
HAL Id: hal-00715745
https://inria.hal.science/hal-00715745

Submitted on 18 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DiaSim: A Simulator for Pervasive Computing
Applications

Julien Bruneau, Charles Consel

To cite this version:
Julien Bruneau, Charles Consel. DiaSim: A Simulator for Pervasive Computing Applications. Soft-
ware: Practice and Experience, 2013, 43 (8), �10.1002/spe.2130�. �hal-00715745�

https://inria.hal.science/hal-00715745
https://hal.archives-ouvertes.fr

DiaSim: A Simulator for Pervasive Computing

Applications

Julien Bruneau and Charles Consel

Inria Bordeaux, France

{julien.bruneau, charles.consel}@inria.fr

Abstract

Pervasive computing applications involve both software concerns, like

any software system, and integration concerns, for the constituent net-

worked devices of the pervasive computing environment. This situation is

problematic for testing because it requires acquiring, testing and interfac-

ing a variety of software and hardware entities. This process can rapidly

become costly and time-consuming when the target environment involves

many entities.

This paper introduces DiaSim, a simulator for pervasive computing

applications. To cope with widely heterogeneous entities, DiaSim is pa-

rameterized with respect to a description of a target pervasive computing

environment. This description is used to generate both a programming

framework to develop the simulation logic and an emulation layer to ex-

ecute applications. Furthermore, a simulation renderer is coupled to Di-

aSim to allow a simulated pervasive system to be visually monitored and

debugged.

DiaSim has been implemented and used to simulate various perva-

sive computing systems in different application areas, demonstrating the

generality of our parameterized approach.

1 Introduction

Numerous pervasive computing applications coordinate a variety of networked
entities collecting data from sensors and reacting by triggering actuators. These
entities are either software or hardware. To collect data, sensors process stimuli
that are observable changes of the environment (e.g., fire and motion). Trigger-
ing actuators is assumed to change the state of the environment. Developing
a pervasive computing application requires to address a number of issues such
as entity heterogeneity, physical constraints, and types of stimuli present in the
target environment. Also, such an application needs to implement strategies
to manage a variety of scenarios (e.g., fire situations, intrusions, and crowd
emergency-escape plans). Consequently, in addition to the challenges of de-
veloping any software system, a pervasive computing system needs to validate

1

the environment entities both individually and globally, to identify potential
conflicts. For example, a fire manager and an entrance manager could issue
contradicting commands to a building’s door to respectively enable evacuation
and ensure security. In practice, the many parameters to take into account for
the development of a pervasive computing application can considerably lengthen
this process. Not only does this situation have an impact on the application
code, but it also involves changes to the physical layout of the target environ-
ment, making each iteration time-consuming and error-prone.

Various middlewares and programming frameworks have been proposed to
ease the development of pervasive computing applications [1, 2, 3, 4]. However,
they require a fully-equipped pervasive computing environment for an appli-
cation to be run and tested. As a result, an iteration process is still needed,
involving the physical setting of the target environment and the application
code.

In fact, the development of a pervasive computing system is very similar to
the development of an embedded system. Like a pervasive computing system, an
embedded system coordinates a number of heterogeneous hardware components
that can be viewed as sensors (e.g., GPS and accelerometer) and actuators (e.g.,
displays and speakers). Some embedded systems are capable of discovering com-
ponents dynamically, such as a smartphone detecting bluetooth components. As
in the pervasive computing domain, embedded systems developers need to an-
ticipate as wide a range of usage scenarios as possible to program their support.
Despite similarities, the embedded systems domain differs from the pervasive
computing domain in that it provides approaches and tools to facilitate software
development for a system under design. Indeed, embedded systems applications
can be tested and debugged using emulators [5, 6, 7]. Hardware components
are simulated via software components that faithfully duplicate their observable
behavior. And, the embedded systems application is emulated, executing as
if it relied on hardware components, without requiring any code change. The
study of embedded systems emulators gives us a practical basis for identifying
the requirements for pervasive computing systems. Let us now examine these
requirements.

Area-specific simulator Like embedded systems, pervasive computing sys-
tems target a variety of application areas, including home automation, building
surveillance and assisted living. Each area corresponds to specific pervasive com-
puting environments, consisting of a taxonomy of entities dedicated to a given
activity (e.g., cameras, motion detectors and alarms in the building surveillance
area). Correspondingly, the related stimuli drastically vary with respect to the
target area. As a consequence, a simulation tool for the pervasive computing
domain is required to deal with different application areas, enabling new types
of entities and stimuli to be introduced easily.

Transparent simulation A key feature of most embedded systems emula-
tors is that they emulate the execution of an application without requiring any

2

change in the application code. As a result, when the testing phase is com-
pleted, the application code can be uploaded as is and its logic does not require
further debugging. The same functionality should be provided by a simulator
for pervasive computing applications.

Testing a wide range of scenarios Some pervasive computing applications
address scenarios that cannot be tested because of the nature of stimuli involved
(e.g., fire and smoke). In other situations, the scenarios to be tested are large
scale in terms of stimuli, entities and physical space they involve. These sit-
uations would benefit from a simulation phase to refine the requirements on
the constituent entities of the environment, before acquiring them. Regardless
of the nature of the target pervasive computing system, its application logic
is best tested on a wide range of scenarios, while the system is under design.
This strategy allows improvements to be made as early as possible in both its
architecture and logic.

Simulation renderer Like an embedded systems simulator, one for perva-
sive computing systems needs to visualize the simulation of scenarios. This
simulation renderer needs to take into account various features of the pervasive
computing domain. Specifically, it should support visual representations for an
open-ended set of entities and stimuli, visual support for scenario monitoring,
and debugging facilities to navigate in scenarios in terms of time and space.

Some existing approaches propose to visualize the simulation of pervasive
computing applications [8, 9, 10]. However, these approaches are limited because
they require significant programming effort to address new pervasive computing
areas. Furthermore, they do not provide a setting to test applications deter-
ministically. The Lancaster simulator addresses this issue but does not support
scenario definition [11]. The PiCSE simulator provides a comprehensive simu-
lation model and generic libraries to create new scenarios. However, users have
to manually specialize the simulator for every new application area [12].

This paper

This paper presents DiaSim, a simulator for pervasive computing applications.
DiaSim specifically targets applications which (1) are based on sensors and
actuators, (2) are deployed in a physical environment, and (3) involve users.
DiaSim enables the simulation of the application logic of such applications but
does not simulate the other components of a pervasive computing environment.
For instance, it does not provide any support to estimate physical aspects of an
environment (e.g., the thermal modeling of a room), to simulate the network
traffic between application components, or to model the behavior of application
users.

DiaSim is parameterized with respect to a high-level description of the tar-
get pervasive computing environment. Such a description defines a taxonomy
of entities, whether hardware or software, relevant to a target pervasive com-
puting area. Both simulated and real environments must conform to the same

3

environment description, ensuring a functional correspondence between the two.
Furthermore, the environment description is used to generate an emulation layer
to run pervasive computing applications and a simulation programming frame-
work for developing the simulation logic. Our approach makes it possible for
the same application code to be simulated or executed in the real environment.
The resulting simulated pervasive computing environment enables the testing
of the application logic against the full range of scenarios corresponding to the
environment description. This simulation phase allows the pervasive computing
system to be refined in terms of application logic and environment entities. Di-
aSim includes a simulation renderer enabling the developer to visually monitor
and debug a pervasive computing system, navigating in terms of time and space
in a simulation.

The contributions of this paper are as follows.

• Parameterized simulator. We present a simulator that is parameterized
with respect to a high-level description of a pervasive computing environ-
ment.

• Transparent simulation. Our approach makes it possible for the same
code to be simulated or executed in the real environment. We ensure a
functional correspondence between a simulated environment and a real
one by requiring both implementations to be in conformance with the
pervasive computing environment description.

• Hybrid environments. An application can be executed in a hybrid environ-
ment, combining simulated and real entities. Hybrid simulation is a key
feature to successfully transition to a real environment: it allows real en-
tities to be added incrementally in the simulation, as the implementation
and deployment progress.

• Generated simulation support. A pervasive computing environment de-
scription is used to generate both an emulation layer, to execute appli-
cations, and a simulation programming framework, to develop simulated
entities.

• Simulation renderer. We present a simulation renderer that enables the
developer to visually monitor and debug a pervasive computing system.

• Validation. Our approach has been implemented in a tool called Di-
aSim [13]. The generality of our parameterized approach has been demon-
strated by simulating applications in a variety of pervasive computing ar-
eas. The practicality of DiaSim has been shown on a large-scale simulation
of an engineering school [14].

Outline

Our simulation approach is parameterized with respect to a high-level descrip-
tion of the pervasive computing system to be simulated. This description is used

4

to generate a programming framework to implement and simulate the described
pervasive computing system (Section 2). Our underlying simulation model,
dedicated to pervasive computing systems, is introduced by examining its key
concepts (Section 3). The simulation support of the generated programming
framework is then presented, underlying how it is leveraged by the tester to im-
plement simulation scenarios (Section 4). At runtime, our simulation support
allows the tester to execute and monitor a simulation (Section 5). To validate
our approach, we have applied DiaSim to a wide range of pervasive computing
systems and simulation scenarios. We have also evaluated DiaSim in terms of
scalability, performance and usability (Section 6). Finally, we have compared
our approach with the related works (Section 7) and drawn conclusions (Sec-
tion 8).

2 Our Approach

To ease the simulation of a pervasive computing system, we propose a simula-
tion approach that is parameterized with respect to a high-level description of
this system. This enables to specialize our simulation support for simulating
this particular system, easing the task of the tester. Specifically, the descrip-
tion is used as an input to generate (1) a programming support for application
development, (2) building-block implementations of a simulated environment,
(3) a development support for simulation scenarios, and (4) configurations for
simulation rendering.

2.1 Describing a pervasive computing system

We rely on the DiaSpec language [15, 16] for describing pervasive computing
systems. Such systems comprise a pervasive computing environment, as well as
pervasive computing applications that interact with this environment. DiaSpec
first consists of a taxonomy language dedicated to describing classes of enti-
ties that are relevant to the target pervasive computing environment. DiaSpec
also provides an Architecture Description Language (ADL) layer that declares
the components of a pervasive computing application. Let us introduce the
salient features of DiaSpec via excerpts of a heating control system. A detailed
description of DiaSpec is presented elsewhere [16].

Taxonomy. A pervasive computing environment for a given area is defined
as a taxonomy of classes of entities. An extract of the DiaSpec taxonomy for
a heating control system is shown in Figure 1. Each of these classes represents
a set of entities sharing common capabilities. Entity classes are introduced
by the device keyword. Heater and MotionDetector are examples of entity
classes described in the taxonomy of our heating control system. An entity
consists of sensing capabilities, producing data, and actuating capabilities, pro-
viding actions. Accordingly, an entity description declares a data source for
each one of its sensing capabilities. The sensing capabilities of an entity class

5

device LocatedDevice {

attribute location as Location;

}

device MotionDetector extends LocatedDevice {

source detection as Boolean;

}

device TemperatureSensor extends LocatedDevice {

source temperature as Temperature;

}

device Heater extends LocatedDevice {

action Heat { on(); off(); };

}

structure Location { room as String; }

structure Temperature { value as Float; }

[...]

Figure 1: Extract of the heating control system taxonomy. DiaSpec keywords
are printed in bold.

are declared by the source keyword. For example, the MotionDetector class
defines a detection data source. As well, an actuating capability corresponds
to a set of method declarations. Actuating capabilities are declared by the ac-

tion keyword. For instance, the Heater class declares the Heat action. An
entity declaration also includes attributes, characterizing properties of entity
instances. Attributes are introduced using the attribute keyword. For exam-
ple, the LocatedDevice instances are characterized by their location. Finally,
entity classes are organized hierarchically, allowing them to inherit attributes,
data sources and actions. In our heating control system, the MotionDetector,
TemperatureSensor and Heater classes of entities extend the LocatedDevice

class. Thus, they all inherit the location attribute.

Architecture. DiaSpec provides an ADL layer for specifying the architecture
of pervasive computing applications. This layer is dedicated to an architectural
pattern commonly used in the pervasive computing domain [1, 17, 18]. This
architectural pattern is illustrated in Figure 2. Pervasive computing applications
are decomposed in two types of components: context and controller. Context
components are fueled by sensing entities. These components filter, interpret
and aggregate these data to make them amenable to the application needs.
Controller components receive application-level data from context components
and determine the actions to be triggered on entities.

The ADL layer of DiaSpec is illustrated with our heating control system.
A graphical representation of the architecture of this system is displayed in
Figure 3. At the bottom of this figure are the entity sources, as described in

6

Contexts

Controllers

Entities

Sources

Actions

Physical

Environment

raw data

orders

context

data

sensed by

act on

Architecture Taxonomy

Figure 2: Architectural pattern of a pervasive computing application.

Calendar
Temperature
Sensor
[location]

Presence

Motion
Detector
[location]

detection schedule

Room
Occupancy

temperature

Average
Temperature

Heat
Regulator

Boolean

[location]

Boolean

[location]

Temperature

[location]

Schedule

[location]

BooleanTemperature

Heater
[location]

Heat

Heat
Regulation

Regulation

[location]
E
n
ti
ti
e
s

(a
c
ti
o
n
s
)

C
o
n
tr
o
lle
rs

C
o
n
te
x
t

E
n
ti
ti
e
s

(s
o
u
rc
e
s
)

Architecture

Taxonomy

Legend

Figure 3: Specification of the heating control system

the taxonomy. The layer above consists of the context components fueled by
entity sources. The next layer above gathers the controller components that
invoke the top layer of our system, namely, actions of entity actuators. The

7

context AverageTemperature as Temperature indexed by location as Location {

source temperature from TemperatureSensor;

}

context Presence as Boolean indexed by location as Location {

source detection from MotionDetector;

}

context RoomOccupancy as Boolean indexed by location as Location {

source schedule from Calendar;

context Presence;

}

context HeatRegulation as Regulation indexed by location as Location {

context AverageTemperature;

context RoomOccupancy;

}

controller HeatRegulator {

context HeatRegulation;

action Heat on Heater;

}

Figure 4: Architecture of the heating control system. DiaSpec keywords are
printed in bold.

DiaSpec description of the architecture of the heating control system is pre-
sented in Figure 4. In this application, temperature values are provided to the
AverageTemperature component, declared using the context keyword. This
component calculates the average temperature for each room of a building. It
processes the average temperature using the temperature source provided by
the temperature sensors. This is declared using the source keyword that takes a
source name and a class of entities. To process the average temperature on a per-
room basis, this context is declared as indexed by Location. In doing so, each
calculated average temperature is associated with a location. The Presence

context determines whether a room is currently occupied from the informa-
tion provided by motion detectors. The RoomOccupancy context determines a
more advanced room occupancy than the Presence context. This occupancy
takes into account the information provided by the Presence context, as well
as the room schedule given by a calendar. Thus, the information provided by
RoomOccupancy allows to heat a room prior to being occupied. When the occu-
pancy of a room changes, the HeatRegulation context is invoked. Depending
on the current temperature in this room, it may order a heat regulation to the
HeatRegulator controller, declared using the controller keyword. The con-
troller acts on Heater instances to regulate the temperature as required by the
HeatRegulation context. This is declared using the action keyword.

8

2.2 Implementing a pervasive computing system

The DiaSpec compiler generates a Java programming framework from both a
taxonomy definition and an architecture description. This programming frame-
work provides support for the implementation of the described pervasive com-
puting system. A generated programming framework contains an abstract class
for each DiaSpec component declaration (entity, context, and controller). These
abstract classes include generated methods to support the implementation (e.g.,
entity discovery and interactions). The generated abstract classes also include
abstract method declarations to allow the developer to program the application
logic (e.g., triggering entity actions).

Implementing a DiaSpec component is done by subclassing the correspond-
ing generated abstract class. The developer implements the application logic
in each abstract method of these subclasses. As shown in Figure 5, the im-
plementation of the HeatRegulator controller extends the generated abstract
class AbstractHeatRegulator. In doing so, the developer is required to imple-
ment the onHeatRegulation abstract method to receive a value published by
the HeatRegulation context. In addition to this value, this method is passed a
support object to discover devices and actuate them (discover). In this exam-
ple, when a heat regulation is required, the controller implementation discovers
the heaters related to the location of interest and turns them on or off.

public class HeatRegulator extends AbstractHeatRegulator {

@Override

public void onHeatRegulation(HeatRegulation regulation, Discover discover) {

HeaterComposite heaters = discover.heatersWhere().location(regulation.

getLocation());

if (regulation.getType() == Regulation.START_HEATING)

heaters.on();

else if (regulation.getType() == Regulation.STOP_HEATING)

heaters.off();

}

}

Figure 5: Implementation of the HeatRegulator controller.

2.3 Simulating a pervasive computing system

From the high-level description of a pervasive computing system, we also gen-
erate a simulation support to test this system before its actual deployment.

Simulated environment. To abstract over distributed systems technologies,
the DiaSpec compiler follows a layered architecture for the generated program-
ming frameworks. This architecture has made it possible to easily introduce a
simulated environment composed of simulated entities. Our layered architecture

9

Implemented

Generated

Legend
Applications

Programming

Framework

Real

Entities

Simulated

Entities

Emulation

Distributed Systems

Technology

Provided

Figure 6: Our layered architecture

is shown in Figure 6. Intuitively, our approach consists of generating an em-
ulation layer between the programming framework and the simulated entities.
When the pervasive computing application interacts with a simulated entity,
the emulation layer triggers its simulated version. This emulation layer allows
an application to interact with a simulated environment transparently, without
knowing whether an entity is simulated or real. The simulation logic introduced
for a simulated entity replaces the real entity.

Simulation scenarios. Once the entities are simulated, we define simulation
scenarios to test the pervasive computing system. A simulation scenario is
defined for a given spatial layout of entities. It consists of a set of initial stimuli
and a set of evolution rules for the environment stimuli. As a simulation scenario
unfolds, the environment context changes, triggering actions on entities whose
coordinated actions achieve specific tasks. For example, a heating control system
regulates the building temperature by coordinating temperature sensors, motion
detectors, and heaters.

Simulation renderer. Because of the number of entities involved in a per-
vasive computing system, a simulation scenario rapidly becomes complicated to
follow. To circumvent this problem, we have coupled DiaSim with an existing
visualization tool: the Siafu open source context simulator [19]. Siafu is param-
eterized with respect to information automatically generated from the DiaSpec
specification of the pervasive computing system.

3 Simulation Model

Let us now describe the key concepts of our approach to simulating a pervasive
computing system.

10

3.1 Stimulus producers

Stimuli are changes of the environment that are observed by the sensors of
the pervasive computing environment. From a simulation perspective, emitting
environment stimuli may trigger an entity data source (e.g., the detection source
of a motion detector) that publishes events, that may eventually trigger actions
on actuators (e.g., turning on a light). Emitters of stimuli are called stimulus

producers; they are dedicated to a type of stimulus.
Every stimulus has a type that matches the type of one or more data sources

provided by entities. Additionally, every type of stimulus is associated with a
set of rules defining its evolution in terms of space, time and value. Physical
environment stimuli are often modeled by mathematical definitions (e.g., with
ordinary/partial differential equations). Such a definition is typically provided
by experts of the application area or the literature in related fields. For example,
temperature stimuli required for testing a heating control system can be modeled
with heat transfer formulas described in any thermodynamics books (e.g., [20]).

Other types of stimulus can be introduced by replaying logs of measure-
ments collected in an actual environment. For example, to design zero-energy
building, extensive measurements are carried out to log the variations in temper-
ature, light and wind over a one-year period [21]. This line of work contributes
to building a rich library of measurements, facilitating simulation without com-
promising accuracy.

However, measurement logs are not available in general for simulation (e.g.,
fire simulation), requiring the definition of some model to approximate an actual
environment, as accurately as necessary. To achieve this goal, our approach is to
define an approximation model with respect to each type of stimulus managed by
the sensors of an environment. For example, the simulation of location-related
sensors can be defined as processing Cartesian coordinate stimuli. If location-
related sensors report location information at the granularity of a room, coarse-
grain information can be generated by the stimulus producers (e.g., a unique
Cartesian coordinate stimulus per room).

Because a type of stimulus can be consumed by different entity data sources,
stimulus producers are decoupled from the simulated entities.

So far, we described stimuli as being directly processed by entities. However,
a type of stimulus can also influence the evolution of other types of stimulus;
such a type of stimulus is called a causal stimulus. For example, fire could be
declared as a causal stimulus if we needed to model its resulting action on the
temperature stimulus. When a stimulus does not impact others, it is called
simple stimulus.

3.2 Simulated entities

A simulated environment consists of stimulus producers and simulated entities.
Like a real entity, a simulated entity interacts with a simulated environment
by processing stimuli, performing actions, and exchanging data with pervasive
computing applications. An entity has two kinds of facets, each one playing

11

a key role in simulation: data source and action. The simulated version of
a data source mimics the behavior of a real data source, reacting to stimuli
generated by the stimulus producers. For example, the simulated version of a
motion detector, when turned off, ignores coordinate stimuli. Otherwise, when
the motion detector is on and receives coordinate stimuli matching its room, a
motion event is published with its room identifier.

An action provided by an entity typically modifies the state of this entity as
well as the observable environment context. For example, invoking an action on
a light to turn it on, changes the light state and locally increases the luminosity.
The simulated version of a light thus needs to maintain its state (on/off) and to
create a stimulus producer to increase luminosity with respect to an intensity
specific to the light.

In addition to defining their simulated versions, entities need to be deployed.
For example, the simulated Light entity needs to be instantiated as many times
as required to mimic the real environment. In doing so, entity instances may be
assigned specific attribute values such as their location and luminosity intensity
in the light example.

As for context and controller components, they are insensitive to whether
or not entities are simulated. For example in our heating control system, the
same implementation of a HeatRegulator controller operates Heater instances,
regardless of whether or not they are simulated. As well, the Presence context
will not interact any differently with a simulated or a real MotionDetector
instance.

3.3 Physical space

To complete the simulation of an environment, we need to model the physi-
cal space (e.g., an office space, an apartment, a building or a campus) and to
make it evolve as the simulation scenario unfolds. A simulated space allows us
to model stimulus propagation, according to pre-defined rules. As well, it is
annotated with the location for each entity instance whose real version may im-
pact the physical environment, whether they are fixed, mobile and dynamically
appearing.

The model of a physical space is decomposed into polygon-shaped regions.
This decomposition is hierarchical, breaking down a physical space into increas-
ingly narrow regions. For example, a building consists of floors, each of which
has corridors and rooms, etc. Entity instances are positioned in the simulated
space, in accordance to the desired (or existing) physical setting to be simulated.
As an approximation, the intensity of a stimulus is assumed to be uniform within
a region.

Our overall simulation model is depicted in Figure 7. Stimulus producers
emit stimuli of various types according to a scenario. The values of the stimuli
can either be read from logs of measurements or can be computed from an
approximated physical model. In place of data sources of real entities, data
sources of simulated entities process these stimuli and produce events. The

12

unchanged application reacts to these events by invoking entity actions. In
turn, actions change the simulated environment, triggering stimulus producers.

Contexts

Controllers

Simulated

Entities

Sources

Actions

raw data

orders

context

data Stimulus

Producers

effects

stimuli

Simulated environment

Approximated

physical model

Logs of

measurements

reads

data

Figure 7: Simulation model

4 Developing A Simulated Environment

Given the simulation model presented earlier, we are now ready to develop
the simulated version of entities and stimulus producers, forming a simulation
scenario.

4.1 Developing simulated entities

To develop an entity, the programmer first determines the entity class it should
belong to. The declarations of the selected entity class then provide the pro-
grammer with an area-specific programming framework for implementing all the
facets of the entity, ranging from its attributes to its capabilities. This dedicated
programming framework is on top of a generic middleware, which includes an
entity broker and an event broker. To access these brokers, developers call high-
level operations to safely (1) register and lookup other entities via the entity
broker or (2) publish, subscribe and receive events via the event broker.

Besides an area-specific programming framework to develop real entities,
the DiaSpec compiler generates a simulation programming framework to de-
velop simulated entities. For each entity class, a set of Java classes is gener-
ated for programming real and simulated entities, as depicted in Figure 8: real
entities (e.g., R1) extend the C abstract class of the real programming frame-
work, whereas simulated entities (e.g., S2) extend the C′ abstract class of the
simulation programming framework. A simulation programming framework in-
herits support provided by the related real programming framework and adds
simulation-specific functionalities. For instance, it enables entities to receive
simulated stimuli and to trigger stimulus producers. Figure 9 shows a gener-
ated abstract class that is used for implementing simulated motion detectors.

13

C C'

Real

Programming Framework

Simulation

Programming Framework

R1 R2 S1 S2 S3

{DIASPEC

{

DiaSpec

DiaSpec

Compiler

Extends
Real Entities Simulated Entities

Figure 8: Correspondence between real and simulation programming frame-
works

To implement the simulated version of an entity, the tester subclasses the cor-
responding abstract class. For instance, Figure 10 shows the implementation of
a simulated motion detector named MySimulatedMotionDetector. The related
SimulatedMotionDetector abstract class contains an abstract method to re-
ceive simulated detection events (receive) and a concrete method to publish
MotionDetection events (publish).

As illustrated by Figure 10, the implementation of a simulated entity is
often trivial. It only forwards the received stimuli. Thus, to simplify the tester
task, the simulation layer of the generated programming framework provides
such implementations for all the simulated entities. However, nothing prevents
the tester from implementing more sophisticated behaviors by extending the
corresponding abstract class.

public class SimulatedMotionDetector extends

AbstractMotionDetector implements SimulatedEntity {

public SimulatedMotionDetector(Location location) {

super(location);

}

@Override

public void receive(Stimulus stimulus) {

if (stimulus.getName().equals("detection")

receive((Boolean)stimulus.getEvent());

}

public abstract void receive(Boolean detection);

}

Figure 9: Implementation of the generated SimulatedMotionDetector class.

14

public class MySimulatedMotionDetector extends

SimulatedMotionDetector {

public MySimulatedMotionDetector(Location location) {

super(location);

}

@Override

public void receive(Boolean detection) {

publish(detection);

}

}

Figure 10: Implementation of a simulated MotionDetector entity

4.2 Developing hybrid environments

Our approach permits real entities to be used in a simulated environment, when-
ever desirable. This key feature enables real entities to be incrementally added
to the simulated environment, facilitating the transition to a real environment.
Also, this strategy enables to improve the rendering of a simulation by mixing
real entities. For example, a real LCD screen can be introduced in a simulation
to display messages that future users will read.

To examine how real entities are integrated in a simulated environment, re-
call our inheritance strategy, as illustrated in Figure 8. Because of this strategy,
when a controller looks up a given entity type, it receives the real entities, as well
as the simulated ones. Similarly, when a context subscribes to a data source, it
can interact with both real and simulated data sources. This approach allows
applications to be executed in a hybrid environment. Furthermore, real and
simulated entities can be added dynamically, as the simulation of a pervasive
computing system runs.

4.3 Developing stimulus producers

The development of stimulus producers is facilitated by a simulation program-
ming framework. This programming support provides a generic StimulusProducer
class that the tester can use to create his own stimulus producers. Classes of
stimulus are defined from types of data sources defined in DiaSpec. For exam-
ple, the building management area includes stimuli of temperature and motion
detection. Several stimulus producers can be attached to the same class of stim-
ulus. For example, if a room contains two heaters, each one has its own producer
of temperature stimuli. A stimulus producer defines the evolution of a source
of stimuli. For example, to simulate fire gaining intensity, a stimulus producer
gradually increases the intensity of the emitted fire stimulus.

In our heating control system, we use this simulation programming frame-
work to produce motion events when simulated people move in the range of a

15

1public class MyAgentModel extends DiaSimAgentModel implements AgentListener {

3private static int RANGE = 5;

4private StimulusProducer stimulusProducer;

6public MyAgentModel(World world) {

7super(world);

8Source motionDetectionSource = new Source("MotionDetector", "detection",

"Boolean");

9stimulusProducer = new StimulusProducer(motionDetectionSource);

10}

12@Override

13public List<DiaSimAgent> createAgents() {

14List<DiaSimAgent> agents = super.createAgents();

15AgendaStimulusProducer studentAgenda = new

AgendaStimulusProducer(‘‘resources/studentagenda.xml’’);

16AgendaStimulusProducer teacherAgenda = new

AgendaStimulusProducer(‘‘resources/teacheragenda.xml’’);

17for (DiaSimAgent a : agents) {

18agent.addAgentListener(this);

19if (agent.getType().equals(‘‘Student’’)

20agent.setAgendaStimulusProducer(studentAgenda);

21else if (agent.getType().equals(‘‘Teacher’’)

22agent.setAgendaStimulusProducer(teacherAgenda);

23}

24return agents;

25}

27@Override

28public void agentMoved(Agent agent, String location) {

29for (DiaSimDevice d : getDevices()) {

30int distance = agent.distanceFrom(d.getPosition());

31if (d.getType().equals("MotionDetector")

32&& distance < RANGE)

33stimulusProducer.publish(true,location);

34}

35}

36}

Figure 11: Implementation of the MyAgentModel class used in the heating con-
trol system simulation. This class is responsible for publishing motion detection
events when simulated people come within a range of a motion detector.

16

motion detector. To illustrate the use of the simulation programming frame-
work, Figure 11 presents the implementation of the class that publishes motion
events. This class extends DiaSimAgentModel. The DiaSimAgentModel class is
provided by the simulation programming framework and provides programming
support for handling the simulated people of the simulation. In this example, it
is used to be notified when a simulated agent moves in the detection area of a mo-
tion detector. A stimulus producer is created in this class: stimulusProducer
(Figure 11, line 9). The simulation programming framework allows to be noti-
fied when an agent moves by implementing the AgentListener interface. When
an agent moves, the agentMoved method is called (Figure 11, line 28). Finally,
when an agent moves in the detection area of a motion detector, a motion
detection stimulus is published (Figure 11, line 33).

Pervasive computing systems often interact with people. For instance, our
heating control system relies on the detection of motion. To help introducing
the behavior of simulated people, we provide a class for defining the movements
of the simulated agents during the simulation: AgendaStimulusProducer. This
class is parameterized by an agenda describing where a simulated agent will be
located during the simulation (Figure 11, lines 15 and 16). This agenda allows
to define time slots during which the agent is in a specific location. This agenda
is defined in XML. Figure 12 presents an extract of the studentagenda.xml

file used in the MyAgentModel class (Figure 11, line 15). A simulated agent
can be associated with an AgendaStimulusProducer object (see for example
Figure 11, lines 20 and 22). Thus, this simulated agent will automatically move
during the simulation with respect to this agenda. Though using an agenda to
model the human behavior is very limited, we can test a wide range of pervasive
computing applications with this basic support. The large-scale simulation of
engineering school presented in Section 6 simulates 200 people with this simple
support.

<?xml version="1.0" encoding="UTF-8"?>

<agenda>

<item>

<location>I 112</location>

<startTime>11/04/2011 10:30:00 GMT</startTime>

<endTime>11/04/2011 11:50:00 GMT</endTime>

</item>

<item>

<location>Hall</location>

<startTime>11/04/2011 11:50:00 GMT</startTime>

<endTime>11/04/2011 12:00:00 GMT</endTime>

</item>

[...]

</agenda>

Figure 12: Extract of the studentagenda.xml XML file.

To summarize the relationships between the classes introduced in this sec-
tion, Figure 13 presents a class diagram of the implementation of the heat regula-

17

<abstract>

AgentModel

<abstract>

DiaSimAgentModel

<abstract>

ContextModel

<abstract>

DiaSimContextModel

<abstract>

WorldModel

<abstract>

DiaSimWorldModel

Siafu

MyAgentModel MyContextModel MyWorldModel

Stimulus
Producer

<interface>

Simulated
Entity

Temperature
Stimulus
Producer

Agenda
Stimulus
Producer

<abstract>

Abstract
MotionDetector

<abstract>

Abstract
Heater

<abstract>

Abstract
TemperatureSensor

<abstract>

Simulated
MotionDetector

<abstract>

Simulated
TemperatureSensor

<abstract>

Simulated
Heater

MySimulated
MotionDetector

MySimulated
TemperatureSensor

MySimulated
Heater

1

1

1..n

1..n

1

1 1 1

DiaSpec programming
framework

Simulation programming
framework

Siafu classes

inherits

is composed of

uses

Legend:

DiaSim
Simulation

Emulation layer

Figure 13: Class diagram of the implementation of the heat regulator simulation.

tor simulation. In this example, every class except TemperatureStimulusProducer
is provided to the tester either by the generated DiaSpec framework, the sim-
ulation programming framework, the generated emulation layer, or Siafu. The
tester may modify the simulated entity implementations (e.g., MySimulatedHeater)
if he needs a more sophisticated behavior as the one provided by default. He
may also modify the MyAgentModel class if he needs to send simulated stim-
uli triggered by simulated agents. For instance, sending a simulated detection
stimulus when an agent is in the scope of a motion detector would be imple-
mented in the MyAgentModel class. It is important to notice that the sim-
ulated entity implementations are independent from the stimulus producers.
The communication between the stimulus producers and the simulated entities
is handled by the DiaSimSimulation class. For instance, it is possible to mod-
ify the implementation of TemperatureStimulusProducer without modifying
the MySimulatedTemperatureSensor implementation. Thus, this independence
between stimulus producers and simulated entities would allow to compute tem-
perature values from a thermal physical model instead of reading from logs of
measurements without any impact on the simulated entity implementations.

18

5 Testing Applications

We now detail how applications are tested in the DiaSim simulator. DiaSim
executes simulation scenarios, monitors simulations, and supports application
debugging.

5.1 Transparent simulation

A programming framework generated by the DiaSpec compiler provides applica-
tions with an abstraction layer to discover entities. This entity discovery support
is based on the taxonomy definition. In particular, it includes methods to select
any node in the entity taxonomy. The result of this selection is the set of all
entities corresponding to the selected node and its sub-nodes. The developer
can further narrow down the entity discovery process by specifying the desired
values of the attributes. This situation is illustrated in Figure 5. When a heat
regulation is required in a particular location, the HeatRegulator controller
implementation discovers the heaters located in this location and turns them
on. The discover parameter is used to achieve this entity discovery. Using
the value of regulation.getRegulation(), only the heaters in this particular
location are discovered.

Because of this abstraction layer, simulation is achieved transparently: the
same application code discovers and interacts with entities, whether or not sim-
ulated. This transparent simulation applies to all aspects of a pervasive comput-
ing application. For another example, simulated data sources can be added to
a pervasive computing system, without requiring any change in the application
code.

5.2 Simulator architecture

The overall architecture of DiaSim is displayed in Figure 14. It consists of an
emulator to support the execution of pervasive computing applications and a
simulator of context to manage stimuli. The simulator of context communicates
the simulation data to the monitor for rendering purposes.

5.2.1 Executing simulation scenarios

An environment simulator generates stimuli as a given simulation scenario un-
folds. It consists of stimulus producers and a scenario manager that dispatches
stimuli to the relevant entities. The scenario manager is a mediator, periodically
querying the stimulus producers to feed the data sources of simulated entities.
For example, the scenario manager collects stimuli of outdoor luminosity and
passes them to outside light sensors.

Actions can create changes to the simulated environment. To do so, entities
register new stimulus producers to the scenario manager. For example, when fire
is detected, a fire sprinkler discharges water on a given region. Because water
is declared as a causal stimulus with respect to fire, it reduces the fire intensity.

19

Scenario
Manager

Application
Stimulus

Producers
Stimulus

Producers
Stimulus

Producers
Stimulus

Producers
stimuli

Monitoring
Engine

simulation

data

Monitor

Environment SimulatorEmulator

2D Renderer

Logs

raw data

orders

stimuli

events

state

events

Simulated

Entities

Sources

Actions

Figure 14: DiaSim architecture

When the application deactivates the fire sprinkler, the water stimulus producer
is stopped by the scenario manager.

5.2.2 Monitoring simulation

The scenario manager receives simulation data from stimulus producers and
simulated entities to keep track of the simulated environment state. The sce-
nario manager passes simulation data to the monitoring engine that graphically
renders simulation scenarios. The monitoring engine also accepts live user in-
teractions, to pause the simulation or modify the scenario on-the-fly (e.g., by
adding new stimulus producers). Beyond the visual rendering of a simulation,
we propose additional functionalities to DiaSim to further assist the user, as
presented next.

5.3 Application testing support

Monitoring a simulation requires measuring, collecting and rendering a stream
of simulation data. Because of its volume, simulation data often require to be
approximated in order to be rendered. To do so, the simulated environment
is approximated in space and time. Space approximation provides an idealized
map of the physical space, rendering the evolution of simulated entities (e.g.,
alarm ringing, motion detection) and stimuli (e.g., fire spreading, people mov-
ing). Environments are also approximated in time, decoupling the rendering
time from the real time. As a result, the user often cannot follow the simulation
in real time. To focus on the sequence of events leading to an error, the moni-
toring engine of DiaSim provides time shifting functionalities, to replay part of
a simulation. Raw data from the simulation log can be directly browsed by Di-
aSim, like network traces by network analyzers [22]. A simulation log contains
information about interactions between entities (i.e., time, source, destination,

20

interaction parameters) and between stimuli and entities (i.e., time, source,
destination, class of stimuli, stimuli parameters). Replays help to isolate bugs
but do not ensure applications have been fixed correctly. Reproducing exact
testing conditions is required to validate a new version of an application. To do
so, a simulation scenario completely defines the simulated environment and its
behavior, making testing conditions deterministic and reproducible.

5.4 An integrated approach to simulation

Exploring simulation in the context of DiaSpec enables simulation to coevolve
with DiaSpec. Indeed, the wider the scope of DiaSpec, the more simulation
aspects can be investigated. Concretely, recent works in our research group has
expanded the scope of DiaSpec to cover non-functional concerns, extending the
DiaSpec language and its compiler. These extensions include (1) handling access
conflicts to resources of a pervasive computing system [23], (2) modeling entity
failures at the declaration level, enforcing their treatment at the programming
level [24], and (3) declaring performance constraints, ensuring them at compile
time and run time [25]. Each of these non-functional concerns introduce op-
portunities to expand the scope of simulation. In fact, we successfully applied
our simulation approach to the avionics domain [26]. Specifically, we developed
an aircraft guidance system, using stimulus producers for simulating entity fail-
ures. We are planning to extend DiaSim with the simulation of non-functional
concerns that are now available in DiaSpec.

6 Implementation and Validation

The components of DiaSim, detailed in Figure 14, are implemented in Java, and
consist of 15,000 lines of code.

To validate DiaSim, we simulated various applications in the building man-
agement area, such as the heating control system depicted in Figure 3. DiaSim
validated the logic of these applications and the feasibility of such a deployment
in ENSEIRB1, an engineering school to which the authors are affiliated. Videos
reporting various simulation scenarios are available on our site.2

Aside from the ENSEIRB environment, we simulated and deployed home
automation applications. This was done as part of a project in collaboration
with a telecommunications company. For the sake of conciseness, we do not
detail further this application area.

6.1 Applications

The ENSEIRB school is a three-floor building of 13,500 m2, consisting of several
lecture halls, labs and recreation rooms for students. ENSEIRB hosts up to 900
occupants, including students from various countries and faculty members.

1http://www.enseirb.fr
2http://diasuite.inria.fr/documentations/resources

21

Using the generated Java programming framework, we have developed var-
ious applications. Let us briefly introduce some of them. The newscast appli-
cation displays news and teaching schedules on school LCD screens and adapts
the contents with respect to the department affiliation and the nationality of
the people surrounding the screens. The surveillance manager alerts security
personnel when an intrusion or a theft is detected. The meeting manager no-
tifies users about their meetings if they are not present in the corresponding
meeting room. It also displays information about meetings on the school LCD
screens when they involve a group of students from a department. The lighting
manager controls lights based on outside luminosity, the school calendar and
school occupancy.

6.2 Setting up simulation scenarios

To test applications, we simulated three main scenarios: a working day, a week-
end day and an open house day. Each scenario is simulated using variations,
including entity failures, number and location of entities, and number of users.
Scenarios are defined using a Java GUI: the scenario editor (Figure 15). From
the DiaSpec definitions, simulated entities are either graphically defined using
a wizard, or developed using the simulation programming framework generated
by the DiaSpec compiler. In the first case, attributes are defined by filling in
a form and the location attribute is set by dragging and dropping entity icons
in the simulated space. The behavior of the simulated entity is then defined by
graphically selecting and parameterizing the appropriate class of behaviors. For
example, an AudioNotification action provided by loudspeakers is simulated
with a text-to-speech library. For another example, the action to turn on alarms
is simulated with a class of audio file renderer parameterized by an audio file. We
simulated a variety of sensors, notification services and lights. Furthermore, we
integrated real entities in the simulation, either to ease the scenario definition
(e.g., calendars and the profile database) or to validate their behavior (e.g.,
NewsNotification entities embedded in LCD screens).

The second part of the scenario definition is the configuration of stimulus
producers. The scenario editor supports the definition of stimulus producers
and their behavior, by allowing the user to define stimulus intensities in areas
of the simulated space at specific moments in time. For example, a producer
of motion stimuli simulates a user moving in a school hallway at a given time.
Alternatively, stimulus producers are defined by a modeling function (e.g., a
function defining the outside luminosity for 24-hour period) or previously logged
measurements (e.g., class schedules or statistics on class attendance).

6.3 Monitoring the simulation

A scenario is saved as an XML file that can later be modified by the scenario
editor. The XML file configures the DiaSim simulator with the defined scenario.
DiaSim includes a simulation renderer, which is based on Siafu in our current
implementation [19]. Our simulator interfaces with Siafu to use its rendering

22

Figure 15: DiaSim scenario editor. The DiaSim editor is parameterized by
an entity taxonomy. The entities defined in the taxonomy are displayed on
the left panel of the graphical user interface. The entities can be dragged and
dropped on the central panel to add simulated entity instances into the simulated
environment.

and time-control functionalities. On top of a picture of the simulated space, the
simulation renderer displays entities and stimuli, as shown in Figure 16.

The simulation renderer shows the state of the simulated entities, by dis-
playing a bubble of raw text above entities (e.g., when a data source publishes
events) and/or modifying the visual representation of the entity (e.g., a yellow
light is displayed when turned on). To complement these macroscopic views,
we enriched Siafu’s rendering functionalities with Java and Web interfaces, and
audio streams. Real entities greatly benefit from these enriched views as most of
them require more than just raw text to display information. In the ENSEIRB
simulation, clicking on school LCD screens runs the Web interface of the cor-
responding real NewsNotification entities. We also used enriched views for
simulated entities, e.g., loudspeakers are rendered using audio streams.

DiaSpec supports several back-ends including Java RMI, SIP [27] and Web
Services. A back-end defines the communication protocol used by the DiaSpec
components to communicate with each other. The simulation back-end used
by DiaSim is derived from the Java RMI back-end. This strategy allows us
to integrate remote real entities and to distribute the workload over several

23

Figure 16: DiaSim simulation renderer. The simulated environment is displayed
in the left part of the graphical user interface. The red popups transparently
displayed above the simulated entities indicate that the entity has realized an
interaction. More information about the simulated people and simulated entities
can be found on the right of the graphical user interface.

different hosts when numerous simulated entities are in play.

6.4 Evaluation

We now conduct an evaluation of DiaSim. To do so, we explore three aspects.
We first discuss the scalability of our simulation tool. We then study the usability
of DiaSim, before evaluating its performance.

6.4.1 Scalability.

Target environments and simulation scenarios were successfully defined and sim-
ulated in the DiaSim simulator. In the home environment, real entities were
added incrementally in the simulation. At the end of the development pro-
cess, all entities were real and the emulation layer was only used for monitoring
purpose, demonstrating the flexibility of our emulation layer.

24

Task Completion Avg.

full part time

DiaSpec specification 100% 0% 2h
Implementation 60% 40% 5h
DiaSim simulation 30% 0% 1h

Table 1: Results of a lab involving 60 Master’s level students.

In the ENSEIRB experiment, the simulation allowed us to validate the coor-
dination logic at a large scale, combining 110 entities, 6 stimulus producers, 200
people and 6 applications. Some entities were coordinated and shared by several
applications (e.g., Calendar and MotionDetector). It was thus essential to en-
sure the usability of these applications by preventing potential conflicts. We also
checked that the application behavior met its requirements when the context of
deployment or execution changes (e.g., disappearing entities and moving indi-
viduals). For example, we improved the newscast application by making it less
sensitive to people that do not stop long enough in front of school LCD screens.
We also optimized the air conditioning consumption by combining information
about the building occupancy and class schedules.

6.4.2 Usability.

We have been using DiaSim as part of a course on software architectures for
three years. This course includes an 8-hour lab consisting of twenty groups of
three master’s level students. These students have only followed an introduc-
tory course on Java before our course and have basic knowledge of software
design and no exposure to the domain of pervasive computing. The goal of
our lab is to develop a Newscast application as defined previously. It requires
devices to broadcast messages (e.g., loudspeakers and screens), and devices to
identify users (e.g., RFID badge readers). The students have to (1) design the
application with DiaSpec, (2) implement it, and (3) simulate it with DiaSim.

The results of this lab are presented in Table 1. Due to the short duration
of the lab, last year, only 30% of the students completed their implementation
and had enough time to simulate it with DiaSim. The students had to instan-
tiate simulated screens, simulated loudspeakers and simulated badge readers
using the DiaSim editor. They also had to create several simulated people to
the simulation. Then they had to create a stimulus producer that sends simu-
lated badge detection stimuli when a simulated agent is getting close to a badge
reader. We provided them with an online tutorial to help them create their
simulation3. It is interesting to notice that these students only required on
average 1 hour to simulate their application using DiaSim. Though the simu-
lation was simple, it allowed us to get feedback on the usability of DiaSim. In
particular, during this lab, simulated people were added programmatically to
the simulation. The creation of the simulated people was complicated for the
students. Because of that feedback, we modified the DiaSim graphical editor to

3http://diasuite.inria.fr/documentations/tutorial/

25

allow simulated agents to be added graphically to the simulated environment.
This experience demonstrates that students with modest knowledge in soft-

ware engineeing are able to efficiently use DiaSim in a short period of time.
However, because the lab is short, the students were only able to achieve a sim-
ple simulation. It would be interesting to do another lab focusing especially on
the simulation. This would allow to request a more complicated simulation to
the students, giving us a more thorough evaluation of the usability of DiaSim.

6.4.3 Performance.

To study the overhead caused by DiaSim, we evaluated its performance during
the engineering school simulation. Our goal is to collect measurements when
DiaSim is applied to two different simulation workloads: low activity and high
activity. The simulation has been executed on a laptop with a CPU Intel Core
2 Duo 2.80 GHz and with 4 GB of RAM. The operating system used by the
laptop was Windows XP. The measurements were realized with the JProfiler
software.

CPU usage. We first evaluated the CPU usage during the simulation. The
results of this evaluation are presented in Figure 17. The CPU usage has first
been evaluated when the activity is low during the simulation. A low simulation
activity is typically during the night or when students are sitting in the class-
rooms. Then, we evaluated the CPU usage during high activity periods. There
is a high activity during the breaks when students are moving in the school. The
CPU usage was evaluated with respect to the simulation speed, which ranges
from twice as fast as the real time (simulation speed number 1 in Figure 17) to
360 times as fast as the real time (simulation speed number 11 in Figure 17).

This evaluation shows that simulating at a low speed uses less than 20% of
CPU. We can also see that simulating at a higher speed requires more CPU.
This is due to the graphical rendering that requires to update more often its
rendering. To use less CPU, it is possible to disable the graphical rendering
and only log the simulation data. It prevents the tester from monitoring the
simulation graphically, but it allows him to execute the simulation at a much
higher speed while using less CPU.

Memory usage. To run the simulation, we allocated 1.4 GB of maximum
memory to the JVM. The memory is fully used during the simulation. This
memory is mainly used by Siafu (approximately 1.2 GB to store information
concerning the motion of the simulated agents. It uses this information to
quickly compute a path to graphically move a simulated agent from one point
to another. Thus, simulating fewer people enables to use less memory.

Thread distribution. We studied the threads used during the simulation.
In particular, we studied the thread distribution between DiaSpec and DiaSim.
Overall, the vast majority of the threads are related to the DiaSpec runtime,

26

 0

 20

 40

 60

 80

 100

 2 4 6 8 10

C
P

U
 u

sa
g

e
(%

)

Simulation speed

CPU usage (low activity)
CPU usage (high activity)

Figure 17: This graph represents the average CPU usage with respect to the
simulation speed. The CPU usage has been evaluated during a period of low
activity for the simulated agents and during a period of high activity.

Nb. of threads Percentage

DiaSpec 244 96.06%

DiaSim 10 3.94%

Table 2: Distribution of the threads executed during the ENSEIRB simulation.

DiaSim accounts for less than 4%. The results of this study are presented in
Table 2.

To conclude, it is important to notice that this simulation has been executed
on a three-year old laptop, not very powerful compared to today’s computers.
We would get much better performance results if the simulation were run on
a recent computer. Nevertheless, it is possible to execute a large-scale simula-
tion comprising 200 simulated people and 110 simulated entity instances with
a modest computer.

6.5 Discussion

We now examine pragmatic issues involved in developing and using a simulated
environment. We start by discussing the potential pitfalls of our approach.
Then, we investigate the performance issues involved in running large-scale sim-
ulations. Finally, we discuss how our simulation approach can be generalized to
other application domains.

27

6.5.1 Pitfalls

A simulation consists of tested applications and the simulated environment.
The output of the simulated environment is the input of the tested applications
and vice versa. The complexity of the simulated environment depends on the
characteristics of the real environment and how accurately it needs to be mod-
eled. These issues go beyond the scope of our generated simulation support
that is aimed to facilitate the programming of the simulated environment. Pro-
ducing faithful stimuli and defining meaningful simulation logic are left to the
developer.

Specifically, the values generated by a stimulus producer need to be faithful
to some simulation model. The simulation model must provide an accuracy
that matches the granularity of the situations to be tested. To define a stimulus
producer, one option is to replay data logged from entity data sources, whether
or not verbatim. Another option is to define a stimulus producer using some
domain-specific modeling function. Issues about the correctness of the stimulus
producer arise when either the logged data are transformed or a domain-specific
modeling function is introduced. Beyond stimulus producers, emulated entity
actions may have an effect on the simulated environment (e.g., a light impacts
the luminosity). As a result, the stimulus producers need to subscribe to all
entity actions that may have an effect on the values they generate.

To illustrate these issues consider the sun luminosity. It can simply be
defined by a mathematical function. However, its impact on a building is difficult
to model as it depends on the number, size and location of windows, and the
building structure. Our approach does not help in defining an accurate model
of this situation; this is left to the simulation developer that must take into
account the simulation requirements.

Another source of inaccuracy may be created by the operations that merge
stimulus intensities produced by the same region of the physical space. For
example, consider the luminosity in a hall coming from the luminosity of the
surrounding rooms. These luminosity intensities are sent to the luminosity
producer of the hall, which merges them and passes the new intensity to the
hall light sensors. This merging operation is also user-defined; to be meaningful
its definition needs to rely on domain-specific knowledge.

As one can see, taking into account the simulation requirements and devel-
oping stimulus producers in Java can be laborious. It often requires to encode
in Java mathematical formulas describing the stimulus producer evolution. To
reduce this complexity, we are actively working on easing simulation of nat-
ural phenomena [28]. To do so, we leverage Acumen [29], a Domain-Specific
Language (DSL) for describing differential equations. The differential equa-
tions defined with Acumen describe physical phenomena. With Acumen, we
use off-the-shelf physical environment models and formulas that are available
in textbooks and the research literature. Their correctness is extensively doc-
umented and well established. Leveraging a physical environment modeling
language such as Acumen allows us to both reduce the stimulus producer im-
plementation complexity and ensure the correctness of our stimulus producers.

28

Entities are emulated so that applications interact with them without code
modification. To be faithful, an emulated entity should have an observable
behavior that is equivalent to its real counterpart. To do so, the data source of
an emulated entity can be programmed such that, for a given input, it produces
the same output as its real counterpart.

6.5.2 Performance

The simulation of physical spaces may involve lots of entities, accurate sim-
ulation models, and rich simulation logic. This situation calls for a scalable
simulator.

To support compute-intensive simulation, DiaSpec enables to distribute sim-
ulated entities and stimulus producers. This distribution is naturally achieved
using DiaSpec because DiaSpec components communicate via a distributed sys-
tems technology. Our implementation of DiaSpec supports several distributed
systems technologies including a local software bus, Java RMI, SIP and Web
Services. The selection of this distributed technology is done at deployment
time and does not affect DiaSpec component implementation. When the simu-
lation back-end used by DiaSim is Java RMI, the workload can be distributed
over several different hosts, enabling numerous entities and stimulus producers
to be introduced. A distributed technology also makes it possible to perform
hybrid simulation by integrating distributed, real entities.

6.5.3 Generalization to other application domains

In DiaSim, the graphical rendering and the stimulus producers are specific to the
pervasive computing domain. However, our simulation approach can be gener-
alized to other application domains. In a recent work, we applied our simulation
approach to the avionics domains [26]. We developed a flight guidance system
using the DiaSpec approach and simulated it with our simulation approach. To
address the avionics domain, we replaced Siafu by the FlightGear flight simula-
tor for graphically rendering the simulation. We have also interfaced simulated
entities with the aircraft physical model provided by FlightGear, enabling it
to produce the simulated stimuli. This strategy allows our simulated entities
to receive realistic stimuli from the physical model defined by FlightGear (e.g.,
current heading or altitude) and act on the realistically-simulated aircraft com-
ponents (e.g., the ailerons to control the aircraft heading).

Applying our simulation approach to avionics has demonstrated that our key
concepts are general enough to tackle a drastically different domain. Futher-
more, this work has shown that the architecture of DiaSim can easily accommo-
date another rendering layer and be composed of arbitrarily complex physical
models.

29

7 Related Work

In this section, we study other existing pervasive computing simulators. We also
study simulators from two simulation fields related to the pervasive computing
domain: context simulators and networked entities simulators.

Pervasive Computing Simulators

Few simulators are dedicated to the testing of pervasive computing applica-
tions [8, 9, 10, 11, 12]. Ubiwise [8] and Tatus [9] are built upon 3D game
graphics engines, respectively Quake III Arena and Half-Life. By providing a
first person view of the simulated pervasive computing environments, they both
allow the user to experience these simulated environments. However the game
graphics engine becomes a burden when it comes to define new scenarios; users
can neither add their own actuators and sensors, nor simulate arbitrary context
data. Moreover, the same scenario cannot be run multiple times.

The Lancaster simulator enables deterministic testing conditions and emu-
lation to test location-based applications [11]. However, libraries of actuators
and sensors are not provided and the development of new types of sensors and
actuators is not supported. The PiCSE simulator addresses the problem of ex-
tensibility by providing generic libraries to create sensors and actuators [12].
However all these approaches do not propose an emulation framework to incre-
mentally integrate real entities in a simulated system.

Contrary to the other existing approaches, UbiREAL [10] provides an em-
ulation framework that allows to combine simulated and real entities. It also
provides a 3D graphical renderer to simulate pervasive computing applications.
However users have to manually specialize the simulator for every new applica-
tion area. In contrast, DiaSim relies on DiaSpec to automatically customize the
simulation tools (i.e., the editor and renderer).

Context Simulators

Some simulators focus on the simulation of context [30, 31, 19]. The Generic
Location Event Simulator publishes location information, which can be used by
location-based applications [30]. However, it is limited to location information.
SimuContext [31] and Siafu [19] are two other context simulators that go one
step further, enabling to define any context types. Siafu also graphically renders
simulated environments. However, as a context simulator, Siafu does not provide
any support to simulate entities and applications.

Networked Entities Simulators

Various approaches propose to simulate sensor networks [32, 33, 34, 35] and
could complement our approach. These simulators provide a more comprehen-
sive support for the simulation of sensors compared to previous approaches.
However, they do not consider issues of application development and testing.

30

MATLAB/Simulink [36] and Ptolemy [7] are used for modeling networked en-
tities. These modeling tools provide libraries of computation models that the
user can compose for modeling and simulating devices. The use of these tools
is also complementary to our approach in that they allow simulated entities to
be modeled instead of being programmed. Network emulators that focus on
network-related issues have been proposed [37, 38] and could also complement
our approach.

8 Conclusion and Future Work

In this paper, we have presented a novel approach to simulating pervasive com-
puting applications. This approach has been implemented in a simulator named
DiaSim. DiaSim is parameterized with respect to a description of a pervasive
computing environment, relevant to a given area. This description is defined us-
ing the DiaSpec language and is processed by the DiaSpec compiler to produce
a dedicated programming framework.

We have extended this approach by generating a simulation programming
framework and an emulation layer. The generated emulation layer makes it pos-
sible for the same application to be emulated or executed in a real environment.
This emulation layer also enables to have an application interact with both
real and simulated entities in an hybrid environment. Hybrid simulation allows
real entities to be incrementally added in the simulation, as the implementation
and deployment progress. The generated simulation programming framework
provides support for developing the simulation logic. This logic comprises the
simulated entities and the producers of simulated stimuli. A 2D graphical envi-
ronment is provided to the user to define his simulated environment, simulation
scenarios, and to monitor and debug a simulated pervasive computing system.
This approach has been implemented in the DiaSim tool, and validated on a
large-scale simulation of an engineering school. Finally, we have evaluated Di-
aSim with respect to its scalability, usability and performance.

Ongoing and future work

This work is being expanded in various directions.

Easing the physical environment simulation

Simulating natural phenomena like heat propagation can be quite complex as
they involve mathematical equations. We are working on easing the simulation
of these phenomena by leveraging Acumen [29], a DSL for describing and execut-
ing differential equations. The differential equations representing the physical
phenomena are defined with Acumen.

31

Adding human behavior modeling

Numerous pervasive computing applications surround people in their life. To
help simulating this kind of applications, we plan on connecting human behavior
models to DiaSim. For instance, human behaviors could be implemented in a
multi-agent simulation toolkit such as MASON [39]. Each agent would represent
a simulated person. Coupling DiaSim with human behavior would allow the
simulation of a fire alarm system in a building, as well as the behavior of the
building occupants for example. The simulation of the building occupants would
enable to observe their behaviors in case of fire.

Applying DiaSim to other application areas

We have been applying our approach to the building and home automation
areas. However, DiaSim can address numerous other application areas, such
as agriculture, industry, and traffic flow. To demonstrate the usability of our
approach, we are working on simulating applications in each of these application
areas.

Enhancing the system monitoring

A pervasive computing system may involve a large number of entities and appli-
cations. Monitoring such a system rapidly becomes excessively complicated. In
particular, large-scale simulations in which numerous events occur at the same
time are hard to monitor, even with a graphical rendering and logs. To enhance
monitoring, we would like to add contracts to DiaSpec in the form of pre- and
post-conditions to entities, controllers, and contexts. These contracts would
drive the rendering of a simulation by drawing the tester’s attention when they
are violated.

Enhancing the graphical renderer

The 2D graphical rendering provided by DiaSim allows to easily monitor the
simulated applications. However, the user experience of these simulated appli-
cations would be improved with a 3D graphical rendering. Indeed, users would
be able to test applications immersed in a simulated 3D physical environment.
We plan to render simulations in 3D using Blender [40], an authoring tool for
creating 3D animations and video games.

References

[1] Dey AK, Abowd GD, Salber D. A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Applications. Human-

Computer Interaction 2001; 16(2):97–166.

32

[2] Román M, Hess C, Cerqueira R, Ranganathan A, Campbell R, Nahrstedt
K. A Middleware Infrastructure for Active Spaces. Pervasive Computing,

IEEE 2002; 1(4):74–83.

[3] Ranganathan A, Chetan S, Al-Muhtadi J, Campbell RH, Mickunas MD.
Olympus: A High-Level Programming Model for Pervasive Computing En-
vironments. PERCOM’05: Proceedings of the 3rd IEEE International Con-

ference on Pervasive Computing and Communications, 2005; 7–16.

[4] Grimm R. One.world: Experiences with a Pervasive Computing Architec-
ture. IEEE Pervasive Computing 2004; 3(3):22–30.

[5] iOS SDK, http://developer.apple.com/technologies/iphone.

[6] Android SDK, http://developer.android.com.

[7] Eker J, Janneck JW, Lee EA, Liu J, Liu X, Ludvig J, Neuendorffer S, Sachs
S, Xiong Y. Taming heterogeneity - The Ptolemy Approach. Proceedings of
the IEEE 2003; 91(1):127–144.

[8] Barton JJ, Vijayaraghavan V. UBIWISE, A Ubiquitous Wireless Infrastruc-
ture Simulation Environment. Technical Report, Hewlett Packard 2002.

[9] O’Neill E, Klepal M, Lewis D, O’Donnell T, O’Sullivan D, Pesch D. A
Testbed for Evaluating Human Interaction with Ubiquitous Computing
Environments. TRIDENTCOM ’05: Proceedings of the 1st International

Conference on Testbeds and Research Infrastructures for the Development

of Networks and Communities, 2005; 60–69.

[10] Nishikawa H, Yamamoto S, Tamai M, Nishigaki K, Kitani T, Shibata N, Ya-
sumoto K, Ito M. UbiREAL: Realistic Smartspace Simulator for Systematic
Testing. UBICOMP’06: Proceedings of the 8th International Conference on

Ubiquitous Computing, 2006; 459–476.

[11] Morla R, Davies N. Evaluating a Location-Based Application: A Hy-
brid Test and Simulation Environment. IEEE Pervasive Computing 2004;
3(3):48–56.

[12] Reynolds V, Cahill V, Senart A. Requirements for an Ubiquitous Comput-
ing Simulation and Emulation Environment. InterSense’06: Proceedings of

the 1st International Conference on Integrated Internet Ad hoc and Sensor

Networks, 2006.

[13] Bruneau J, Jouve W, Consel C. DiaSim, A Parameterized Simulator for
Pervasive Computing Applications. Mobiquitous’09: Proceedings of the 6th

International Conference on Mobile and Ubiquitous Systems: Computing,

Networking and Services, 2009.

33

[14] Jouve W, Bruneau J, Consel C. DiaSim: A Parameterized Simulator for
Pervasive Computing Applications (Demo). PERCOM’09: Proceedings of

the 7th IEEE International Conference on Pervasive Computing and Com-

munications, 2009.

[15] Cassou D, Bertran B, Loriant N, Consel C. A Generative Programming
Approach to Developing Pervasive Computing Systems. GPCE’09: Pro-

ceedings of the 8th International Conference on Generative Programming

and Component Engineering, 2009; 137–146.

[16] Cassou D, Bruneau J, Consel C, Balland E. Towards a Tool-based Devel-
opment Methodology for Pervasive Computing Applications. IEEE Trans-

actions on Software Engineering 2011; .

[17] Chen G, Kotz D. Context Aggregation and Dissemination in Ubiquitous
Computing Systems. WMCSA’02: Proceedings of the 4th IEEE Workshop

on Mobile Computing Systems and Applications 2002; :105.

[18] Cassou D, Balland E, Consel C, Lawall J. Leveraging Software Architec-
tures to Guide and Verify the Development of Sense/Compute/Control
Applications. ICSE’11: Proceedings of the 33rd International Conference

on Software Engineering, 2011.

[19] Martin M, Nurmi P. A Generic Large Scale Simulator for Ubiquitous Com-
puting. Mobiquitous’06: Proceedings of the 3rd International Conference

on Mobile and Ubiquitous Systems: Computing, Networking and Services,
2006.

[20] Kuehn T. Fundamentals: 2005 ASHRAE Handbook. American Society of
Heating, 2005.

[21] Frechette RE, Gilchrist R. Towards zero energy, a case study: Pearl River
Tower, Guangzhou, China. CTBUH: Proceedings of the Council on Tall

Buildings and Urban Habitat’s 8th World Congress, 2008; 7–16.

[22] Wireshark: A Network Protocol Analyzer, http://www.wireshark.org.

[23] Jakob H, Consel C, Loriant N. Architecturing Conflict Handling of Perva-
sive Computing Resources. DAIS’11: 11th IFIP International Conference

on Distributed Applications and Interoperable Systems, 2011.

[24] Mercadal J, Enard Q, Consel C, Loriant N. A Domain-Specific Approach
to Architecturing Error Handling in Pervasive Computing. OOPSLA’10:

Proceedings of the ACM International Conference on Object Oriented Pro-

gramming Systems Languages and Applications, 2010.

[25] Gatti S, Balland E, Consel C. A Step-wise Approach for Integrating QoS
throughout Software Development. FASE’11: Proceedings of the 14th Eu-

ropean Conference on Fundamental Approaches to Software Engineering,
2011.

34

[26] Bruneau J, Enard Q, Gatti S, Balland E, Consel C. Design-driven Develop-
ment of Safety-critical Applications: A Case Study In Avionics. Technical
Report, Phoenix Research Group, INRIA Bordeaux, France 2011.

[27] JouveW, Palix N, Consel C, Kadionik P. A SIP-based Programming Frame-
work for Advanced Telephony Applications. IPTComm’08: Proceedings of

the 2nd LNCS Conference on Principles, Systems and Applications of IP

Telecommunications, 2008.

[28] Bruneau J, Consel C, O’Malley M, Taha W, Hannourah WM. Preliminary
Results in Virtual Testing for Smart Buildings (Poster). Mobiquitous’10,

Proceedings of the 7th International Conference on Mobile and Ubiquitous

Systems: Computing, Networking and Services, 2010.

[29] Zhu Y, Westbrook E, Inoue J, Chapoutot A, Salama C, Peralta M, Martin
T, Taha W, O’Malley M, Cartwright R, et al.. Mathematical Equations as
Executable Models of Mechnical Systems. ICCPS’10: Proceedings of the

1st International Conference on Cyber-Physical Systems, 2010.

[30] Sanmugalingam K, Coulouris G. A Generic Location Event Simulator. UBI-
COMP’02: Proceedings of the 4th International Conference on Ubiquitous

Computing, 2002; 308–315.

[31] Broens T, van Halteren A. SimuContext: Simply Simulate Context. ICAS
’06: Proceedings of the International Conference on Autonomic and Au-

tonomous Systems, 2006; 45.

[32] Sundresh S, Kim W, Agha G. SENS: A Sensor, Environment and Network
Simulator. Proceedings of the 37th Annual Simulation Symposium, 2004;
221–228.

[33] Levis P, Lee N, Welsh M, Culler D. TOSSIM: Accurate and Scalable Sim-
ulation of Entire TinyOS Applications. SenSys ’03: Proceedings of the 1st

International Conference on Embedded Networked Sensor Systems, 2003;
126–137.

[34] Titzer BL, Lee DK, Palsberg J. Avrora: Scalable Sensor Network Simula-
tion With Precise Timing. IPSN’05: Proceedings of the 4th International

Symposium on Information Processing in Sensor Networks, 2005; 477–482.

[35] Polley J, Blazakis D, McGee J, Rusk D, Baras JS, , Karir M. ATEMU:
A Fine-Grained Sensor Network Simulator. SECON’04: Proceedings of the

1st IEEE Communications Society Conference on Sensor and Ad Hoc Com-

munications and Networks, 2004.

[36] Riederer P. MATLAB/Simulink for Building and HVAC Simulation - State
of the Art. http://www.docjax.com/ajax/view.shtml?id=1290132.

[37] NS-2 Network Simulator, http://www.isi.edu/nsnam/ns/.

35

[38] D’Aprano F, de Leoni M, Mecella M. Emulating Mobile Ad-hoc Networks
of Hand-Held Devices: the OCTOPUS Virtual Environment. MobiEval’07:

Proceedings of the 1st International Workshop on System Evaluation for

Mobile Platforms, 2007; 35–40.

[39] Luke S, Cioffi-Revilla C, Panait L, Sullivan K, Balan G. MASON: A Mul-
tiagent Simulation Environment. Simulation 2005; 81(7):517.

[40] Blender, http://www.blender.org.

36

