A new sliced inverse regression method for multivariate response

Raphaël Coudret 1, 2, 3 Stephane Girard 4 Jerome Saracco 1, 2
2 CQFD - Quality control and dynamic reliability
IMB - Institut de Mathématiques de Bordeaux, Inria Bordeaux - Sud-Ouest
4 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : A semiparametric regression model of a q-dimensional multivariate response y on a p-dimensional covariate x is considered. A new approach is proposed based on sliced inverse regression (SIR) for estimating the effective dimension reduction (EDR) space without requiring a prespecified parametric model. The convergence at rate square root of n of the estimated EDR space is shown. The choice of the dimension of the EDR space is discussed. Moreover, a way to cluster components of y related to the same EDR space is provided. Thus, the proposed multivariate SIR method can be used properly on each cluster instead of blindly applying it on all components of y. The numerical performances of multivariate SIR are illustrated on a simulation study. Applications to a remote sensing dataset and to the Minneapolis elementary schools data are also provided. Although the proposed methodology relies on SIR, it opens the door for new regression approaches with a multivariate response.
Type de document :
Article dans une revue
Computational Statistics and Data Analysis, Elsevier, 2014, 77, pp.285-299. <10.1016/j.csda.2014.03.006>
Liste complète des métadonnées


https://hal.inria.fr/hal-00714981
Contributeur : Stephane Girard <>
Soumis le : samedi 5 octobre 2013 - 14:50:18
Dernière modification le : mercredi 25 janvier 2017 - 10:49:36
Document(s) archivé(s) le : vendredi 7 avril 2017 - 06:51:40

Fichier

multivariateSIR-2013.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Raphaël Coudret, Stephane Girard, Jerome Saracco. A new sliced inverse regression method for multivariate response. Computational Statistics and Data Analysis, Elsevier, 2014, 77, pp.285-299. <10.1016/j.csda.2014.03.006>. <hal-00714981v3>

Partager

Métriques

Consultations de
la notice

999

Téléchargements du document

658