visions
and contributions of different approaches for the development of self-adaptive
software systems, whether they hide or exhibit the elements of feedback control
loops. Nonetheless, our reference model emphasizes the visibility of these control
elements and constitutes a guide to design self-adaptive systems in which the
system goals, the target system itself, or the monitoring infrastructure must be
adapted—assuming this is a crucial requirement for the system to be developed.
Depending on these requirements, the model can be applied as a whole, with its
three feedback loops, or partially, involving only a subset of them.

We showed the applicability of DYNAMICO using a SOA governance applica-
tion example based on an industrial case study. In this example, self-adaptation
mechanisms are used to guarantee SLAs in a cloud-based infrastructure whose
conditions of operation (i.e., efficiency and throughput) are re-negotiated at run-
time, potentially compromising the effectiveness of the already deployed moni-
toring infrastructure. To reestablish the relevance of the monitoring infrastruc-
ture, we combined two of the three feedback loops managed in DYNAMICO:
(i) the control objectives feedback loop for managing changes in the adaptation
goals (i.e., SLAs); and (ii) the dynamic monitoring feedback loop to deploy the
required additional monitoring elements.

For future research there are several opportunities for extending and validat-
ing DYNAMICO: (i) the use of DYNAMICO in additional validation cases, as
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part of the IBM CAS project “Managing Dynamic Context to Optimize Smart
Interactions and Smart Services”,? addressing different issues such as the dy-
namic discovery and adaptation of smart services to enable user-driven web
integration, and supporting distributed feedback loops for decentralized adapta-
tion control, as those discussed in Sect. 5.2; (ii) the concrete definition of control
objectives as contracts, to support the synchronized cooperation between con-
text management systems and self-adaptation mechanisms; (iii) the development
of generalized governance infrastructures to manage feedback loop interactions;
and (iv) the definition of a formal framework to evaluate and compare adapta-
tion mechanisms based on the three levels of self-adaptation dynamics that we
characterized in Sect. 3.3. For this, our characterization model and adaptation
properties can be used as a useful starting point [33].
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