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Abstract. This paper focuses on the restart strategy of CMA-ES on
multi-modal functions. A first alternative strategy proceeds by decreasing
the initial step-size of the mutation while doubling the population size at
each restart. A second strategy adaptively allocates the computational
budget among the restart settings in the BIPOP scheme. Both restart
strategies are validated on the BBOB benchmark; their generality is
also demonstrated on an independent real-world problem suite related
to spacecraft trajectory optimization.

1 Introduction

The long tradition of performance of the Covariance Matrix Adaptation Evolu-
tion Strategy (CMA-ES) algorithm on real-world problems (with over 100 pub-
lished applications [6]) is due among others to its good behavior on multi-modal
functions. Two versions of CMA-ES with restarts have been proposed to handle
multi-modal functions: IPOP-CMA-ES [2] was ranked first on the continuous
optimization benchmark at CEC 2005 [4,3]; and BIPOP-CMA-ES [5] showed
the best results together with IPOP-CMA-ES on the black-box optimization
benchmark (BBOB) in 2009 and 2010.

This paper focuses on analyzing and improving the restart strategy of CMA-
ES, viewed as a noisy hyper-parameter optimization problem in a 2D space (pop-
ulation size, initial step-size). Two restart strategies are defined. The first one,
NIPOP-aCMA-ES (New IPOP-aCMA-ES), differs from IPOP-CMA-ES as it si-
multaneously increases the population size and decreases the step size. The sec-
ond one, NBIPOP-aCMA-ES, allocates computational power to different restart
settings depending on their current results. While these strategies have been
designed with the BBOB benchmarks in mind [8], their generality is shown on
a suite of real-world problems [16].

The paper is organized as follows. After describing the weighted active (1t/ tty, A)-
CMA-ES and its current restart strategies (section 2), the proposed restart
schemes are described in section 3. Section 4 reports on their experimental vali-
dation. The paper concludes with a discussion and some perspectives for further
research.

** Work partially funded by FUI of System@tic Paris-Region ICT cluster through con-
tract DGT 117 407 Complex Systems Design Lab (CSDL).



2 The Weighted Active (p/ iy, A)-CMA-ES

The CMA-ES algorithm is a stochastic optimizer, searching the continuous space
RP by sampling A candidate solutions from a multivariate normal distribution
[10,9]. It exploits the best p solutions out of the A ones to adaptively estimate
the local covariance matrix of the objective function, in order to increase the
probability of successful samples in the next iteration. The information about
the remaining (worst A — i) solutions is used only implicitly during the selection
process.

In active (u/pr, \)-CMA-ES however, it has been shown that the worst so-
lutions can be exploited to reduce the variance of the mutation distribution in
unpromising directions [12], yielding a performance gain of a factor 2 for the
active (u/pr, A)-CMA-ES with no loss of performance on any of tested func-
tions. A recent extension of the (u/piw, A\)-CMA-ES, weighted active CMA-ES
[11] (referred to as aCMA-ES for brevity) shows comparable improvements on
a set of noiseless and noisy functions from the BBOB benchmark suite [7]. In
counterpart, aCMA-ES no longer guarantees the covariance matrix to be posi-
tive definite, possibly resulting in algorithmic instability. The instability issues
can however be numerically controlled during the search; as a matter of fact they
are never observed on the BBOB benchmark suite.

At iteration ¢, (f/ftw, \)-CMA-ES samples A individuals according to

2+ NN(m(“,a(“QC(”), k=1... (1)

where N (m, C) denotes a normally distributed random vector with mean
m and covariance matrix C.

These A individuals are evaluated and ranked, where index ¢ : A denotes the i-
th best individual after the objective function. The mean of the distribution is up-
dated and set to the weighted sum of the best p individuals (m =Y % | wlwgt))\,
with w; >0fori=1...pand > 1 w; =1).

The active CMA-ES only differs from the original CMA-ES in the adaptation
of the covariance matrix C®. Like for CMA-ES, the covariance matrix is com-
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where pi™! is adapted along the evolution path and coefficients ¢y, ¢, ¢~
and a;,; are defined such that c¢; + ¢, — c7a_;; < 1. The interested reader is
referred to [10,11] for a more detailed description of these algorithms.



As mentioned, CMA-ES has been extended with restart strategies to ac-
commodate multi-modal fitness landscapes, and to specifically handle objective
functions with many local optima. As observed by [9], the probability of reaching
the optimum (and the overall number of function evaluations needed to do so)
is very sensitive to the population size. The default population size Agefquiz has
been tuned for uni-modal functions; it is hardly large enough for multi-modal
functions. Accordingly, [2] proposed a “doubling trick” restart strategy to en-
force global search: the restart (u/py, A)-CMA-ES with increasing population,
called TPOP-CMA-ES, is a multi-restart strategy where the population size of
the run is doubled in each restart until meeting a stopping criterion.

The BIPOP-CMA-ES instead considers two restart regimes. The first one,
which corresponds to IPOP-CMA-ES, doubles the population size Ajgrge =
Qirestart ) ;. fault in each restart i,cstqr+ and uses a fixed initial step-size UZOM ge =
O—gefault'

The second regime uses a small population size Ag,q1; and initial step-size nga”,
which are randomly drawn in each restart as:

A — | 1 Aarge ulo,1)* 0 _ 0 —2U[0,1]
small = { default (gm) J s Osmall = Tdefaurr < 10 ' (3)
where U|0, 1] stands for the uniform distribution in [0, 1]. Population size Agmai
thus varies € [Adefauit, Marge/2]. BIPOP-CMA-ES launches the first run with
default population size and initial step-size. In each restart, it selects the restart
regime with less function evaluations. Clearly, the second regime consumes less
function evaluations than the doubling regime; it is therefore launched more
often.

3 Alternative Restart Strategies

3.1 Preliminary Analysis

The restart strategies of IPOP- and BIPOP-CMA-ES are viewed as a search in
the hyper-parameter space.

IPOP-CMA-ES only aims at adjusting population size A. It is motivated by
the results observed on multi-modal problems [9], suggesting that the population
size must be sufficiently large to handle problems with global structure. In such
cases, a large population size is needed to uncover this global structure and to
lead the algorithm to discover the global optimum. IPOP-CMA-ES thus increases
the population size in each restart, irrespective of the results observed so far; at
each restart, it launches a new CMA-ES with population size A = pi;j‘;m” Ade fault
(see o on Fig. 1). Factor p;,. must be not too large to avoid ”overjumping”
some possibly optimal population size A*; it must also be not too small in order
to reach A\* in a reasonable number of restarts. The use of the doubling trick
(pine = 2) guarantees that the loss in terms of function evaluations (compared
to the “oracle“ restart strategy which would directly set the population size to
the optimal value \*) is about a factor of 2.
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Fig. 1. Restart performances in the 2D hyper-parameter space (population size and
initial mutation step size in log. coordinates). For each objective function (20 dimen-
sional Rastrigin - top-left, Gallagher 21 peaks - top-right, Katsuuras - bottom-left and
Lunacek bi-Rastrigin bottom-right), the median best function value out of 15 runs is
indicated. Legends indicate that the optimum up to precision f(x) = 107! is found
always (+), sometimes (@) or never (o). Black regions are better than white ones.

On the Rastrigin 20-D function, IPOP-CMA-ES performs well and always
finds the optimum after about 5 restarts (Fig. 1, top-left). The Rastrigin func-
tion displays indeed a global structure where the optimum is the minimizer of
this structure. For such functions, IPOP-CMA-ES certainly is the method of
choice. For some other functions such as the Gallagher function, there is no such
global structure; increasing the population size does not improve the results. On
Katsuuras and Lunacek bi-Rastrigin functions, the optimum can only be found
with small initial step-size (lesser than the default one); this explains why it can
be solved by BIPOP-CMA-ES, sampling the two-dimensional (A, o) space.

Actually, the optimization of a multi-modal function by CMA-ES with restarts
can be viewed as the optimization of the function h(#), which returns the op-
timum found by CMA-ES defined by the hyper-parameters §=(\, o). Function
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Fig. 2. An illustration of A and o hyper-parameters distribution for 9 restarts of IPOP-
aCMA-ES (o), BIPOP-aCMA-ES (o and - for 10 runs), NIPOP-aCMA-ES (O) and
NBIPOP-aCMA-ES (O and many A for A/Agefauit = 1, 0/0defauit € [1072,10%]). The
first run of all algorithms corresponds to the point with A/Agefauit = 1, 0/0defauir = 1.

h(6), graphically depicted in Fig. 1 can be viewed as a black box, computation-
ally expensive and stochastic function (reflecting the stochasticity of CMA-ES).
Both IPOP-CMA-ES and BIPOP-CMA-ES are based on implicit assumptions
about the h(6): IPOP-CMA-ES achieves a deterministic uni-dimensional trajec-
tory, and BIPOP-CMA-ES randomly samples the 2-dimensional search space.

Function h(#) also can be viewed as a multi-objective fitness, since in addition
to the solution found by CMA-ES, h(#) could return the number of function
evaluations needed to find that solution. k() could also return the computational
effort SP1 (i.e. the average number of function evaluations of all successful runs,
divided by proportion of successful runs). However, SP1 can only be known for
benchmark problems where the optimum is known; as the empirical optimum is
used in lieu of true optimum, SP1 can only be computed a posteriori.

3.2 Algorithm

Two new restart strategies for CMA-ES, respectively referred to as NIPOP-
aCMA-ES and NBIPOP-aCMA-ES, are presented in this paper.

If the restart strategy is restricted to the case of increasing of population size
(IPOP), we propose to use NIPOP-aCMA-ES, where we additionally decrease
the initial step-size by some factor psqec. The rationale behind this approach
is that the CMA-ES with relatively small initial step-size is able to explore
small basins of attraction (see Katsuuras and Lunacek bi-Rastrigin functions on
Fig. 1), while with initially large step-size and population size it will neglect
the local structure of the function, but converge to the minimizer of the global
structure. Moreover, initially, relatively small step-size will quickly increase if it
makes sense, and this will allow the algorithm to recover the same global search
properties than with initially large step-size (see Rastrigin function on Fig. 1).



NIPOP-CMA-ES thus explores the two-dimensional hyper-parameter space
in a deterministic way (see O symbols on Fig. 2). For py4ec = 1.6 used in this
study, NIPOP-CMA-ES thus reaches the lower bound (o = 10720default) used
by BIPOP-CMA-ES after 9 restarts, expectedly reaching the same performance
as BIPOP-CMA-ES albeit it uses only a large population.

The second restart strategy, NBIPOP-aCMA-ES, addresses the case where
the probability to find the global optimum does not much vary in the (\, o) space.
Under this assumption, it makes sense to have many restarts for a fixed budget
(number of function evaluations). Specifically, NBIPOP-aCMA-ES implements
the competition of the NIPOP-aCMA-ES strategy (increasing A and decreasing
initial 0¥ in each restart) and a uniform sampling of the o space, where \ is set to
Adefault and of = Ugefault x 1072V[01] The selection between the two (NIPOP-
aCMA-ES and the uniform sampling) depends on the allowed budget like in
NBIPOP-aCMA-ES. The difference is that NBIPOP-aCMA-ES adaptively sets
the budget allowed to each restart strategy, where the restart strategy leading
to the overall best solution found so far is allowed twice (ppuager = 2) a budget
compared to the other strategy.

4 Experimental Validation

The experimental validation of NIPOP-aCMA-ES and NBIPOP-aCMA-ES in-
vestigates the performance of the approach comparatively to IPOP-aCMA-ES
and BIPOP-aCMA-ES on BBOB noiseless problems and one black-box real-
world problem related to spacecraft trajectory optimization. The default param-

eters of CMA-ES [11, 5] are used. This section also presents the first experimental
study of BIPOP-aCMA-ES?, the active version of BIPOP-CMA-ES [5].

4.1 Benchmarking with BBOB Framework

The BBOB framework [7] is made of 24 noiseless and 30 noisy functions [8]. Only
the noiseless case has been considered here. Furthermore, only the 12 multi-
modal functions among these 24 noiseless functions are of interest for this study,
as CMA-ES can solve the 12 other functions without any restart.

With same experimental methodology as in [7], the results obtained on these
benchmark functions are presented in Fig. 4 and Table 1. The results are given
for dimension 40, because the differences are larger in higher dimensions. The
expected running time (ERT), used in the figures and table, depends on a
given target function value, fi = fopt +Af. It is computed over all relevant trials
as the number of function evaluations required in order to reach f;, summed over
all 15 trials, and divided by the number of trials that actually reached f; [7].

NIPOP-aCMA-ES. On 6 out of 12 test functions (f15;flG;f177f187f237f24)
NIPOP-aCMA-ES obtains the best known results for BBOB-2009 and BBOB-
2010 workshops. On fo3 Katsuuras and fs4 Lunacek bi-Rastrigin, NIPOP-aCMA-
ES has a speedup of a factor from 2 to 3, as could have been expected. It performs

3 For the sake of reproducibility, the source code for NIPOP-aCMA-ES and NBIPOP-
aCMA-ES is available at https://sites.google.com/site/ppsnbipop/



unexpectedly well on f15 Weierstrass functions, 7 times faster than IPOP-aCMA-
ES and almost 3 times faster than BIPOP-aCMA-ES. Overall, according to Fig.
4, NIPOP-aCMA-ES performs as well as BIPOP-aCMA-ES, while restricted to
only one regime of increasing population size.

NBIPOP-aCMA-ES. Thanks to the first regime of increasing population
size, NBIPOP-aCMA-ES inherits some results of NIPOP-aCMA-ES. However,
on functions where the population size does not play any important role, it
performs significantly better than BIPOP-aCMA-ES. This is the case for fs;
Gallagher 101 peaks and fo2 Gallagher 21 peaks functions, where NBIPOP-
aCMA-ES has a speedup of a factor of 6. It seems that the adaptive choice
between two regimes works efficiently on all functions except on f15 Weierstrass.
In this last case, NBIPOP-aCMA-ES mistakingly prefers small populations, with
a loss factor 4 compared to NIPOP-aCMA-ES. According to Fig. 4, NBIPOP-
aCMA-ES performs better than BIPOP-aCMA-ES on weakly structured multi-
modal functions, showing overall best results for BBOB-2009 and BBOB-2010
workshops in dimensions 20 (results not shown here) and 40.

Due to space limitations, the interested reader is referred to [13] for a detailed
presentation of the results.

4.2 Interplanetary Trajectory Optimization

The NIPOP-aCMA-ES and NBIPOP-aCMA-ES strategies, designed for the BBOB
benchmark functions, can possibly overfit this benchmark suite. In order to test
the generality of these strategies, a real-world black-box problem is considered,
pertaining to a completely different domain: Advanced Concepts Team of Eu-
ropean Space Agency is making available several difficult spacecraft trajectory
optimization problems as black box functions to invite the operational research
community to compare different derivative-free solvers on these test problems
[16].

The following results consider the 18-dimensional bound-constrained black-
box function ”TandEM-Atlas501”, that defines an interplanetary trajectory to
Saturn from the Earth with multiple fly-bys, launched by the rocket Atlas 501.
The final goal is to maximize the mass f(x), which can be delivered to Saturn
using one of 24 possible fly-by sequences with possible maneuvers around Venus,
Mars and Jupiter.

The first best results was found for a sequence Earth-Venus-Earth-Earth-
Saturn (fimee = 1533.45) in 2008 by B. Addis et al. [1]. The best results so far
(fmaz = 1673.88) was found in 2011 by G. Stracquadanio et al. [15].

All versions of CMA-ES with restarts have been launched with a maximum
budget of 10® function evaluations. All variables are normalized in the range
[0,1]. In the case of sampling outside of boundaries, the fitness is penalized and
becomes f(x) = f(2 feasibie) — ||z — xfeasible||2, where Zfeqsivle is the closest
feasible point from point z and « is a penalty factor, which was arbitrarily set
to 1000.

As shown on Fig. 3, the new restart strategies NIPOP-aCMA-ES and NBIPOP-
aCMA-ES respectively improve on the former ones (IPOP-aCMA-ES and BIPOP-
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Fig. 3. Comparison of all CMA-ES restart strategies on the Tandem fitness function
(mass): median (left) and best (right) values out of 30 runs.

aCMA-ES); further, NIPOP-aCMA-ES reaches same performances as BIPOP-
aCMA-ES.

The best solution found by NBIPOP-aCMA-ES 4 improves on the best so-
lution found in 2008, while it is worse than the current best solution, which is
blamed on the lack of problem specific heuristics [1,15], on the possibly insuffi-
cient time budget (108 fitness evaluations), and also on the lack of appropriate
constraint handling heuristics.

5 Conclusion and Perspectives

This paper contribution regards two new restart strategies for CMA-ES. NIPOP-
aCMA-ES is a deterministic strategy simultaneously increasing the population
size and decreasing the initial step-size of the Gaussian mutation. NBIPOP-
aCMA-ES implements a competition between NIPOP-aCMA-ES and a random
sampling of the initial mutation step-size, adaptively adjusting the computa-
tional budget of each one depending on their current best results. Besides the
extensive validation of NIPOP-aCMA-ES and NBIPOP-aCMA-ES on the BBOB
benchmark, the generality of these strategies has been tested on a new problem,
related to interplanetary spacecraft trajectory planning.

The main limitation of the proposed restart strategies is to quasi implement
a deterministic trajectory in the 6 space. Further work will consider h(f) as yet
another expensive noisy black-box function, and the use of a CMA-ES in the
hyper-parameter space will be studied. The critical issue is naturally to keep

42 =[0.83521, 0.45092, 0.50284, 0.65291, 0.61389, 0.75773, 0.43376, 1, 0.89512,
0.77264, 0.11229, 0.20774, 0.018255, 6.2057e-09, 4.0371e-08, 0.2028, 0.36272,
0.32442]; fitness(x) = mass(x) = 1546.5



the overall number of fitness evaluations beyond reasonable limits. A surrogate-
based approach will be investigated [14], learning and exploiting an estimate of
the (noisy and stochastic) h(6) function.
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Afopt |11 160 1ol le3  les  leT |Hsucc NIPOP-a|l4 440 173 172 171 171 12/15
f16 |5244 72122 3.2e5 1.4e6 2.0e6 2.0e6 |15/15 Afopt |lel le0  le- le- le- le- #succ
BIPOP-all1.3 0.96 0.80 0.54 0.50 0.51 [15/15 1 3 5 7
IPOP-aCl0.91 1.1 1.0 0.51 1.4 1.4 8/8 22 3090 35442 6.5¢5 6.5e5 6.5e5 6.5e5 | 8/30
NBIPOP-0.97 0.78 0.34 0.38 0.46 0.74 [15/15 BIPOP-a|12 343 201 200 200 199 4/15
NIPOP-a|l.2 0.65 0.23 0.21 0.16 0.18 [15/15 ;FBOIE_HIS 144 93 oo oo oo oo 3e6 | 0/8
412 112 2 2 2 2 [12/1
Afopt |lel  1e0  le-1  le-3  le-5 le-7 [#succ NIPOIO?’-a 170 583 osc i i oso 4o 0%:
f17 |399 4220 14158 51958 1.3eb 2.7¢b [14/15
BIPOP-all.1 064 1.6 1.1 1.4  0.87 [15/15 Afopt [lel 1e0 le-1 le-3 1le-5 le-7 [|#succ
IPOP-aCl1.0 0.52 1.3 1.3 0.97 0.83 8/8 f23 7.1 11925 75453 1.3¢6 3.206 3.4e6 [15/15
NBIPOP-|1.0 0.57 1.2 1.2 1.0 0.81 |[15/15 BIPOP-a|8.4 7.8 1.3 1.9 1.00 0.99 |15/15
NIPOP-a|0.97 0.52 0.97 1.00 1.1 0.70 [15/15 IPOPgC 9.2 o o o o oo fe6| 0/8
NBIPOP-8.6 10 1.6 1.3 0.58 0.59 [15/15
Afopt |tel 10  le-l le-3 le-5 le-7 [#suce wipop,lsg 61 11 0.72 0.36 0.38 15?15
f18 |[1442 16998 47068 1.9e5 6.7eb 9.5eb [15/15
BIPOP-al0.94 0.51 1.0 0.98 0.88 0.67 [15/15 Afopt |lel 1e0  le-1 1le-3 1le-5 le-7 |#succ
IPOP-aCl0.96 0.68 1.0 0.66 0.45 0.48 8/8 24 [5.8¢6 9.8¢7 3.0e8 3.0e8 3.0e8 3.0e8 [1/15
NBIPOP-|1.0 0.97 1.1 0.93 0.57 0.53 |[15/15 BIPOP-a|3.6 1.4 oo oo oo 00 4e7|0/15
NIPOP-al0.95 0.58 0.75 0.71 0.50 0.42 [15/15 IPOP-aCfoo oo oo oo oo oo 1e7(0/8

NBIPOP-2.1 0.19 0.97 0.97 0.97 0.97 [2/15
NIPOP-a|l1.2 0.15 0.44 0.44 0.44 0.44 [4/15

Table 1. Overall results on multi-modal functions f3 — 4 and f15 — 24 in dimension
d = 40: Expected running time (ERT in number of function evaluations) divided by
the respective best ERT measured during BBOB-2009 for precision Af ranging in 10°,
i = 1...— 7. The median number of conducted function evaluations is additionally
given in italics, if ERT(1077) = oc. #succ is the number of trials that reached the final
target fopt + 1073, Best results are printed in bold. For a more detailed (statistical)
analysis of results on BBOB problems, please see [13]. Statistically significantly better
entries (Wilcoxon rank-sum test with p = 0.05) are indicated in bold. The interested
reader is referred to [13] for the statistical analysis and discussion of these results.




