General constrained conservation laws. Application to pedestrian flow modeling.

Abstract : We generalize the results on conservation laws with local flux constraint obtained in [1, 9] to general flux functions and nonclassical solutions arising for example in pedestrian flow modeling. We first define the constrained Riemann solver and the entropy condition, which singles out the unique admissible solution. We provide a well posedness result based on wave-front tracking approximations and Kruzhkov doubling of variable technique. We then provide the framework to deal with nonclassical solutions and we propose a "front-tracking" finite volume scheme allowing to sharply capture classical and nonclassical discontinuities. Numerical simulations illustrating the Braess paradox are presented as validation of the method.
Type de document :
Article dans une revue
Networks and Hetereogeous Media, American Institute of Mathematical Sciences, 2013, 8 (2), pp.433-463
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00713609
Contributeur : Paola Goatin <>
Soumis le : lundi 2 juillet 2012 - 11:36:26
Dernière modification le : mardi 11 décembre 2018 - 01:24:35
Document(s) archivé(s) le : mercredi 3 octobre 2012 - 02:45:15

Fichier

ChalonsGoatinSeguin.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00713609, version 1

Citation

Christophe Chalons, Paola Goatin, Nicolas Seguin. General constrained conservation laws. Application to pedestrian flow modeling.. Networks and Hetereogeous Media, American Institute of Mathematical Sciences, 2013, 8 (2), pp.433-463. 〈hal-00713609〉

Partager

Métriques

Consultations de la notice

831

Téléchargements de fichiers

440