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Abstract

A semiparametric regression model of a q-dimensional multivariate response y on a p-dimensional

covariate x is considered. A new approach is proposed based on sliced inverse regression (SIR) for

estimating the effective dimension reduction (EDR) space without requiring a prespecified para-

metric model. The convergence at rate
√
n of the estimated EDR space is shown. The choice of the

dimension of the EDR space is discussed. Moreover, a way to cluster components of y related to the

same EDR space is provided. Thus, the proposed multivariate SIR method can be used properly

on each cluster instead of blindly applying it on all components of y. The numerical performances

of multivariate SIR are illustrated on a simulation study. Applications to a remote sensing dataset

and to the Minneapolis elementary schools data are also provided. Although the proposed method-

ology relies on SIR, it opens the door for new regression approaches with a multivariate response.

They could be built similarly based on other reduction dimension methods.

Keywords: dimension reduction, semiparametric regression model, multivariate response, sliced

inverse regression

1. Introduction

In analyzing large datasets, multivariate response regression analysis with a p-dimensional vector

of regressors has been extensively studied in literature. The reduction of the dimension of the

regressors’ space is a major concern in this framework. When the response variable is univariate,

the issue has been addressed by Li (1991) via the notion of EDR (effective dimension reduction)

space. The EDR directions (which form a basis of this subspace) are used to project the p-

dimensional covariate x on a K-dimensional linear subspace (with K < p) first for displaying and

then for studying its relationship with the response variable y. When the dimension of y is one, it

is easy to view the link between the projected predictors and the response variable. The notion of
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EDR space was also clarified by Cook and his collaborators in their numerous papers introducing

the notions of central subspace and central mean subspace, see for details Cook (1998) or Cook

and Li (2002). Li (1991) introduced sliced inverse regression (SIR) which is a well-known method

to estimate the EDR space. The link function can be estimated with a smoothing method such as

kernel or smoothing splines approaches for instance.

In this paper, a q-dimensional response variable y is considered. Hence, we deal with a high

dimensional regression framework which is not a linear one or a prespecified parametric one. The

underlying idea of the dimension reduction of the explanatory variable x without loss of information

is to identify linear combinations β′1x, . . . , β
′
Kx such that

y ⊥ x|(β′1x, . . . , β′Kx), (1)

where ⊥ denotes independence, K(≤ p) is as small as possible and the p-dimensional vectors βk

are linearly independent. Let B = [β1, . . . , βK ] denote the p×K matrix of the βk’s. Statement (1)

means that y|x and y|B′x share the same distribution for all values of x. A straightforward

consequence is that the p-dimensional covariate x can be replaced by the K-dimensional predictor

B′x without loss of regression information. The goal of dimension reduction is achieved for K < p.

As mentioned in Li (1991) or Cook (1994), statement (1) is equivalent to y ⊥ x|PBx, where

PB denotes the projection operator on Span(B) which is the linear subspace of Rp spanned by

the columns of B. In addition, Span(B) can be viewed as the EDR space. From a regression

model point of view, one can mention that the corresponding underlying model is the following

semiparametric one

y = f(B′x, ε), (2)

where f : RK+r → Rq is an arbitrary and unknown link function, ε is a r-dimensional random

error variable independent of x (with r ≥ 1). Li et al. (2003) consider a regression model with an

additive error term: y = g(B′x) + ε, where g is an unknown link function taking its values in Rq.

In the following, a slightly more restrictive regression model is considered:
y(1) = f1(B

′x, ε(1)),
...

y(q) = fq(B
′x, ε(q)),

(3)

where for j = 1, . . . , q, y(j) (resp. ε(j)) stands for the jth component of y (resp. of ε) and the

link function fj is an unknown real-valued function. For j = 1, . . . , q, B(j) is defined as a matrix

containing a basis of the (marginal) EDR space from the marginal regression of y(j) given x. The
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following marginal condition is assumed:

(MC) ∀j ∈ {1, . . . , q}, Span(B(j)) = Span(B).

In this paper, we propose an approach to estimate Span(B). It is based on combining information

from the marginal regression of each component y(j) of y. We shall also discuss the estimation of

the EDR space when (MC) does not hold, by considering model (4) presented thereafter.

Remark 1. The information from the marginal regression is sufficient to recover the whole EDR
space in model (3). However, this is not always the case when working with model (2). Let us
illustrate this point with the following regression model proposed by Zhu et al. (2010b):(

y(1)

y(2)

)
∼ N2

((
0
0

)
,

(
1 sin(B′x)

sin(B′x) 1

))
.

In this example, the information of interest is only in the correlations between the components
of the response variables. Consequently, none of the available marginal regression provides useful
information about the EDR space while considering the entire y allows to recover it.

The vectors βk are not individually identifiable neither in model (2), nor in the more restrictive

one (3). Thus, the main objective is to estimate a basis of the K-dimensional EDR space. When

q = 1, many numerical methods have been introduced to achieve this goal. Let us mention four of

them which are relatively simple and easy to implement: SIR introduced by Duan and Li (1991)

for the single index model (K = 1) and Li (1991) for the multiple indices model (K > 1), principal

Hessian directions (see for instance Li (1992) or Cook (1998)), sliced average variance estimation

(see for details Cook (2000), Prendergast (2007) or Shao et al. (2009)) and minimum average

variance estimation (Xia et al. (2002), Ćıžek and Härdle (2006)). For the sake of simplicity, we

shall only focus here on the SIR approach which is based on a property of the first moment of

the inverse distribution of x given y. The methodology presented in this paper can, however, be

seen as a framework to construct multivariate versions of the aforementioned sufficient dimension

reduction techniques.

To find an estimate of the EDR space, SIR requires the following linearity condition:

(LC) the conditional expectation E[b′x|B′x] is linear in B′x for any b ∈ Rp.

One can observe that the linearity condition does not involve the response variable y and only

concerns the distribution of the covariate x. Let us mention that when the distribution of x is

an elliptically symmetric distribution (such as a p-dimensional normal distribution), this condi-

tion is satisfied. Cook and Nachtsheim (1994) proposed a method based on the minimum volume

ellipsoid to transform and weight the predictors in order to approximate ellipticity. Kuentz and

Saracco (2010) recommended to cluster the predictor space so that the linearity condition ap-

proximately holds in the different partitions. Hino et al. (2013) recently used an estimator of the
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differential entropy of x to get rid of (LC). Scrucca (2011) relies on SIR to study a parametric model

without assuming this condition. To conclude this brief discussion on the linearity condition, using

a Bayesian argument of Hall and Li (1993), it can be shown that (LC) approximately holds for

many high-dimensional datasets (that is when p is large).

As previously mentioned, the proposed approach to estimate the EDR space relies on combin-

ing estimates from the marginal regressions of model (3). Moreover, one can naturally take the

information from these regressions into account to detect if a common EDR space really exists for

all the components of y as in model (3). Otherwise, one shall consider the following more general

regression model for multivariate response regression:

y(1) = f1(B
′
1x, ε

(1)),
... =

...

y(q1) = fq1(B′1x, ε
(q1)),

y(q1+1) = fq1+1(B
′
2x, ε

(q1+1)),
... =

...

y(q1+q2) = fq1+q2(B′2x, ε
(q1+q2)),

... =
...

y(q) = fq(B
′
Lx, ε(q)),

(4)

where, for every l = 1, . . . , L, Bl is a p × K matrix, K is assumed to be known, Span(B1) 6=

Span(B2) 6= . . . 6= Span(BL) and
∑L

l=1 ql = q. This means that writing this model as in (3) requires

the number of columns of B to be greater than K. Let us highlight that the resulting model does not

satisfy (MC). Although methods exist to estimate Span(B) without this assumption, estimating

B1, . . . ,BL seems anyway more appropriate than seeking B when trying to reduce as much as

possible the dimension of a model. One then needs to cluster the components of y associated with

the same EDR space. Therefore, for each identified cluster of components, one can use only these

components to estimate the corresponding (common) EDR space. In a more general case, one can

also assume that the dimension K is specific for each Bl.

The goal of this paper is twofold. First, we introduce a new multivariate SIR approach for

estimating the K-dimensional EDR space which is common to the q components of the multivariate

response variable in model (3). Then, we propose a way to cluster the components of y associated

with the same EDR space in model (4). This permits to apply properly our multivariate SIR on

each cluster instead of blindly applying it on all the components of y.

The paper is organized as follows. Section 2 gives a brief overview on usual univariate SIR

and existing multivariate SIR methods. The population version of the new SIR approach for
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a multivariate response, named MSIR hereafter, is described in Section 3.1. The corresponding

sample version is introduced in Section 3.2 and asymptotic results are provided in Section 3.3. A

weighted version of MSIR, named wMSIR hereafter, is proposed in Section 3.4. Both these methods

rely on a tuning parameter H, called the number of slices. The choice of H and of the dimension

K is discussed in Section 3.5. Practical methods to investigate the possible existence of a common

EDR space for y and to detect and identify clusters of components of y are proposed in Section 3.6.

Numerical results based on simulations are exhibited in Section 4 in order to show the good behavior

of MSIR and wMSIR approaches and the usefulness of the diagnostic and clustering procedures

on the components of y. In Section 5, two real datasets are considered: the first one concerns

hyperspectral remote sensing while the second one is the widely studied Minneapolis elementary

schools dataset. Finally, concluding remarks are given in Section 6.

2. Brief review of univariate and multivariate SIR approaches

In this section, the regression model (3) is considered. We first provide an overview of the SIR

method when the response y is univariate. Then, some existing SIR methods for a multivariate

response are briefly described. The aim of all these approaches is to estimate the EDR space.

2.1. Univariate SIR

We focus here on a univariate response (i.e. q = 1).

Inverse regression step. The basic principle of the SIR method is to reverse the roles of y and x,

that is, instead of regressing the univariate variable y on the multivariate variable x, the covariable

x is regressed on the response variable y.

Let T denote a monotone (but not necessarily strictly monotone) transformation of y. Assume

that E((x′x)2) < ∞ and let µ = E(x) and Σ = V(x) supposed to be invertible. Under model (3)

and (LC), Li (1991) established the following geometric property: the centered inverse regression

curve, E(x|T (y)) − µ as y varies, is contained in the linear subspace of Rp spanned by ΣB. A

straightforward consequence is that the covariance matrix,

Γ := V(E(x|T (y))),

is degenerated in any direction Σ-orthogonal to Span(B). Therefore, the eigenvectors associated

with the non-null eigenvalues of Σ−1Γ are some EDR directions.

Slicing step. Li (1991) proposed a transformation T , called “slicing”, which categorizes the response

y into a new response with H > K levels. The support of y is partitioned into H non-overlap-

ping slices s1, . . . , sh, . . . , sH . With such a transformation T , the subspace recovered through a
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slicing (based on the inverse x|T (y) function) may fall short of the space recovered through y in its

entirety (based on the x|y function). However, the main advantage of the slicing is that the matrix

of interest can be rewritten as

Γ =
H∑
h=1

ph(mh − µ)(mh − µ)′,

where ph = P(y ∈ sh) and mh = E(x|y ∈ sh).

Estimation process. In the usual statistical framework, when a sample {(xi, yi), i = 1, . . . , n} is

available, it is straightforward to estimate the matrices Σ and Γ, by substituting empirical versions

of the moments for their theoretical counterparts, and therefore to obtain the estimation of the

EDR directions. Li (1991) showed that each of these estimated EDR directions converges to an

EDR direction at rate
√
n. Asymptotic normality of these estimated EDR directions has been

obtained by Saracco (1997).

From a practical point of view, the choice of the slicing is discussed in Li (1991), Chen and

Li (1998) or Saracco (2001). Since SIR theory makes no assumption about the slicing strategy,

the user must choose the number H of slices and how to construct them. In practice, there are

naturally two possibilities: to fix the width of the slices or to fix the number of observations per

slice. This second option is often preferred, and from the sample point of view, the slices are often

chosen such that the number of observations in each slice is as close to each other as possible. Note

that H must be greater than K in order to avoid an artificial reduction of dimension and must

be lower than bn/2c in order to have at least two observations in each slice (where bac denotes

the integer part of a). The choice of H is less sensitive than the choice of a smoothing parameter

in nonparametric regression. This point is clearly illustrated in Liquet and Saracco (2012) with a

graphical tool that allows the user to find simultaneously realistic values of the two parameters H

and K, see Section 3.5 for some details on this method.

SIR estimates based on the first inverse moment have been studied extensively, see for instance

Hsing and Carroll (1992), Zhu and Ng (1995), Saracco (1999), Prendergast (2005), Szretter and

Yohai (2009) among others for some asymptotic results. Chen and Li (1998) exhibited many fea-

tures to popularize SIR. Chavent et al. (2011) considered the case of a stratified population. In

order to avoid the choice of a slicing in SIR, pooled slicing, kernel or spline versions of SIR have

been investigated, see for example Zhu and Fang (1996), Aragon and Saracco (1997), Zhu and

Yu (2007), Wu (2008), Kuentz et al. (2010) or Azäıs et al. (2012). However, these methods are

hard to implement comparing to the basic SIR approach and are often computationally slow. Reg-

ularized versions for SIR have been proposed for high-dimensional covariates, see for instance Zhu
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et al. (2006), Scrucca (2007), Li and Yin (2008), Bernard-Michel et al. (2008). Amato et al. (2006)

developed an extension of SIR when x is a sampled function. Sparse SIR has been proposed by

Li and Nachtsheim (2006). Hybrid methods of inverse regression-based algorithms have been also

studied, see for example Gannoun and Saracco (2003) or Zhu et al. (2007). Conditional quantiles

of y given x can be estimated by combining SIR with kernel regression, see Gannoun et al. (2004).

2.2. Multivariate SIR

In the multivariate framework (that is when y ∈ Rq with q > 1), Aragon (1997), Li et al. (2003)

considered several estimation methods of the EDR space based on SIR. Note that Barreda et al. (2007)

proposed extensions of the following multivariate SIR methods based on SIRα approach instead of

SIR, where SIRα is a generalization of SIR which combines information from the first two condi-

tional moments of x given T (y).

Complete slicing and marginal slicing approaches. In the complete slicing method, the SIR proce-

dure is directly applied on y. To build slices of nearly equal sizes, the following recursive approach

is used. The first component of y is sliced. Then, each slice is separately sliced again according to

the next component of y, and so on. This extension of univariate SIR to multivariate y appears

straightforward and the theoretical development can be formally carried over. Computation of

such estimators suffers from the so-called curse of dimensionality when the dimension q of y is

large (q ≥ 4). Note that Hsing (1999) proposed a version of SIR in which the slices are determined

by the nearest neighbors approach and showed that the EDR directions can be estimated with rate
√
n under general conditions. Moreover, Setodji and Cook (2004) extended that univariate SIR

to the multivariate framework by introducing a new slicing of y based on k-means method. The

corresponding method is called k-means inverse regression (KIR).

A natural way to circumvent the curse of dimensionality of the complete slicing approach is

proposed in the marginal slicing procedure which consists in applying SIR on a transformation of

y depending on one’s interest. For instance, it can be the mean or the median of the y(j)’s. One

can also take the first few significant components of a principal component analysis of the y(j)’s to

construct the slices. However, slicing a lower dimensional projection of y may not lead to recover

as many EDR directions as slicing the entire y.

For these reasons, these two multivariate approaches (complete slicing and marginal slicing) are

not completely satisfactory.

Pooled marginal slicing approach. The idea of the pooled marginal slicing (PMS) method is to

consider the q univariate marginal SIR of each component y(j) of y on x and to combine the
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corresponding matrices of interest Γ(j) := V(E(x|Tj(y(j)))) in the following pooling:

ΓP =

q∑
j=1

wjΓ
(j), (5)

for positive weights wj . It has been shown that the eigenvectors associated with the non-null K

eigenvalues of Σ−1ΓP are EDR directions. Aragon (1997) proposes to use two kinds of weighting

for the wj ’s: equal weights or weights proportional to the major eigenvalues found by a preliminary

univariate SIR analysis of each component of y. Saracco (2005) obtained the asymptotic normality

of the pooled marginal slicing estimator based on SIRα. Lue (2009) derived the asymptotic weighted

chi-squared test for dimension. For j = 1, . . . , q, rather than constructing Γ(j) from y(j), one can

also build it from a linear combination τ ′y of y. This method which is called projective resampling

was introduced by Li et al. (2008). To ensure good performances, the number of linear combinations

to handle should be greater than the sample size n.

Some other multivariate SIR approaches. Bura and Cook (2001) introduced the parametric inverse

regression that may easily adapt to multivariate response framework. Yin and Bura (2006) proposed

a moment-based dimension reduction approach in this context. Moreover, in order to solve the

dimensionality problem when p is large and to rationalize the slicing step, Li et al. (2003) presented

an algorithm based on a duality between SIR variates and MP (most predictable) variates. The

term “variate” denotes any linear combination of either the regressor x or the response variable y.

The SIR variates are the variables b′x formed by an EDR direction b obtained with SIR. The MP

variates θ′y are defined as those minimizing the ratio E[V(θ′y|x)]/V(θ′y), where V(θ′y|x) is the

associated prediction mean squared error of the best nonlinear prediction E[θ′y|x] for the squared

error loss. Equivalently, due to ANOVA identity, the MP variates can be found by maximizing

the ratio V(E[θ′y|x])/V(θ′y), which conducts to the same eigenvalue decomposition as the SIR

approach except for the exchanged roles of x and y. This twin relationship between SIR variates

and MP variates underlies the development of the alternating SIR algorithm. The idea of the

algorithm is to alternate computations of either θ̂ or b̂ respectively obtained by the slicing of SIR

variates or MP variates constructed at the previous step. Li et al. (2003) proposed an iterative

procedure for the alternating SIR and showed that choosing the canonical directions as an initial

projection of the y’s guarantees the convergence of the corresponding algorithm in a finite number

of steps (equal to K, the number of EDR directions).

3. A new multivariate SIR approach

The population version of the proposed MSIR approach is first described in Section 3.1. Let us

highlight that it does not rely on SIR and can thus be a starting point for the definition of other
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multivariate inverse regression methods. Then, the corresponding sample version based on SIR is

given in Section 3.2 and some asymptotic results are derived in Section 3.3. We then modify MSIR

to handle a weighting in the components of y in Section 3.4. Methods to choose K and H are

discussed in Section 3.5. Finally, procedures to withdraw or cluster components of y are detailled

in Section 3.6.

3.1. Population version

Let us assume that the dimension K of the EDR space is known. Let PM,Σ be the Σ-orthogonal

projector on the linear subspace spanned by the columns of a p×K matrix M. A proximity measure

between two projectors PM1,Σ1 and PM2,Σ2 is given by the squared trace correlation:

r(M1,Σ1,M2,Σ2) :=
1

K
Trace (PM1,Σ1PM2,Σ2) ,

for full column rank matrices M1 and M2.

For j = 1, . . . , q, recall that B(j) is a p×K matrix spanning the EDR space from the marginal

regression of y(j) given x. It is assumed to be Σ-orthonormal. Let D be a p × K matrix such

that D′ΣD = IK , where IK is the identity matrix of order K. Let Q(D,B(1), . . . ,B(q)) denote the

following proximity measure between Span(D) and the q marginal EDR spaces Span(B(1)), . . . ,

Span(B(q)):

Q(D,B(1), . . . ,B(q)) :=
1

q

q∑
j=1

r
(
D,Σ,B(j),Σ

)
. (6)

This measure takes its values in [0,1]. Note that Span(D) = Span(B(1)) = · · · = Span(B(q)) implies

Q(D,B(1), . . . ,B(q)) = 1. The closer to one is this measure, the closer to the q marginal EDR

spaces is the linear subspace Span(D).

Let us now consider the following optimization problem:

V := arg max
D∈MΣ

Q(D,B(1), . . . ,B(q)), (7)

where MΣ is the set of Σ-orthogonal p ×K matrices. A solution of (7) is given by the following

theorem.

Theorem 1. Under model (3) and assumption (MC), the p×K matrix V is formed by the eigen-
vectors v1, . . . , vK associated with the K non-null eigenvalues of BB′Σ where B is the p × (Kq)
matrix defined as B := [B(1), . . . ,B(q)]. Moreover, we have Span(V) = Span(B) where Span(B) is
the EDR space.

The proof is given in Appendix A.2. From Theorem 1, one can estimate a basis of the EDR

space based on estimators of matrices B and Σ. This is the goal of the next subsection where B is

estimated using SIR.
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3.2. Sample version

Let {(xi,yi), i = 1, . . . , n} be a sample of independent observations from model (3). Each yi is

a q-dimensional random variable. Le us assume that the sample size n is larger than the dimension

p of each covariate xi.

Let x̄ := 1
n

∑n
i=1 xi and Σ̂ := 1

n

∑n
i=1(xi− x̄)(xi− x̄)′ be the empirical mean and the covariance

matrix of the xi’s.

In order to estimate the matrix B, we have to estimate each p × K matrix B(j) with usual

univariate SIR from the subsample {(xi, y(j)i ), i = 1, . . . , n} where y
(j)
i stands for the jth component

of yi. To this end, let us assume that the support of y(j) is partitioned into a fixed number of slices

denoted by s
(j)
1 , . . . , s

(j)
h , . . . , s

(j)

H(j) . Let p
(j)
h := P

(
y(j) ∈ s(j)h

)
and m

(j)
h := E

(
x|y(j) ∈ s(j)h

)
. Thus,

the matrix Γ(j) :=
∑H(j)

h=1 p
(j)
h (m

(j)
h −µ)(m

(j)
h −µ)′ is estimated by Γ̂

(j)
:=
∑H(j)

h=1 p̂
(j)
h (m̂

(j)
h −x̄)(m̂

(j)
h −

x̄)′ with p̂
(j)
h := 1

n

∑n
i=1 I[y

(j)
i ∈ s

(j)
h ] and m̂

(j)
h := 1

np̂
(j)
h

∑n
i=1 xiI[y

(j)
i ∈ s

(j)
h ] where I[.] is the indicator

function. Assuming that Γ(j) has K non-null eigenvalues, we build the Σ-orthonormal basis B(j)

of the marginal EDR space by binding the K eigenvectors of Σ−1M corresponding to its K largest

eigenvalues. Then, B(j) is estimated by

B̂(j) :=
[
b̂
(j)
1 , . . . , b̂

(j)
K

]
,

where the vectors b̂
(j)
k , k = 1, . . . ,K are the Σ̂-orthonormal eigenvectors associated with the K

largest eigenvalues of the matrix Σ̂
−1

Γ̂
(j)

. It follows that the matrix B is directly estimated by

B̂ :=
[
B̂(1), . . . , B̂(q)

]
.

Finally, a Σ̂-orthonormal estimated basis of the EDR space is given by the vectors v̂1, . . . , v̂K

defined as the eigenvectors associated with the K largest eigenvalues of the matrix B̂B̂′Σ̂ and we

write V̂ := [v̂1, . . . , v̂K ].

Remark 2. Similarly to the pooled marginal slicing (PMS) presented in Section 2.2, MSIR relies on
the univariate version of SIR, applied to each component of y. While both methods need estimates
of Γ(1), . . . ,Γ(q), estimates of B(1), . . . ,B(q) are only required by MSIR. Computing such estimates
is useful to explore the relations between components of y as explained in Section 3.6.

3.3. An asymptotic result

The following assumptions are necessary to state our asymptotic result. Let n
(j)
h := np̂

(j)
h be

the number of observations in the slice s
(j)
h .

• (A1) Observations {(xi,yi), i = 1, . . . , n} are independently drawn from a given regression

model.
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• (A2) For each component y(j) of y, the support is partitioned into a fixed number H(j) of

slices such that p
(j)
h > 0 for h = 1, . . . ,H(j).

• (A3) For j = 1, . . . , q and h = 1, . . . ,H(j), n
(j)
h →∞ as n→∞.

Theorem 2. Under model (3) and assumptions (MC), (LC) and (A1)-(A3), if for j = 1, . . . , q,
Γ(j) has K non-null eigenvalues, we have, for k = 1, . . . ,K,

v̂k = vk +Op(n
−1/2),

that is, the estimated EDR space Span(V̂) converges in probability to the EDR space.

The poof is given in Appendix A.3.

Remark 3. Using Delta-method and asymptotic results of Tyler (1981) and Saracco (1997), it is
possible to obtain the asymptotic normality of

√
n
(

vec(B̂B̂′Σ̂)− vec(BB′Σ)
)
,

where vec(M) stands for the “vec” operator applied to matrix M. More precisely, this operator
rearranges the p2 elements of M in the form of a p2-dimensional column vector by stacking the p
columns of M one under the other. Then, the asymptotic normality of the eigenprojector onto the
estimated EDR space can be derived, as well as the asymptotic distribution of the estimated EDR
directions v̂k, associated with eigenvalues assumed to be different (that is λ1 > · · · > λK > 0).

3.4. A weighted version of MSIR

Following the idea used in pooled marginal slicing approach in which the matrix of interest

ΓP is a weighted average of the marginal matrices Γ(j), we can consider a weighted version of the

multivariate SIR method introduced in this paper, named wMSIR hereafter. As it has already

been proposed by Aragon (1997) or Lue (2009), we shall use weights based on the proportion of

eigenvalues corresponding to significant eigenvectors (which are EDR directions) in each marginal

SIR (i.e. univariate SIR on each marginal component of y).

More precisely, for j = 1, . . . , q, let λ
(j)
k , k = 1, . . . , p be the eigenvalues of the eigendecomposi-

tion Σ−1Γ(j)v
(j)
k = λ

(j)
k v

(j)
k where λ

(j)
1 ≥ λ

(j)
2 ≥ · · · ≥ λ

(j)
p . Let us define, for each component y(j)

of y, the proportion of eigenvalues corresponding to significant eigenvectors: π(j) =
∑K
k=1 λ

(j)
k∑p

k=1 λ
(j)
k

. Let

us also define π? =
∑q

j=1 π
(j). Then, the following qK × qK matrix of weights is introduced:

W = diag(W(1), . . . ,W(j), . . . ,W(q)),

with W(j) = π(j)

π?
IK for j = 1, . . . , q. Note that, from a theoretical point of view, under model (3)

and (LC), the matrix of weights is given by W = 1
q IqK since λ

(j)
k = 0 for j = 1, . . . , q and k =

K + 1, . . . , p.

The population version of wMSIR consists in noticing that the eigenvectors ṽ1, . . . , ṽK associated

with the K largest eigenvalues of the Σ-symmetric matrix BWB′Σ span the EDR space. We write

Ṽ := [ṽ1, . . . , ṽK ]. To show this result, one can proceed analogously to the proof of Theorem 1.

11



Let λ̂
(j)
k be the kth eigenvalue of Σ̂−1Γ̂(j). The sample version of wMSIR is obtained by

substituting the empirical matrices B̂, Ŵ and Σ̂ for their theoretical counterparts B, W and Σ,

where Ŵ = diag(Ŵ(1), . . . ,Ŵ(q)) with, for j = 1, . . . , q, Ŵ(j) = π̂(j)

π̂?
IK , π̂(j) =

∑K
k=1 λ̂

(j)
k∑p

k=1 λ̂
(j)
k

and π̂? =∑q
j=1 π̂

(j). Therefore, one can get the corresponding estimated EDR directions
̂̃
V :=

[̂̃v1, . . . , ̂̃vK].
Theorem 3. Under model (3) and assumptions (MC), (LC) and (A1)-(A3), if for j = 1, . . . , q,
Γ(j) has K non-null eigenvalues, we have, for k = 1, . . . ,K,

̂̃vk = ṽk +Op(n
−1/2),

that is, the estimated EDR space Span(
̂̃
V) converges in probability to the EDR space.

The proof is given in Appendix A.4.

3.5. Discussion on the choice of K and H

Up to now, the dimension K of the EDR space was assumed to be known. However, in most

applications based on real datasets, the number K of indices β′kx in model (1) is a priori unknown

and hence must be determined from the data. In addition, the number of slices H in MSIR has to

be chosen.

Several approaches to determine K have been proposed in the literature for univariate SIR.

Some of them are based on hypothesis tests on the nullity of the last (p −K) eigenvalues, see for

instance Li (1991), Schott (1994), Bai and He (2004), Barrios and Velilla (2007) or Nkiet (2008).

In the multivariate response framework, Lue (2009) derived an asymptotic weighted chi-squared

test for dimension adapted to the pooled marginal slicing estimator. In our case, a crude choice of

the dimension can be also made by a visual inspection of the eigenvalues scree plot of the matrix

B̂B̂′Σ̂: the idea is to determine the number of the significantly non-null eigenvalues.

In the univariate response model, Liquet and Saracco (2012) proposed to consider a risk function

which can be replaced in this multivariate context by:

Rh,k := E
(
r(Vk,Σ, V̂k, Σ̂)

)
, (8)

where Vk := [v1, . . . , vk], V̂k := [v̂1, . . . , v̂k] and h is the number of slices used to obtain Vk and V̂k.

This risk function only makes sense for any dimension k lower than or equal to the true dimension

K of the EDR space. For the true dimension K, Rh,K converges to one as n tends to infinity.

For a fixed n, a reasonable way to assess whether an EDR direction is available is to graphically

evaluate how much Rh,k departs from one. From a computational point of view, consistent estimates

of Rh,k are required. Liquet and Saracco (2012) use a bootstrap estimator R̂h,k of this criterion in

order to determine the pair (H,K) of parameters.
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The proposed graphical method consists in evaluating the R̂h,k values for all k = 1, . . . , p and

some reasonable values of h, and in observing how much the criterion departs from one. The best

choice will be the pair (Ĥ, K̂) which gives a value of R̂h,k close to one, such that K̂ << p in

order to get an effective dimension reduction. In practice, there is no objective criterion to find a

trade-off between a large value of the criterion R̂h,k and a small value of the dimension K. Then,

a visual expertise of the 3D-plot of the R̂h,k versus (h, k) allows the selection of the best value. It

is also useful to provide, for each (h, k), the boxplots of the bootstrap replication of the squared

trace correlation to investigate the stability of the corresponding k-dimensional linear subspace.

Although boxplots of R̂h,k are also useful to determine the optimal number of slices Ĥ, wMSIR is

not really sensitive to this parameter as shown in Section 4.

3.6. Analyzing components of y through MSIR

Recall that the estimate V̂ (resp.
̂̃
V) of MSIR (resp. wMSIR) is computed from the estimated

EDR directions B̂(j) associated with each component of y. From these estimates, it is straight-

forward to calculate the proximity measure r̂j := r(B̂(j), Σ̂, V̂, Σ̂) (resp. ˆ̃rj := r(B̂(j), Σ̂,
̂̃
V, Σ̂))

between each estimated marginal EDR space and the estimated common one, for j = 1, . . . , q. Then

it is easy to sort these measures in descending order and to draw the associated scree plot. For

j = 1, . . . , q, assuming model (3) and observing a low value of r̂j or ˆ̃rj could indicate an unprecise

estimate of B(j) since r̂j and ˆ̃rj tends to 1 in probability as n goes to ∞. One can then withdraw

the component y(j) of y to improve the accuracy of V̂ or
̂̃
V.

In addition, assuming model (3) with a low dimensional common EDR space for the whole

components of y does not always seem realistic in real data analysis. Therefore, applying any

multivariate SIR method on y should not provide a suitable dimension reduction. However, it makes

sense to assume that only groups of components of y rely on model (3) with small values of K, as

in model (4). For this model, a methodology is introduced to identify the variables y(j) which share

the same EDR space. Thus, we obtain clusters of components on which applying a multivariate

SIR approach is sensible. Note that performing marginal univariate SIR on each component y(j)

of y leads to consistent estimates of each K-dimensional EDR space, since for l = 1, . . . , L, it is

assumed that the rank of Bl is equal to K. Recalling notations of Section 3.2, we obtain q1 estimates

Span(B̂(1)), . . . , Span(B̂(q1)) of Span(B1), q2 estimates Span(B̂(q1+1)), . . . , Span(B̂(q1+q2)) of

Span(B2), and so on, but values of q1, . . . , qL are unknown, as well as the number L of clusters.

For (j, j?) ∈ {1, . . . , q}2, we define r̂j,j? := r(B̂(j), Σ̂, B̂(j?), Σ̂). Without any loss of generality,

assume that L = 2. Let us define (j1, j2, j3, j4) ∈ {1, . . . , q1}2 × {q1 + 1, . . . , q1 + q2}2. We thus

have the following Lemma.
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Lemma 1. Under model (4) and assumptions (LC) and (A1)-(A3), r̂j1,j2 and r̂j3,j4 tend to 1 in
probability.

The proof of this Lemma is given in Appendix A.1. Let us remark that, however, r̂j1,j3 does

not converge to 1 in probability since r(B1,Σ,B2,Σ) < 1. This leads to the following criterion

to cluster components of y: for (j, j?) ∈ {2, . . . , q} × {1, . . . , j − 1}, components y(j) and y(j
?)

are classified in the same cluster if r̂j,j? is close to 1. To do so, we can perform, for instance, a

hierarchical ascending classification on the q×q (symmetrtic) matrix of the proximity measures r̂j,j?

(with r̂j,j = 1 for j = 1, . . . , q). Other clustering procedures can be applied on this matrix, such as

a multidimensional scaling together with the k-means method. In Sections 4-5, we give illustrations

of a clustering step for simulated and real datasets, which clearly improves the estimation of the

corresponding EDR spaces.

Remark 4. Computing the common estimated EDR space for each obtained cluster is not time
consuming since B̂(1), . . . , B̂(q) have already been computed. This is not the case for the k-means
inverse regression (KIR) which requires new computations. In addition, applying PMS instead of

MSIR or wMSIR on a cluster of y requires to store the p× p matrices Γ̂
(1)
, . . . , Γ̂

(q)
and summing

some of them, which represent more computational time and more memory space than required by
MSIR or wMSIR method, especially when p is large.

4. A simulation study

This section illustrates the ability of the proposed MSIR and wMSIR approaches, together with

the diagnostic procedures on the components of y, to properly estimate EDR spaces. The two

following subsections respectively correspond to models (3) and (4).

4.1. Single EDR space model

Two simulation models are considered here. For a given sample size n and a dimension p, 100

replications of the covariate x are generated from the p-dimensional normal distribution Np(µ,Σ)

with the same pair (µ,Σ). Here, µ is randomly generated from the Np(0, Ip) distribution and

Σ = LL′+0.1Ip where L is a p×p matrix made of entries independently generated from the standard

normal distribution N1(0, 1). For every model, for all j ≥ 1, it is assumed that ε(j) ∼ N1(0, 1). The

dimension K is also assumed to be known in this section. We first study a special case of model (3)

with K = 1. Secondly, MSIR and wMSIR are evaluated with a multiple indices model (K = 2).

Single index model. Consider the following single index model:
y(1) = x′β1 + ε(1),

y(2) = (x′β1)
3 + 3ε(2),

y(3) = x′β1(1 + ε(3)),

(9)
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with β1 = [β1,1, . . . , β1,p]
′. We choose for all i = 1, . . . , p, β1,i = i I(i ≤ 5) + I(i > 5).

Samples of size n = 100 are generated from (9), with p = 20. Then, the EDR direction is

estimated using the following methods, with H = 10 slices:

• univariate SIR for each component of y which produces estimates B̂(1), B̂(2) and B̂(3),

• MSIR which gives the estimate V̂,

• wMSIR that leads to the estimate
̂̃
V,

• k-means inverse regression which provides the estimate V̂KIR,

• pooled marginal slicing, leading to the estimate V̂PMS.

For each estimator B̂ ∈
{

B̂(1), B̂(2), B̂(3), V̂,
̂̃
V, V̂KIR, V̂PMS

}
, the squared trace correlation

r(B̂) := r(B̂,Σ,B,Σ) between the estimated EDR space and the true EDR space is computed.

The closer to one is r(B̂), the better is the estimate. Note that for K = 1, the criterion r(B̂)

corresponds to the squared cosine of the angle between B̂ and β1.

Boxplots of this criterion are drawn on Figure 1(a). It appears that B̂(3) exhibits low squared

trace correlation. This phenomenon can be explained by the heteroscedasticity in the third marginal

model of (9). Even if B̂(3) is necessary to compute V̂ and
̂̃
V, the poor estimates of B(3) do not imply

a significant loss in the squared trace correlations related to V̂ and to
̂̃
V. One can also observe that

the weighting in wMSIR seems to improve the estimation of the EDR space since values of r(
̂̃
V)

are globally greater than those of r(V̂). This trend is confirmed in Figure 1(b) where the values of

r(V̂) are plotted versus those of r(
̂̃
V). It appears that wMSIR seems to be uniformly better than

MSIR in this simulation. In addition, Figure 1(a) shows that the pooled marginal slicing produces

slightly better estimates than wMSIR in this example and that wMSIR outperforms the k-means

inverse regression.

The poor quality of the estimate B̂(3) can be observed directly from the simulated data. Fig-

ure 2(a) provides boxplots of values of ˆ̃rj for j = 1, 2, 3. Considering that the first quartile of the

third boxplot is equal to 0.84 and that the minimum value of the first and the second ones are

respectively equal to 0.94 and 0.95, it makes sense to withdraw the third component of y from the

analysis for at least a forth of the datasets. Let
̂̃
V? be the wMSIR estimate built only from y(1)

and y(2). Quality measures for
̂̃
V? and for the PMS estimate are compared in Figure 2(b). One

can observe that the selection based on the ˆ̃rj ’s improves performances of the wMSIR method, so

that it produces better quality measures than the PMS without this selection step.

To study the sensitivity of wMSIR with respect to n and p, several samples are generated for

various values of these parameters. In Figure 3(a), boxplots of 100 values of r(
̂̃
V) are drawn for
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(a) Boxplots of quality measures r(B̂) for

various estimators B̂
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(b) Plot of r(V̂) versus r(
̂̃
V)
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Figure 1: Comparison of estimators of B on 100 samples from model (9) with n = 100 and p = 20. The line in (b)
corresponds to the first bisecting line.

(a) Values of ˆ̃rj for each component y(j) of y
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(b) Plot of r(
̂̃
V?) versus r(V̂PMS)
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Figure 2: Study of the contribution of y(3) to
̂̃
V for 100 samples generated from model (9) with n = 100 and p = 20.
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each pair (n, p). Not surprisingly, estimated EDR spaces become closer to the true one when n

increases. Moreover, one can also observe that estimates of the EDR space are more precise when

p is small. This phenomenon can be explained by the fact that p×p matrices have to be estimated.

Notice that for every value of (n, p) in Figure 3(a), estimates are very precise since most of the

values of r(
̂̃
V) are greater than 0.85.

In the previous analyses, the number of slices H was set to 10 to have enough slices to study

the functions that link x′β1 to each component of y and enough points in each slice. In Figure 4(a),

we observe that for wMSIR, one can arbitrarily choose a number of slices between 10 and 20 and

obtain an estimate of the EDR space which is as reliable as the one computed with H = 10.

Multiple indices model. Consider now a more complex model than model (9). It is defined by: y(1) = exp(x′β1)× (x′β2) + ε(1),

y(2) = (x′β1)× exp(x′β2) + ε(2),
(10)

where β1 = [β1,1, . . . , β1,p]
′, β2 = [β2,1, . . . , β2,p]

′, with β1,i = i I(i ≤ 5) + I(i > 5) and β2,i =

(−1)i−1(1 + I(i ∈ {3, 4})). Note that, in model (10), we clearly have K = 2.

Samples are generated from model (10) for various n and p. Then, these samples are used to

estimate the corresponding EDR space with wMSIR with H = 10 slices. This leads to boxplots

of r(
̂̃
V) displayed in Figure 3(b). We observe lower and more scattered values of r(

̂̃
V) than in

Figure 3(a). The complexity of the link function between y and x and the greater dimension K

are believable reasons for this phenomenon. Apart from this feature, Figure 3(b) provides identical

evolutions of r(
̂̃
V) with n and p to those observed for the single index model in Figure 3(a). Note

that for both model (9) and model (10), the behavior of MSIR and wMSIR when n and p vary are

similar. That is why only results concerning wMSIR are drawn in Figure 3.

Examining Figure 4(b), it seems that the quality of wMSIR estimates is less connected to the

chosen number of slices for model (9) than for model (10). For the latter, performances of wMSIR

are nevertheless similar for values of H from 4 to 10.

4.2. Multiple EDR spaces model

Consider model (4) with q = 12, p = 20 and K = 1. Define for i = 1, . . . , p, the ith component

of respectively β1, β2 and β3 as β1,i := i I(i ≤ 5) + I(i > 5), β2,i := 6 − i + 5
⌊
i
5

⌋
and β3,i :=

(−1)i−1(1 + I(i ∈ {3, 4})). The random variable y is drawn from the following model:
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(a) Model (9)
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(b) Model (10)
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Figure 3: Boxplots of quality measure for the wMSIR method, for 100 samples generated from (a) model (9) or from
(b) model (10) with various values of n and p.
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Figure 4: Boxplots of quality measure for the wMSIR method for 100 samples generated (a) from the model (9) and
(b) from the model (10), with n = 100, p = 20 and various values of H.
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

y(1) = x′β1 + ε(1),

y(2) = (x′β1)
3 + 3ε(2),

y(3) = x′β1(1 + ε(3)),

y(4) = x′((1− θ1)β1 + θ1β2) + ε(4),

y(5) = (x′((1− θ1)β1 + θ1β2))
3 + 3ε(5),

y(6) = x′((1− θ1)β1 + θ1β2)(1 + ε(6)),

y(7) = x′((1− θ2)β1 + θ2β3) + ε(7),

y(8) = (x′((1− θ2)β1 + θ2β3))
3 + 3ε(8),

y(9) = x′((1− θ2)β1 + θ2β3)(1 + ε(9)),

y(10) = ε(10),

y(11) = ε(11),

y(12) = ε(12),

(11)

based on model (9), where (θ1, θ2) ∈ [0, 1]2 and for j = 1, . . . , 12, ε(j) ∼ N1(0, 1).

A model with 6 clusters. We first choose θ1 = θ2 = 1 which produces the l = 6 following clusters:{
y(1), y(2), y(3)

}
,
{
y(4), y(5), y(6)

}
,
{
y(7), y(8), y(9)

}
,
{
y(10)

}
,
{
y(11)

}
and

{
y(12)

}
.

Figure 5 presents values of r̂j,j? for (j, j?) ∈ {2, . . . , q}× {1, . . . , j − 1}, computed from a sample of

size n = 1000. Darker squares correspond to values of r̂j,j? close to 1. Thus, focusing only on the

nine darkest squares of Figure 5 leads to cluster components y(1), y(2) and y(3) together as well as

components y(4), y(5) and y(6) , and to make a group which contains components y(7), y(8) and y(9).

Note also that for j ∈ {1, 2, 3}, we have r̂3j,3j−1 < r̂3j−2,3j−1 and r̂3j,3j−2 < r̂3j−2,3j−1. Recalling

that for the considered values of j, y(3j) is the third component of each model (9) embedded in

model (11), these inequalities can be explained by the heteroscedasticity in this component which

leads to imprecise estimates of the relevant EDR direction as pointed out on Figure 1(a).

In this example, the interpretation of Figure 5 can easily be done because components of y are

already clustered in the definition of the model. In other words, every component between two

others that are related to the same EDR space belongs to a marginal model based on this EDR

space. In practical cases, the components of y may not be ordered that way which means that

the corresponding representation of the squared trace correlations may be cluttered. To tackle

this problem, we use an agglomerative hierarchical clustering algorithm based on the dissimilarity

1− r̂j,j? between B̂(j) and B̂(j?).
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Figure 5: Values of r̂j,j? in various shades of grays for (j, j?) ∈ {2, . . . , q} × {1, . . . , j − 1} and for a sample of size
n = 1000 generated from model (11) with θ1 = θ2 = 1 and p = 20.

A model with 5 clusters. A new sample of size n = 1000 is generated from model (11) with θ1 = 1

and θ2 = 0 which leads to l = 5 clusters:{
y(1), y(2), y(3), y(7), y(8), y(9)

}
,
{
y(4), y(5), y(6)

}
,
{
y(10)

}
,
{
y(11)

}
and

{
y(12)

}
.

The hierarchical clustering algorithm applied to the estimates B̂(j) for j = 1, . . . , q and produces

the dendrogram of Figure 6(a). A classification directly based on this procedure would not be

really accurate. For instance, in model (11), y(11) and y(12) belong to two different clusters. On

Figure 6(a), to divide y(11) and y(12) into two groups, the tree can be cut at a level of 0.70.

This implies grouping y(1), y(7), y(2) and y(8) together and putting y(3) and y(9) in another group

while components of both groups are actually related with the same EDR space. However, the

dendrogram of Figure 6(a) allows to order components of y in such a way that those which are

linked by high squared trace correlation are close from each other. Thus, in Figure 6(b), we

displayed values of r̂j,j? for j? ≺ j where ≺ denotes the ordering in Figure 6(a). It becomes clear,

then, that components y(1), y(7), y(2), y(8), y(3) and y(9) should be clustered in the same group. Note

that another cluster containing y(6), y(4) and y(5) can be made from Figure 6(b). Not surprisingly,

one can observe again that the squared trace correlations between components y(3), y(6), y(9) and

the components corresponding to their group are quite low. Finally, components y(12), y(11) and

y(10) appears to form three distinct clusters.
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(a) Dendrogram of components of y
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(b) Values of r̂j,j? in various shades of grays
for j? ≺ j
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Figure 6: Clustering analysis for a sample of size n = 1000 generated from model (11) with θ1 = 1, θ2 = 0 and
p = 20.

5. Real data illustrations

5.1. Remote sensing data

As an illustration, we consider a nonlinear inverse problem in remote sensing. The goal is

to estimate the physical properties of surface materials on the planet Mars from hyperspectral

data. The method is based on the estimation of the functional relationship between some physical

parameters x and observed spectra y. The reader may refer to Bernard-Michel et al. (2009a) for

further details. We focus on an observation of the south pole of Mars at the end of summer 2003,

collected by the French imaging spectrometer OMEGA on board the Mars Express Mission. A

detailed analysis of this image (Douté, Schmitt, Langevin, Bibring, Altieri, Bellucci, Gondet and

Poulet (2007)) revealed that this portion of Mars mainly contains water ice, carbon dioxide and

dust. This led to the physical modeling of individual spectra with a surface reflectance model

y = g(x). The p = 3 parameters x(1), x(2) and x(3) are respectively the proportion of carbon

dioxide, the proportion of dust, and the grain size of water ice. Let us note that the proportion of

water is equal to 1− x(1)− x(2). Each spectra y is made of q = 352 wavelengths. The link function

g has no close-form expression, but it can be computed thanks to a dedicated software. This yields

the simulation of a sample {(xi,yi), i = 1, . . . , n} of size n = 6400.

We ran the clustering procedure described in the above section associated to wMSIR with

H = 10 slices. The clustering results are depicted on Figure 7. Two clusters of wavelengths have

been identified, corresponding to two different orientations of ̂̃v1. It appears on Figure 8(a) that,

in the first cluster, only the proportion of dust x(2) has an important contribution to the EDR
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(a) Values for (j, j?) ∈ {2, . . . , q} × {1, . . . , j − 1}
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(b) Values for j? ≺ j where ≺ denotes an ordering
produced by a hierarchical clustering algorithm
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Figure 7: Values of r̂j,j? in various shades of grays for hyperspectral data.

direction. In the second cluster, the estimated EDR direction is close to (1, 1, 0). This corresponds

to the index x(1) + x(2) which is equal to one minus the proportion of water. Let us note that the

grain size of water ice x(3) does not appear in the EDR directions. Figure 8(b) permits one to

visualize the clustering of the wavelengths: it reveals which wavelengths are more sensitive to the

presence of water ice or dust.

5.2. Minneapolis elementary schools data

Another dataset which is widely studied in the dimension reduction context with a multivariate

response is related to test results of students in Minneapolis elementary schools. These data are for

example presented in Cook (2009); Cook and Setodji (2003); Yin and Bura (2006). The response

variable y is made of q = 4 components. The first (resp. third) component is the proportion of

pupils scoring below the average on a fourth (resp. sixth) grade test. The second (resp. fourth)

one is the proportion of marks above the average. Following Yin and Bura (2006), our goal is to

explain y with a 8-dimensional variable x. The seven first components x are called x(1), . . . , x(7)

and are respectively the squared root of the percentages of children receiving an aid called AFDC,

children who do not live with both parents, people in the area of a school who completed high

school, people who suffer from poverty, minority, mobility and pupils who attend school regularly.

The last component of x, named x(8), is the mean number of pupils for each teacher. Note that

Yoo (2009) analyzed the variables x(1), x(2) and x(3) while Cook (2009) focused on some increasing

functions of these variables and Cook and Setodji (2003) considered x(1), x(2), x(3), x(4) and x(8).
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(a) Values of ̂̃v1,1 (circles), ̂̃v1,2 (triangles) and ̂̃v1,3
(crosses) for each cluster
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(b) Clustering of the wavelengths

0 50 100 150 200 250 300 350
Index of wavelength

C
lu
st
er

1
2

Figure 8: Clustering of the components of y and estimates ̂̃v1 = [̂̃v1,1, ̂̃v1,2, ̂̃v1,3]′ of the EDR direction for each cluster.

We first compute
̂̃
V with p = 8 components of x. A stepwise algorithm is then used with the AIC

to perform a linear regression of x′
̂̃
V on x and sort the components of x with respect to how much

they explain x′
̂̃
V. The first three sorted variables are x(1), x(2), and x(3). Besides, regressing x′

̂̃
V

on
{
x(1), x(2), x(3)

}
produces an adjusted coefficient of determination of 95.42%. This encourages

us to take x = (x(1), x(2), x(3))′.

Working with this 3-dimensional covariate and with H = 8, B̂(j) is computed for j = 1, . . . , 4,

with K = 1, which is the size of the dimension chosen in Cook (2009), Cook and Setodji (2003)

and Yin and Bura (2006). We then construct the matrix B̂B̂′Σ̂. Its eigenvalues are 0.96, 0.04 and

0.01 which confirms the choice of K = 1. We can not build several groups of components of y

since the least value of r̂(j, j?) for (j, j?) ∈ {1, . . . , 4} is equal to 0.75, neither we can withdraw a

component from y since the least value of ˆ̃rj for j ∈ {1, . . . , 4} is equal to 0.92. In addition, we

find
̂̃
V = (0.673,−0.406,−0.528)′.

Letting V̂Y the EDR direction found by Yoo (2009), it appear that r(
̂̃
V, Σ̂, V̂Y , Σ̂) = 0.97.

The signs of the elements of
̂̃
V make also sense compared to results from Cook (2009) and Cook

and Setodji (2003).

6. Concluding remarks

In this paper, we proposed the new multivariate SIR approaches MSIR and wMSIR for esti-

mating the EDR space. The idea consists in performing first several marginal SIR analyzes. A

common EDR space is then deduced from the marginal ones by maximizing the proximity criterion

defined in (6). This optimization problem benefits from a closed-form solution.
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MSIR and wMSIR can also be run with a graphical procedure that cluster components of the

response variable depending on the EDR space they are related with. Therefore, our approach

allows to deal with datasets that come from a model including several different EDR spaces. It is

then possible to estimate each of them from clusters of components of the response variable rather

than blindly apply a multivariate SIR procedure on the whole variable. In addition, estimating the

EDR space does not cost a significant amount of computational time when it is done in the context

of this clustering procedure. R codes are available on request from the authors.

Let us highlight that a similar two-step approach can be created from any variant of the SIR

method or any sufficient dimension reduction technique. For instance, it is straightforward to build

multivariate regularized SIR approaches from Bernard-Michel et al. (2009b), multivariate SIRα

approaches from Gannoun and Saracco (2003) or multivariate kernel SIR methods from Wu (2008)

and to obtain the associated clustering step. To avoid the choice of the number H of slices, one

may also consider building a multivariate version of the CUME procedure from Zhu et al. (2010a).
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Appendix A. Proofs

Appendix A.1. Proof of Lemma 1

For j = 1, . . . , q, recall that P
B̂(j),Σ̂

is the Σ̂-orthogonal projector onto Span(B̂(j)). According

to Theorem 4 of Saracco (1997), we have that P
B̂(j),Σ̂

= PB1,Σ + OP (n−1/2), for j ∈ {j1, j2} and

P
B̂(j),Σ̂

= PB2,Σ +OP (n−1/2), for j ∈ {j3, j4}. It follows that

r(B̂(j1), Σ̂, B̂(j2), Σ̂) =
1

K
Trace(P

B̂(j1),Σ̂
P

B̂(j2),Σ̂
)

=
1

K
Trace((PB1,Σ +OP (n−1/2))(PB1,Σ +OP (n−1/2)))

=
1

K
Trace(PB1,Σ) +OP (n−1/2)

= 1 +OP (n−1/2).

Similarly, r(B̂(j3), Σ̂, B̂(j4), Σ̂) tends to 1 in probability. �
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Appendix A.2. Proof of Theorem 1

Recall that, since the bases D, B(1), . . . , B(q) are assumed to be Σ-orthonormal, we have

PD,Σ = DD′Σ and PB(j),Σ = B(j)B(j)′Σ. It follows that

Kq ×Q(D,B(1), . . . ,B(q)) =

q∑
j=1

Trace(DD′ΣB(j)B(j)′Σ)

=

q∑
j=1

Trace(D′ΣB(j)B(j)′ΣD)

= Trace

D′Σ


q∑
j=1

B(j)B(j)′

ΣD


= Trace(D′ΣBB′ΣD).

Hence, it is well known that the matrix V which maximizes Trace(D′ΣBB′ΣD) over the set

of matrices D such that D′ΣD = IK is made of the K generalized eigenvectors of ΣBB′Σ and Σ

associated with K non-null eigenvalues. Thus, V contains the K eigenvectors of Σ−1(ΣBB′Σ) =

BB′Σ which are associated with K non-null eigenvalues.

In addition, it is clear that Span(ΣBB′Σ) = Span(ΣB) because Span(ΣBB′Σ) ⊂ Span(ΣB) and

dim(Span(ΣBB′Σ)) = K. Since Σ is invertible, this implies that Span(BB′Σ) = Span(B). Finally,

we have under model (3) and assumption (MC) that for all j ∈ {1, . . . , q}, Span(B) = Span(B(j)).

It follows that Span(B) = Span(B) and then Span(V) = Span(B).

Appendix A.3. Proof of Theorem 2

From univariate SIR theory of Li (1991), under the assumptions of Theorem 2, each estimated

EDR space B̂(j) converges to B(j) at root n rate: that is, for j = 1, . . . , q, B̂(j) = B(j) +Op(n
−1/2).

It follows that B̂ = B + Op(n
−1/2). Since Σ̂ = Σ + Op(n

−1/2), we get B̂B̂′Σ̂ = BB′Σ + Op(n
−1/2).

Therefore, the eigenvectors associated with the largest K eigenvalues of B̂B̂′Σ̂ converge to the

corresponding ones of BB′Σ at the same rate: v̂k = vk+Op(n
−1/2) for k = 1, . . . ,K. Consequently,

the estimated EDR space Span(V̂) converges to Span(V) at root n rate. Since under model (3)

and assumption (MC) Span(V) = Span(B), the estimated EDR space converges to the true one in

probability.

Appendix A.4. Proof of Theorem 3

One can proceed analogously to the proof of Theorem 2. It is sufficient to show that Ŵ =

W + Op(n
−1/2). From the univariate SIR theory of Li (1991), for each component y(j) of y, each

estimated eigenvalue λ̂
(j)
k converges to λ

(j)
k at root n rate under the assumptions of Theorem 3. We

then have π̂(j) = π(j)+Op(n
−1/2) and π̂? = π?+Op(n

−1/2). It follows that Ŵ(j) = W(j)+Op(n
−1/2)

and Ŵ = W +Op(n
−1/2).
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Consequently, B̂ŴB̂′Σ̂ = BWB′Σ +Op(n
−1/2) and the eigenvectors associated with the largest

K eigenvalues of B̂ŴB̂′Σ̂ converge to the corresponding ones of BWB′Σ at the same rate: ̂̃vk =

ṽk + Op(n
−1/2) for k = 1, . . . ,K. Therefore, the estimated EDR space Span(

̂̃
V) converges to

Span(Ṽ) at root n rate. Since, from Theorem 2, Span(Ṽ) = Span(B), the estimated EDR space

converges to the true one in probability.

References

Amato, U., Antoniadis, A., de Feis, I., 2006. Dimension reduction in functional regression with applications. Com-
putational Statistics & Data Analysis 50 (9), 2422–2446.

Aragon, Y., 1997. A gauss implementation of multivariate sliced inverse regression. Computational Statistics 12,
355–372.

Aragon, Y., Saracco, J., 1997. Sliced Inverse Regression (SIR): an appraisal of small sample alternatives to slicing.
Computational Statistics 12, 109–130.
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