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Abstract: Register allocation is one of the most important, and one of the oldest compiler
optimizations. Its purpose is to map temporary variables to either machine registers or main
memory locations and explicit load/store instructions. The latter option is referred to as spilling.
This paper addresses the minimization of the spill code overhead, one of the di�cult problems
in register allocation. We devised a heuristic approach called layered. It is rooted in the recent
advances in SSA-based register allocation. As opposed to the conventional incremental spilling
approaches, our method incrementally allocates clusters of variables. We describe a new poly-
nomial method, the layered-optimal allocator, and demonstrate its quasi-optimiality on standard
benchmarks and on two architectures.
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Une heuristique de spill polynomiale: l'allocation par couche

Résumé : L'allocation de registres est l'une des premiéres et des plus importantes optimisa-
tions e�ectuées par les compilateurs. Elle a pour but d'associer aux variables temporaires du
programme des registres de la machine ou des locations mémoires et d'insèrer, dans le code, des
instructions de load/store explicites, appelées vidage.

Dans ce papier, nous nous intéressons à la minimisation des latences mémoires dues au code
de vidage, un des problèmes di�ciles en allocation de registres. Nous proposons une approche
heuristique d'allocation par couches. Ce travail se base sur les récentes avancées en allocation
de registres sous SSA. Contrairement à l'approche conventionnelle de vidage incrémental, notre
méthode alloue les variables de manière incrémentale par groupe. Nous comparons notre ap-
proche, appelée allocation-optimale par couche, aux methodes de l'état de l'art à une approche
optimale et nous montrons l'allocation-optimale par couche est quasi-optimale sur des bench-
marks standard et sur deux architectures di�érentes.

Mots-clés : compilateurs, algorithmes, les uns avec les autres optimisation, allocation de
registres
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1 Introduction

Register allocation is an important compiler optimization. Its goal is to map temporary variables
in a program to either machine registers or memory locations. Register allocation is subdivided
into two sub-problems: �rst, the allocation selects the set of variables that will reside in registers
at each point of the program; then, the assignment or coloring picks a speci�c register where a
variable will reside. Usually, all the variables of code cannot reside in registers. The variables not
held in registers should reside in memory, these variables are called spilled variables. The spilling
problem [13, 5] decides which variables should be stored in memory to make the assignment
possible; it aims at minimizing the overhead of loads and stores. The coalescing [4] and alienation
(when repairing is enabled [9]) problems aims at minimizing the overhead of moves between
registers. Spilling and coalescing are correlated problems that are, in classical approaches, done
in the same framework. Live-range splitting (i.e., adding register-to-register moves) to reduce
register pressure is sometimes considered in such a framework [10], but it is very hard to control
the interplay between spilling and splitting or coalescing.

Building on the properties of the static single assignment form (SSA), it is now possible to
decouple the allocation from the assignment. Indeed, the interference graph of a program in
SSA form is a chordal graph [16]. Since coloring a chordal graph is easy, it follows that the
assignment problem is also easy. Finding a valid coloring whenever it exists can thus be solved
optimally with a greedy, linear algorithm on chordal graphs, called tree-scan [9]. It follows the
spirit of the linear-scan [18], but applied to the dominance tree instead [20]. Thus, performing
register allocation under SSA has led to new approaches where the remaining di�cult problems,
spilling and coalescing, are treated separately. When spilling, MaxLive, the maximal number
of variables simultaneously live at a program point, is used as a criterion to guarantee that the
forthcoming assignment will be performed without any spill. If MaxLive is lower or equal to R,
the number of available registers, then all the variables will be assigned without any spill. This
decoupled approach is advocated by Fabri [12], Appel and George [2], and Hack [16].

Apart from allowing the design of more e�cient coalescing heuristics [6], the main advantage
of this decoupled approach concerns the spilling problem: checking if the register pressure,
MaxLive, is low enough is much simpler than checking the colorability of a general graph.
Because of this, existing graph based heuristics use node degree to guide the spilling decision.
This can lead to spilling a variable because its corresponding node has a high degree, while it is
not live at any point of high register pressure. In other words, spilling this variable is useless in
helping the assignment problem anyhow. This point can be illustrated by Figure 1: variable a2
has 6 neighbors of high weight (spilling each variable hi is very costly), so spilling it looks like a
good idea for the graph coloring. But in terms of register pressure, there are no more than three
variables simultaneously live inside the loop: liveness set on the control �ow graph, provides this
information very naturally and a decoupled approach does not require spilling neither a2 nor any
hi.

This observation has led several researchers to design program-based heuristics to lower reg-
ister pressure, opposing the new decoupled approach to the �old� graph-based spilling heuristics.
Remember that the decoupling approach eases the question of whether spilling a variable is useful
or not, but did not make the optimization of allocation problem polynomial (�nding a set of vari-
ables to be spilled of minimum cost). A simple heuristic consists in considering program points
one after another, and when the register pressure at the current point is too high, incrementally
spilling some variables to lower it. This incremental scheme needs a notion of pro�tability to
choose which variable to spill among the set of all live variables at a given point. To this end,
Belady's furthest �rst strategy works very well on an interval graph�a single basic block in SSA:
the idea is to consider spilling the variable which live-range goes furthest to be the most prof-
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4 Diouf & Cohen & Rastello

itable. Consider our running example again where a1 and a2 have been coalesced into variable a.
The generalization of the notion of �furthest use� to a general control �ow graph would consider
a to be more pro�table than d. The furthest use is not the notion we want. Instead, pro�tability
of spilling a variable should be related to the number of program points of high register pressure
within the live-range of the variable. Here a would cover three high register pressure program
points, while d would cover �ve. Going a little bit further, we understand that pro�tability is
not just about coverage of high register pressure program points: spilling a variable is pro�table
because it avoids spilling some other variables, and because spilling it is less costly than spilling
those other interfering variables. But what if we have to spill these interfering variables anyhow?
As an example, spilling a avoids spilling d and e, but as it is very pro�table to spill d (more
than e), e should impact more than d the pro�tability of a, leading to an inductive de�nition of
pro�tability... To break out of this loop, let us recall that under the SSA form, there exists a
perfect mapping between maximal cliques and live variables at a given program point [16]. In
other words, a maximal clique cover (which is polynomial for a chordal graph) allows to express
the notion of register pressure, exactly for chordal graphs and reasonably accurately for non
SSA graphs occurring in the real world [17]. On our running example, d would be part of two
maximum cliques of size higher than three, while a would be in only one. This debunks the main
motivation for not using a graph based approach.

… = c + 1
e = b + 1
f = e + 1

… = c + 1
e = b + 1
f = e + 1

a2 = a1          

h1 = a2 + 1
h2 = h1 + 1

a2 = a1          

h1 = a2 + 1
h2 = h1 + 1 g = d + e

    …  = d, e, f, g

g = d + e
    …  = d, e, f, g

… a2
… a2

livein = { a, b, c , d}

livein = {a1}

livein = { d, e, f}

h3= h1 + 1
h4= h2 + 1
h5= h3 + 1
h6= h4 + 1
h1= h5 + 1
h2= h6 + 1

h3= h1 + 1
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c
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Figure 1: Program based, versus graph based spilling approaches on a program with three
registers.

The goal of this paper is to propose a new graph-based allocation heuristic, based on the maxi-
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mum clique cover to de�ne the pro�tability of spilling variables. It exploits the pseudo-polynomial
complexity in the number of registers of the allocation problem under SSA�as opposed to the
symmetric, spilling problem which remains strongly NP-complete. More precisely, our approach
emerges from two observations allowing for more global spilling decisions:

1. The pseudo-polynomial complexity of allocation in the number of registers [5] suggests a
heuristic that solves (optimally) roughly R over step allocation problems on step registers
each. The �nal allocation being the layered of the stepwise allocations, we call it the
layered-optimal heuristic.

2. Stepwise optimality does not guarantee an overall optimal allocation, but we will show
that it comes very close to optimal, even with step = 1. Intuition for this comes from
recent work by Diouf et al. [11], observing that allocation decisions tend to be a monotonic
function of the number of registers.

This approach is still incremental, but it allocates layers of variables instead of spilling one
variable at a time. Thanks to the pseudo-polynomial property mentioned above, the choice of
this set constituting a layer can be decided optimally in polynomial time.

To make a long story short, this paper addresses the spill-everywhere problem in a decoupled
context. We introduce layered allocation a new strategy that incrementally allocates variables
instead of incrementally spilling variables. We evaluate our approach in the context of decoupled
register allocation.

The outline of the paper is as follows. Section 2 presents the rationale for our new approach
in detail. Section 3 surveys the important concepts and results upon which our approach is built.
Section 4 presents our layered-optimal allocator for SSA programs. Section 5 adapts this scheme
into a non-optimal heuristic for general, non-chordal interference graphs. Section 6 evaluates the
algorithm and compares it with state of the art methods. Section 7 discusses related work and
Section 8 concludes the paper.

2 A Graph-Based, Incremental Allocation Approach

Our approach is motivated by the facts that register lowering is pseudo-polynomial in the num-
ber of registers and stepwise allocation is quasi-optimal. We explain here in details these two
observations, but before that, we �rst explain why we think that the spill everywhere problem
is relevant.

2.1 Why Spill Everywhere?

The spilling problem can be considered at di�erent granularity levels: the highest, so called
spill everywhere, corresponds to considering the live range of each variable entirely. A spilled
variable will then lead to a store after the de�nition and a load before each use. Of course, in
practice, if the variable can stay in a register between two consecutive uses, a load is saved. The
�nest granularity, so called load-store optimization, corresponds to optimize each load and store
separately. The latter, also known as paging with write back, is NP-complete [13] on a basic
block, even under SSA form. The spill-everywhere problem is much simpler, applicable to just-
in-time compilation, and many instances are polynomial under SSA form [5]. The algorithms we
propose can be applied to both spill everywhere and load-store optimization problems. We focus
here on the former for its simplicity, because our past experience summarized in the 4 following
points tends to con�rm the practical e�ectiveness of the spill everywhere problem:
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6 Diouf & Cohen & Rastello

1. The complexity of the load-store optimization problem comes from the asymmetry between
loads and stores. Also, most SSA variables have only one or two uses in practice, and the
cost of the store favors spilling the entire live range instead of two sub-ranges of di�erent
variables.

2. The queuing mechanism present in most architectures behave like a small, extremely fast
cache. But it is highly sensitive to the number of simultaneously spilled variables.

3. In the other extreme situation where stores have no cost, a variable can be considered to be
either in memory or in register but not in both. Such a formulation [2] is strictly equivalent
to a spill everywhere formulation where live ranges are split at every use.

4. Last, a solution to the spill-everywhere problem gives to a load-store optimization problem
the global view lengthily discussed so-far that existing heuristics lack. In other words a
spill-everywhere solution can play the role of an oracle.

2.2 Allocation Instead Of Spilling

After giving the reasons that support our work on the spill everywhere problem, let us stress
the di�erence we want to make here between spilling and allocation. Spilling aims at �nding
which variable to evict from registers while allocation aims at �nding which variable to keep
in registers. Of course, one is the dual of the other, so conceptually spilling and allocation are
the same. Now suppose you have a set of variables and you want to evict (spill) a minimum
amount of them such that MaxLive is lowered by just one. As shown in [5] this problem is
NP-complete even for the simplest SSA program instance. On the other-hand, consider you have
already a set of allocated variables and you aim at allocating a maximum number of additional
ones such that at every program point the register pressure Live is increased by at most 1.
Then as outlined before, this problem is, under SSA, polynomial with a complexity of O(Ωn).
Ω being the maximum simultaneously live variables that remains to be allocated; n being the
size of the program. Hence, in a way allocation is simpler than spilling. Our approach pushes
this distinction further: Conceptually, every variable is initially in memory, and we evaluate the
gain of allocating a given one instead of considering every variables to be initially in a virtually
unbounded register �le and evaluate the cost of evicting it. As we will see in this paper, this
allows to be much more accurate concerning the modeling of gain/cost that accounts for ABI
and register constraints.

2.3 Stepwise Allocation Is Close To Optimal

In a recent paper, Diouf et al. [11] studied the question to know whether or not the variables
spilled on an optimal allocation with R registers are included in the set of variables spilled on an
optimal allocation with R -1 registers (R > 0). Conceptually, this is equivalent to telling that
the variables allocated on an optimal allocation with R − 1 registers are included in the set of
variables allocated when R registers are available. The answer to the question is no and this is
illustrated in Figure 2. In this �gure, we give the graph version of the example used by Diouf et
al. [11]. The cost of each variable is represented by the number close to its corresponding node.
Dashed black circles correspond to spilled variables. Figure 2(a) depicts the optimal allocation
performed when R = 1 and Figure 2(b) shows the optimal allocation performed when R = 2.
When R = 1, to perform the allocation of lowest cost, we need to spill b and d, which form the
optimal spill set. When R = 2, we need to spill c, which is the optimal spill set. We clearly see
that the optimal spill set when R = 2 is not included in the optimal spill set when R = 1.

Inria
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Figure 2: Counter example to spill set inclusion.

Even if, theoretically, the answer to the question of spill set inclusion is no, Diouf et al.
experimentally validated that when varying the number of registers from Rmin, the minimum
number of registers to enable code generation, to the number of registers allowing to allocate
all the variables, the inclusion property holds for 99.83% of the SPEC JVM98's methods. This
experimental evaluation has been done with JikesRVM [1], the research virtual machine of IBM.
This also proves, empirically, that the stepwise allocation is close to optimal.

3 Baseground

We now summarizes some de�nitions and results on graphs and chordal graphs upon which our
approach is based.

In the rest of this paper, we assume that an estimated spill cost has been computed for each
variable. A spill cost represents the access frequency of a variable, it is high when the variable
is frequently accessed and low when it is not. We denote R the number of available registers.

Programs are usually represented as graphs, within graph coloring frameworks, and live sets
within linear scan frameworks. Thus the spilling problem is naturally solved over these two
representations. Our approach is compatible for both representations, but in the rest of this
section we will focus on the graph representation.

3.1 Graphs and Weighted graphs

A graph G = (V,E) consists of two sets, V the set of vertices or nodes, and E the set of edges.
Every edge (v1, v2) of E has two end points v1 ∈ V and v2 ∈ V . We say that v1 and v2 are
adjacent(s) or are neighbor(s) if (v1, v2) ∈ E. The number of neighbors of a vertex v is called the
degree of v. Here, We only consider undirected graphs, i.e., we do not make di�erence between
the edges (v1, v2) and (v2, v1). Figure 3(a) shows an arbitrary graph.

A sequence of vertices [v0, v1, v2, . . . , vl, v0] is called a cycle of length l + 1 if (vi−1, vi) ∈ E
for i = 1, 2, l and (vl, v0) ∈ E.

A subset A ⊆ V is called a clique of G if every two distinct vertices of A are adjacent. A
clique A is maximal if it is not properly contained in any other clique of G. A clique is maximum
if there is no clique of G of larger cardinality. A vertex v of a graph G is simplicial if its neighbors

RR n° 8007
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a

d
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(a)

a

d

b

c

(b)

2

(a)

5

1 3

Figure 3: (a) An arbitrary graph. (b) A weighted graph.

form a clique in G.
In contrast to a clique, a stable set or an independent set is a subset S ⊆ V that does not

contain two vertices that are adjacent.
Assuming each vertex v of G = (V,E) is associated with a non-negative number w(v), the

weight of a subset S ⊂ V is expressed as:

w(S) =
∑
v∈S

w(v)

The graph G associated with the function w is called a weighted graph and denoted Gw.
Figure 3(b) shows a weighted graph based on the arbitrary graph presented in Figure 3(a). Each
vertex has its weight close to it. For instance the vertex a has a weight of 2.

The maximum weighted stable set is the stable set of maximal weight.
From a graph representation of a program, if we associate to each vertex a weight corre-

sponding to its cost (it is assumed that a cost has been computed for each variable), the spilling
problem becomes equivalent to the problem of choosing the set of vertices of minimal weight to
remove from a weighted graph to make a coloring/assignment possible. This problem is much
more complicated on arbitrary graphs, since the coloring problem is already NP-complete on
these category of graphs. This coloring problem becomes easy on chordal graphs which are
discussed below.

3.2 Chordal Graphs

The static single assignment (SSA) form is an intermediate representation with very interesting
properties. A code is in SSA form when every scalar variable has only one textual de�nition
in the program code. Most compilers use a particular SSA form, the strict SSA form, with the
additional so-called dominance property: given a use of a variable, the de�nition occurs before
any uses on any path going from the beginning of the program (the root) to a use. One of the
useful properties of such a form is that the dominance graph is a tree and the live ranges of the
variables (delimited by the de�nition and the uses of a variable) can be viewed as subtrees of
this dominance tree. The intersection graph of these subtrees of the dominance tree represents
the interference graph. An important result of graph theory states that the intersection graph
of a family of subtrees of a tree is a chordal graph [15]. It follows that the interference graph of
a program in SSA form is a chordal graph.

A graph G is chordal, triangulated or rigid-circuit if every cycle of length four or more has
a chord, a chord being an edge joining two vertices of the cycle, that are not consecutive. The

Inria
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Figure 4: An example of chordal graph.

graph given in Figure 3(a) shows a non-chordal graph and Figure 4 shows a chordal graph, for
instance the cycle [c, d, f, e, c] has a chord which is (d, e).

Algorithm 1 MaximumWeightedStableSet

Require: σ: a perfect elimination order
Require: w: a map associating to each vertex its weight
Require: adj: a map associating to each vertex the list of its neighbors
Var: w': a map associating to each vertex its current weight during computation
Var: n: the number of vertices
Var: marked_red: a (last in �rst out) list keeping track of vertices marked red
Var: marked_blue: a list keeping track of vertices marked blue
1: for i = 1→ n do
2: v← σ(i)
3: w'(v)← w(v)
4: end for

5: for i = 1→ n do
6: v← σ(i)
7: if w' > 0 then
8: add v to marked_red
9: for all u ∈ adj(v) do

10: w'(u)← w'(u)− w'(v)
11: if w'(u) < 0 then
12: w'(u)← 0
13: end if

14: end for

15: w'(v)← 0
16: end if

17: end for

18: while marked_red 6= ⊥ do

19: v ← the �rst element of marked_red
20: Remove v from marked_red
21: Add v to marked_blue
22: remove all the vertices of adj(v) from marked_red
23: end while

24: return marked_blue

RR n° 8007



10 Diouf & Cohen & Rastello

An interesting property that we are going to use below in the paper is that it is easy to
compute the maximum weighted stable set of a chordal graph [14] and this with a complexity of
O(|E|+ |V |).

Before explaining the Frank's algorithm which computes the maximum stable set of a weighted
graph, we need to explain the notion of perfect elimination order. An ordering v1, v2, . . . , vn of
the vertices of a graph G is a perfect elimination order (PEO) if each vi is a simplicial vertex in
G{vi,vi+1,...,vn}, the graph remaining from G when all the vertices preceding vi in the ordering
have been removed. It has been proven in graph theory that a graph is chordal if and only if it
has a perfect elimination order [15]. For instance [a, f, d, e, b, g, c] is a PEO of the chordal graph
given in Figure 4.

Algorithm 1 computes the maximum weighted stable of a weighted graph Gw. It receives
σ a perfect elimination order of the weighted chordal graph, adj a map that associates to each
vertex the list of its neighbors and w the weight function that associates to each vertex of Gw its
weight. Algorithm 1 goes through the list of vertices according to the order of σ. At the step i,
it tests if the current weight of the vertex v that occupies the i− th position in σ is positive. If it
is negative Algorithm 1 goes to the next step. Otherwise, v is marked red and each neighbor u
of v has its current weight w′(u) reduced by w′(v). Any weight that becomes negative is altered
to 0 and w′(v) is set to 0. At the end of this process, the vertices marked red are visited in the
reverse order of their insertion in the list. A vertex v is marked blue if it is not a neighbor of
all the vertices previously marked blue. Finally, Algorithm 1 returns the set of vertices marked
blue, that is stable set of maximum weight.

d

f

c

a

e

g

b

2 15

2 26

1

iteration a     f    d     e     b     g     c red vertices

- 1     6    5     2     2     1     2 Ø

1 0    5    4     2     2     1     2 a

2       0    0     0     2     1     2 f,  a

5                           0     0     0 b,f,a

iteration red vertices blue vertices

- b,f,a Ø

1 f,a b

2 Ø b, f

(b) (c)

(a)

Figure 5: Looking for the maximum weighted stable set with Algorithm 1.

Figure 5(b) and Figure 5(c) depicts the general steps of Algorithm 1 when applied to the
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graph given in Figure 5(ca. Figure 5(b) shows how the set of vertices marked red is constructed.
The column iteration presents the iterations of the second for-loop of Algorithm 1 that modi�es
the set of vertices marked red. The second column keeps track of the values of w′. The vertices
are ordered according to the perfect elimination order. The last column shows how the set of
marked red evolves. The �rst row shows, before the beginning of the loop, the values of w′ for
each vertex and the set of vertices marked red which is empty. At the �rst iteration, the weight
of a is 1, thus a is marked red and the weights of its neighbors d and f are decreased by 1. The
weight of a is then set to 0, which is underdrew. At the second iteration, the weight of f is 5.
Thus, f is marked red and the weights of its neighbors a, d and e are decreased by 5. The weight
of f is then set to 0, which is underdrew. Finally, we obtain the set of vertices marked red which
are composed of b, f , a.

Figure 5(c) explains how from the vertices marked red we compute the set of vertices marked
blue. This is performed with the while-loop of Algorithm 1. At the �rst iteration, the vertex b is
chosen and is inserted in the set of vertices marked blue. At the second iteration the vertex f is
chosen and inserted in the set of vertices marked blue. The vertex a is adjacent to f and cannot
be added to the set of vertices marked red. Thus, a is removed from the list of vertices marked
red. We then end up with a set of vertices marked blue composed of f and b of weight 8.

4 Layered-Optimal Register Allocation

We will focus here on the spilling problem for SSA programs. In the next section, we will give
an extension of our approach which works on general graphs.

Based on the two observations explained on Section 2, we present here our solution which
solves the spill minimization problem for R registers by layered optimal solutions to simpler
problems on few registers. Each of this simpler problem is considered to have step, which is a
small number lower or equal to R, available registers. Stepwise optimality does not guarantee
an overall optimal allocation, but we will show that it comes very close to optimal, even with
step = 1.

Algorithm 2 LayeredOptimalAllocation

Var: candidates: the list of vertices that are candidate to an allocation
Var: allocated_list: the list of so far allocated variables
1: count← 0
2: while candidates 6= ⊥ ∧ count < R do

3: result← OptimalAllocation(candidates)
4: add every vertex of result to allocated_list
5: remove every vertex of result from candidates
6: count← count + 1
7: end while

8: return allocated_list

Algorithm 2 implements the layered-optimal heuristic. It takes as input candidates, the list of
variables that are candidates to register allocation. It then returns as result allocated_list, the list
of variables that have been allocated with R registers. Algorithm 2 calls OptimalAllocation
which returns the optimal allocation set minimizing the spill cost among the variables that have
not yet been allocated (currently in candidates). This set is added to allocated_list and removed
from candidates. In its last step, Algorithm 2 �nds the set of variables that minimizes the spill
cost among the variables remaining in candidates.

RR n° 8007



12 Diouf & Cohen & Rastello

The function OptimalAllocation used in Algorithm 2 solves the allocation problem on a
subset of the candidates variables when a unique register is available. On a chordal interference
graph, this problem is equivalent to the problem of the maximum weighted stable set. Thus, the
OptimalAllocation can be implemented with Algorithm 1. When assuming that step ≥ 2,
OptimalAllocation can be implemented through dynamic programming [5].

In the following, we restrict ourselves to a step of one. The complexity of the layered-optimal
allocator is O(R(|V |+ |E|)).

Algorithm 2 is a solid basis for an incremental allocation, but we have found two ways to
improve it: biasing the cost of the variables, and iterating further on the set of allocated variables
until we reach a point where we could not allocate more variables.

4.1 Biasing the weights
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Figure 6: Example showing the bene�t of biasing the weight.

Before we explain how we bias the costs/weights of variables/weights, let us �rst have a look
on Figure 6. We assume we have two registers, the step is set to one, and we are looking for
the set of variables to allocate for the weighted graph given in Figure 5(a). We call this graph
Gw. When called on Gw, Algorithm 2 will �rst look for the maximum weighted stable set on the
graph and consider the variables within this set as allocated. It will then look for the maximum
weighted stable set on the graph remaining when the allocated variables are removed. Gw has
two maximum weighted stable sets with a weight of 8. The �rst one shown in Figure 6(a) is
composed of vertices b and f , in dashed lines. The second one composed of c and f , also in
dashed lines, is shown in Figure 6(b). If b and f are chosen, at the next step, Algorithm 2 will
look for the maximum weighted stable set on the graph remaining when b and f are removed
from Gw. This graph is represented by the black nodes and edges in Figure 6(a). The maximum
weighted stable set for this graph is composed of d and g and has a cost of 6. This leads to
spilling variables a, c and e with a spill cost of 4. In contrast, if we choose c and f , at the next
step the maximum weighted stable of the graph, shown in black nodes and edges in Figure 6(b),
will be composed of b and d with a cost of 7. This lead to a spill cost of 3.

This example shows that the choice among di�erent maximum weighted stable sets has an
impact on the next iterations of Algorithm 2. Arbitrarily Choosing a maximum weighted stable
set can deteriorate the global register allocation. Our intuition to ameliorate the choice of
the maximum weighted stable set is that: it is almost always better to choose the maximum
weighted stable set that removes the most interferences in the graph on non-allocated variables.
Our approach to achieve this is to bias the cost/weight of variables/vertices with the number of
neighbors of a vertex and we de�ne, to this purpose, the new weight function w′ as:

w′(v) = w(v)× |V |+ |adj(v)|
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A Polynomial Spilling Heuristic: Layered Allocation 13

where |V | is the number of vertices of the graph and adj(v) is the number of neighbors of the
vertex v.

For two vertices u and v, the two following properties will always be veri�ed with the new
weight function: {

if w(u) < w(v) then w′(u) < w′(v)
if w(u) = w(v) then w′(u) ≤ w′(v) if adj(u) ≤ adj(v)

4.2 Iterating To Fixed Point
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Figure 7: Example showing the bene�t of iterating until a �xed point.

We introduce here the second improvement we want to perform on Algorithm 2. We assume
we have two registers, the step is set to one, and we are looking for the set of variables to
allocate for the weighted graph given in Figure 7(a). This graph is called Gw and has four
maximal cliques which are: {a, d, f}, {b, c, e}, {c, d, e}, and {d, e, f}. Figure 7(b) shows the set
of allocated variables returned by Algorithm 2 which are composed of vertices a, b and d, shown
in dashed lines. Algorithm 2 ends up with this set of allocated vertices whether or not the weights
are biased. Figure 7(c) shows the graph formed of allocated variables found by Algorithm 2. Let
us recall that a coloring with R colors is possible on a chordal graph if the maximum clique of
the graph does not have more than R vertices. If we focus on the vertex f , we notice that in
the graph Gw, f belongs to a maximal clique composed of a, d and f , which have 2 (R)vertices
already allocated. The vertex f cannot be added to the graph of allocated vertices shown in
Figure 7(c) without adding a clique of size 3 and thus making a coloring with 2 colors impossible.
Unlike f , the vertices c and e are not contained in a maximal clique that has 2 vertices already
allocated. It follows that either c or e can be added to the graph of allocated vertices shown in
Figure 7(c) without making a coloring, with two colors, of the graph impossible since the size of
the maximum clique of the resulting graph, shown in Figure 7(d), will be 2.
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14 Diouf & Cohen & Rastello

Algorithm 3 FixedPointLayered (FPL)

Require: candidates: the list of vertices that are candidate to an allocation
Var: allocated_list: the list of so far allocated variables
Var: allowed_cliques: the list of cliques that do not have more than R allocated vertices, it is

initialized to the list of maximal cliques
Var: allocated_Per_clique: a map associating to each maximal clique the number of its allocated

vertices
1: count← 0
2: while candidates 6= ⊥ ∧ count < R do

3: result← OptimalAllocation(candidates)
4: add every vertex of result to allocated_list
5: remove every vertex of result from candidates
6: count← count + 1
7: end while

8: Update(candidates, allocated_list, allowed_cliques, allocated_Per_clique)
9: while candidates 6= ⊥ do

10: result← OptimalAllocation(candidates))
11: remove every vertex of result from candidates
12: Update(candidates, result, allowed_cliques, allocated_Per_clique)
13: end while

14: return allocated_list

Algorithm 4 UPDATE

Require: candidates: the list of vertices that are candidate to an allocation
Require: allocated_list: a list of allocated variables
Var: allowed_cliques: the list of cliques that do not have more than R allocated vertices
Var: allocated_Per_clique: a map associating to each maximal clique the number of its allocated

vertices
1: for all v ∈ allocated_list do
2: for all clique ∈ allowed_cliques do
3: if v ∈ clique then
4: increment allocated_Per_clique(clique) by one
5: if allocated_Per_clique(clique) ≥ R then

6: remove all the vertices of clique from candidates
7: mark clique as to be removed at the end of the loop
8: end if

9: end if

10: end for

11: end for

The example given in Figure 7 shows that we could miss interesting allocations when naively
using the Algorithm 2. Algorithm 3 �rst performs the layered allocation iterating at most R
times (lines 1 to 7). It then calls Algorithm 4 which increments, for each freshly allocated
vertex, the number of allocated vertices of each clique which contains it. If a clique has R of
its vertices allocated, all the vertices of this clique are removed from candidates and this clique
is removed from the list of allowed_cliques, which are the cliques that can have one of their
non-allocated vertices allocated at next rounds. After Algorithm 4 �nishes, Algorithm 3 calls
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A Polynomial Spilling Heuristic: Layered Allocation 15

the function OptimalAllocation and Algorithm 4 iteratively until it reaches a �x point, that
is, an allocation that cannot be improved by subsequent calls of Algorithm 3.

4.3 Spilled variables

When a variable is spilled, it does not completely disappear from the interference graph. It is
replaced by a set of short-lived variables which must be taken into account. For instance on RISC
architectures, memory can only be accessed through load and store instructions. For example,
before using a variable v spilled at address a, the value of v must be loaded from address a into
a register. The extra instructions inserted to reload spilled variables form the spill code.

Some approaches�like the JikesRVM implementation of the linear scan�spill locally an allo-
cated variable when there is no free register to assign a reloaded variable. On CISC architectures
like the x86, we also can take advantage of complex addressing modes to get operands directly
from memory (at most one such operand on x86). On the other hand, graph coloring heuris-
tics iteratively rebuild interferences after spill. Symmetrically, we can iteratively update the
interferences after allocation.

5 Layered-Heuristic Allocator

Although the spill minimization problem is only pseudo-polynomial on SSA programs, the
method also applies to general programs. The layered approach remains applicable, but the
Frank's algorithm is not applicable as the graphs are not chordal.

The layered-heuristic algorithm clusters the nodes of an interference graph as stables�or in-
dependent sets�using a greedy heuristic. It clusters the variables according to their interference
and spill costs, then allocates registers into layered cluster-based allocations.

We cluster variables that do not interfere and that corresponds to a stable set in the interfer-
ence graph. Since we cannot compute the maximum weighted stable set in an arbitrary graph
in a polynomial time, we approximate it. The performance of the allocator will depend on the
quality of the approximated weighted stable set of maximum weight, which is called a cluster.
The clusters are computed incrementally, that is, we �rst compute a cluster and then another
cluster which does not contain any variable of the �rst cluster, and so on, until we put all the
variables into clusters. To approximate a cluster, we incrementally merge high-weights nodes
which do not interfere with the variables already present in the stable set.

The clustering is performed by Algorithm 5 which transforms candidates, a list of vertices
of a graph sorted by decreasing weight, into cluster_list, a list of clusters. It constructs a new
cluster at each iteration of the outer while-loop. In order to compute cluster, the new cluster,
all the variables still in candidates are added to potentials. The list potentials keeps tracks, at
each round of the inner while-loop, the vertices that do not interfere with the vertices already
into cluster. Every time a vertex v is added to cluster, all the neighbors of v are removed from
potentials. At the end of the inner while-loop, the computed cluster is added to the cluster_list,
and the next round of the outer while-loop starts. Finally, Algorithm 5 ends when every variable
is in a cluster.

After the clusters have been computed, Algorithm 6 decides which clusters should be allocated
to registers. The R clusters that maximize the sum of their weights are allocated.

The complexity of the layered-heuristic allocation is O(R×(|V |+ |E|)). Indeed the algorithm
iterates at most R times for R registers, the clustering step visits every neighbor of a node only
once.
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16 Diouf & Cohen & Rastello

Algorithm 5 ClusterVertices

Require: candidates: a list of vertices, ordered by decreasing weight, that are candidate to an
allocation

Require: adj: a map associating to each vertex the list of its neighbors
Var: cluster_list: a list of clusters
1: while candidates 6= ∅ do
2: cluster← ⊥
3: // add all the vertices of candidates to potentials
4: potentials← candidates
5: while potentials 6= ∅ do
6: remove from potentials its �rst vertex, called v
7: add v to cluster
8: remove all the vertices of adj(v) from potentials
9: end while

10: add cluster to cluster_list
11: remove all the vertices of cluster from candidates
12: end while

13: return cluster_list

Algorithm 6 AllocateVertices

Require: candidates: a list of vertices that are candidate to an allocation
Require: R: the number of machine registers
cluster_list← ClusterVertices(var_list)
sort cluster_list by decreasing cost
if sizeof(cluster_list) > R then

remove the last (size−R) clusters from cluster_list
end if

spill each variable not in cluster_list

6 Experimental Evaluation

Our approach is very well suited to SSA programs, but we show that, it also yields excellent
results on arbitrary interference graphs from non-SSA programs.

6.1 Chordal Graphs: SSA Programs

6.1.1 Methodology

We evaluated our approach on chordal interference graphs resulting from programs compiled with
the Open64 compiler for the ST231 VLIW processor and for the ARM Cortex A8 (ARMv7). For
the former, we generated the interference graphs for the SPEC CPU 2000int, the lao-kernels (an
internal suite from STMicroelectronics) and the eembc benchmarks. We only used the lao-kernels
for the ARMv7 processor.

For each of the considered benchmarks, we computed the spill costs based on the basic blocks's
frequency and on the number of accesses to the variables within the basic blocks. We studied the
impact of the register count, ranging from 1 to 32. For each instance of the register allocation
problem and for each con�guration, we compared the following algorithms:

GC The Chaitin-Briggs, optimistic graph coloring algorithm.
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A Polynomial Spilling Heuristic: Layered Allocation 17

Optimal An optimal ILP-based allocator.

NL The layered allocation method implemented without the two improvements presented in
Section 4.

FPL The layered allocation method with the �xed point improvement that incrementally allo-
cates variables until no variable could be allocated any more, with the given register count.

BL The layered allocation method that biases the spilling cost of nodes in order to choose
between two stable sets of same (un-biased) cost the one that has more interferences.

BFPL The layered allocation method which biases the cost and iterates until a �xed point in
the allocation.

6.1.2 Results and discussion

The results obtained from the evaluation of chordal graphs generated from SPEC CPU 2000int,
lao-kernels and eembc benchmarks are very similar.
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Figure 8: Allocation cost for the SPEC CPU 2000int benchmark suite on ST231.
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Figure 9: Allocation cost for the EEMBC benchmark suite on ST231.

Figure 8 presents the average of the allocation cost of all the application of the SPEC CPU
2000int. For the sake of exposition, we reported here the results for con�guration with a register
count of 1, 2, 4, 8, 16 and 32 registers. For all the con�guration, BL, FPL, BFPL are close to
optimal on average and are better than GC. On con�guration with register counts up to 8, BL is
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Figure 10: Allocation cost for the LAO-KERNELS benchmark suite on ARMv7.

also quasi-optimal, but for con�guration with 16 and 32 registers, we notice a performance degra-
dation. This is reinforced by Figure 9 and on Figure 10 we also notice a performance degradation,
when the register count is 32, of the FPL approach; it suggests that the biased improvement is
very helpful on the lao-kernels benchmark suite, which is made of small benchmarks and thus
can be more impacted by a bad allocation choice.
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Figure 11: Distribution of the allocation costs over individual programs of the SPEC CPU 2000int
benchmark suite on ST231.

Figure 11 studies how the allocation results vary across individual interference graph for all
the benchmark programs in the SPEC CPU 2000int suite. Each allocation result is normalized
to the optimal allocation for the speci�c benchmark. This �gure depicts the distribution of
these normalized allocation costs. GC, and to a lesser extent NL, show a high variability. This
indicates that some benchmarks yield poor allocations for these allocators. On the contrary, BL,
FPL and BFPL are consistently successful at computing close-to-optimal allocations. This is
con�rmed by Figures 12 and 13 on the other benchmark suites. Notice a slight variability for
FPL and registers on the lao-kernels targetting the ARMv7 (Figure 13).
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Figure 12: Distribution of the allocation costs over individual programs of the EEMBC bench-
mark suite on ST231.

GC NL BL FPL BFPL

1_register 2_registers 4_registers 8_registers 16_registers 32_registers

Number of available registers

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

N
o

rm
a

liz
e

d
 a

llo
ca

ti
o

n
 c

o
st

Figure 13: Distribution of the allocation costs over individual programs of the lao-kernels bench-
mark suite on ARMv7.

6.2 Extension To Non-Chordal Graphs

We evaluate our approach on general, non-SSA progams, studying the SPEC JVM 98 bench-
mark suite (a benchmark set to measure the performance of Java virtual machines). We use the
JikesRVM just-in-time compiler; its intermediate representation is not in SSA, and the interfer-
ence graphs are not chordal in general.

We considered di�erent con�gurations of register count going from 2 to 16. For each in-
stance of the register allocation problem and for each con�guration, we compared the following
algorithms:

LS The original linear scan algorithm as implemented in JikesRVM.
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BLS A variant of the linear scan relying on Belady's furthest-�rst strategy to make spilling
decisions if their costs are close enough according to a chosen threshold.

GC The Chaitin-Briggs, optimistic graph coloring algorithm.

Optimal The globally optimal allocation implementing an ILP model proposed by Diouf et
al. [11].

LH Our layered-heuristic method.
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Figure 14: Layered-heuristic allocator compared to other algorithms for di�erent register counts.

Figure 14 shows the allocation costs for all SPEC JVM together, normalized over the cost
of the optimal allocation's cost. Con�gurations with di�erent register counts going from 2 to 16
registers. For almost all the register counts, the layered-heuristic allocator is close to optimal,
except for the con�gurations with 14 and 16 registers. This can be explained by the accumulation
of approximations in the incremental construction of maximal weighted stables, a consequence
of the non-chordality of the interference graphs.
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Figure 15: Layered-heuristic compared to other allocators when the register count is 6.

Figure 15 reports for each individual benchmark the normalized allocation costs when we have
a register count of 6 registers. We see that here again, the layered-heuristic allocator performs
close to optimal allocations, and outperforms all the other allocation heuristics. For check, jess,
javac, and jack, the overhead can reach 60% of the optimal, but the cost is still better than
the conventional heuristics.
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7 Related Work

Register allocation algorithms often rely on spilling algorithms to perform spill minimization.
In static compilation the dominant approach to register allocation is the graph coloring in

which the spilling and coloring (assignment) algorithms are interleaved. During the simplify
phase, whenever all the remaining nodes have at least R degrees, a node needs to be marked as
spilled or pushed onto the stack (optimistic coloring) and removed from the graph. A natural
intuition is to choose a node that has a low spilling cost and which interferes a lot. Many of the
graph coloring variant are based on this intuition and use the quantity cost(v)/deg(v) to choose
the variables to spill [8]. Thus, the spilling algorithm uses a global information over the whole
program that combines the interference degree and the spilling cost.

In the context of just-in-time (JIT) compilation, register allocation time is part of the global
execution time and (quasi-)linear complexity remains a driving force in the design of optimization
algorithms. Moreover, when embedded systems are addressed, the limited memory resources is
also an important issue. The linear scan which is one of the most used register allocation
algorithm on JIT compilers has a worst case complexity of O(n×R), where n is the number of
variables in the program and R is the number of available registers on the target architecture.
The original spilling heuristic used in linear scan [18] is based on the Belady's furthest �rst
algorithm [3]. This algorithm relies on local information to perform spilling: �At a point p where
registers are not enough to hold all the live variables, spill the variables whose live ranges go
farther in the future�. Recent versions of linear scan use more elaborate algorithms based on
variables' spill cost estimation and sharing some of the global spilling decisions of graph coloring
[21].

The idea of improving the spill minimization in a decoupled approach, where the allocation
is decoupled from the assignment, has been explored by Proebsting and Fischer [19], and by
Braun and Hack [7]. Braun and Hack generalized the Belady's furthest �rst algorithm � which
works very well on straight-line code � to control-�ow graphs. Their approach, while being
applicable as a pre-spill phase in any compiler, is more adapted to SSA-based register allocation.
They reported a reduction in the number of reload instructions by 54.5% compared to the linear
scan and by 58.2% compared to the graph coloring. An other approach approach by Pereira and
Palsberg rely on maximal cliques to drive spilling decisions with similar goals on chordal graphs,
and generalizability to general graphs [17]. Like the latter approaches, layered allocation is fast
and can be used in a non-decoupled context for general programs, in a decoupled context for SSA
programs, and as a pre-spill phase in any compiler. Unlike Braun and Hack, we experimentally
show how that our layered-optimal algorithm performs close-to-optimal allocations.

8 Conclusion

Combining key observations in SSA-based, decoupled register allocation, we designed a new,
polynomial approach to the spill-cost minimization problem: layered allocation. Our method
contrasts with decades of work on register allocation by incrementally allocating clusters of
variables to registers, while conventional heuristics incrementally spill variables. The criterion to
form these clusters, rooted in the maximal clique problem (polynomial on chordal graphs), is also
original. Our algorithm produces allocations that are very close to optimal on SSA programs,
outperforming higher complexity heuristics such as the graph coloring methods. We also adapt
our method to design an allocation heuristic for general, non-SSA programs.

These fundamental results pave the way to a simpler and very e�ective register allocation
framework. Several steps remain to be taken to integrate it in a production compiler: studying the
interactions with the register coalescing and other downstream optimizations, studying load/store
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optimization variants (with transparent, �ne-grain live range splitting), and reducing the number
of incremental allocations to compete with the slightly faster linear scan allocators.
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