A 2d spray model with gyroscopic effects

Ayman Moussa 1, 2 Franck Sueur 1
2 REO - Numerical simulation of biological flows
LJLL - Laboratoire Jacques-Louis Lions, Inria Paris-Rocquencourt, UPMC - Université Pierre et Marie Curie - Paris 6
Abstract : In this paper we introduce a PDE system which aims at describing the dynamics of a dispersed phase of particles moving into an incompressible perfect fluid, in two space dimensions. The system couples a Vlasov-type equation and an Euler-type equation: the fluid acts on the dispersed phase through a gyroscopic force whereas the latter contributes to the vorticity of the former. First we give a Dobrushin type derivation of the system as a mean-field limit of a PDE system which describes the dynamics of a finite number of massive pointwise particles moving into an incompressible perfect fluid. This last system is itself inferred from a joint work of the second author with O. Glass and C. Lacave, where the system for one massive pointwise particle was derived as the limit of the motion of a solid body when the body shrinks to a point with fixed mass and circulation. Then we deal with the well-posedness issues including the existence of weak solutions. Next we exhibit the Hamiltonian structure of the system and finally, we study the behavior of the system in the limit where the mass of the particles vanishes.
Document type :
Journal articles
Complete list of metadatas

Contributor : Ayman Moussa <>
Submitted on : Tuesday, February 5, 2013 - 2:01:42 PM
Last modification on : Tuesday, May 14, 2019 - 10:15:10 AM

Links full text



Ayman Moussa, Franck Sueur. A 2d spray model with gyroscopic effects. Asymptotic Analysis, IOS Press, 2013, 81 (1), pp.53-91. ⟨10.3233/ASY-2012-1123⟩. ⟨hal-00713683⟩



Record views