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Abstract

The cosparse analysis model has been introduced recently as an interesting alternative to the standard sparse synthesis

approach. A prominent question brought up by this new construction is the analysis pursuit problem – the need to find

a signal belonging to this model, given a set of corrupted measurements of it. Several pursuit methods have already

been proposed based on ℓ1 relaxation and a greedy approach. In this work we pursue this question further, and propose

a new family of pursuit algorithms for the cosparse analysis model, mimicking the greedy-like methods – compressive

sampling matching pursuit (CoSaMP), subspace pursuit (SP), iterative hard thresholding (IHT) and hard thresholding

pursuit (HTP). Assuming the availability of a near optimal projection scheme that finds the nearest cosparse subspace

to any vector, we provide performance guarantees for these algorithms. Our theoretical study relies on a restricted

isometry property adapted to the context of the cosparse analysis model. We explore empirically the performance of

these algorithms by adopting a plain thresholding projection, demonstrating their good performance.

Keywords: Sparse representations, Compressed sensing, Synthesis, Analysis, CoSaMP, Subspace-pursuit, Iterative

hard threshodling, Hard thresholding pursuit.
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1. Introduction

Many natural signals and images have been observed to be inherently low dimensional despite their possibly very

high ambient signal dimension. It is by now well understood that this phenomenon lies at the heart of the success of

numerous methods of signal and image processing. Sparsity-based models for signals offer an elegant and clear way

to enforce such inherent low-dimensionality, explaining their high popularity in recent years. These models consider

the signal x ∈ Rd as belonging to a finite union of subspaces of dimension k ≪ d [1]. In this paper we shall focus on

one such approach – the cosparse analysis model – and develop pursuit methods for it.

Before we dive into the details of the model assumed and the pursuit problem, let us first define the following

generic inverse problem that will accompany us throughout the paper: For some unknown signal x ∈ Rd, an incomplete

set of linear observations y ∈ Rm (incomplete implies m < d) is available via

y =Mx + e, (1)

where e ∈ R
m is an additive bounded noise that satisfies ‖e‖22 ≤ ǫ2. The task is to recover or approximate x. In the

noiseless setting where e = 0, this amounts to solving y = Mx. Of course, a simple fact in linear algebra tells us that

this problem admits infinitely many solutions (since m < d). Therefore, when all we have is the observation y and the

measurement/observation matrix M ∈ Rm×d, we are in a hopeless situation to recover x.
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1.1. The Synthesis Approach

This is where ‘sparse signal models’ come into play. In the sparse synthesis model, the signal x is assumed to have

a very sparse representation in a given fixed dictionary D ∈ R
d×n. In other words, there exists α with few nonzero

entries, as counted by the “ℓ0-norm” ‖α‖0, such that

x = Dα, and k := ‖α‖0 ≪ d. (2)

Having this knowledge we solve (1) using

x̂ℓ0 = Dα̂ℓ0 , and α̂ℓ0 = argmin
α

‖α‖0 subject to ‖y −MDα‖2 ≤ ǫ. (3)

More details about the properties of this problem can be found in [2, 3].

Since solving (3) is an NP-complete problem [4], approximation techniques are required for recovering x. One

strategy is by using relaxation, replacing the ℓ0 with ℓ1 norm, resulting with the ℓ1-synthesis problem

x̂ℓ1 = Dα̂ℓ1 , and α̂ℓ1 = argmin ‖α‖1 s.t. ‖y −MDα‖2 ≤ ǫ. (4)

For a unitary matrix D and a vector x with k-sparse representation α, if δ2k < δℓ1 then

∥

∥

∥x̂ℓ1 − x
∥

∥

∥

2
≤ Cℓ1 ‖e‖2 , (5)

where x̂ℓ1 = Dα̂ℓ1 , δ2k is the constant of the restricted isometry property (RIP) of MD for 2k sparse signals, Cℓ1 is a

constant greater than
√

2 and δℓ1 (≃ 0.4931) is a reference constant [5, 6, 7]. Note that this result implies a perfect

recovery in the absence of noise. The above statement was extended also for incoherent redundant dictionaries [8].

Another option for approximating (3) is using a greedy strategy, like in the thresholding technique or orthogonal

matching pursuit (OMP) [9, 10]. A different related approach is the greedy-like family of algorithms. Among those we

have compressive sampling matching pursuit (CoSaMP) [11], subspace pursuit (SP) [12], iterative hard thresholding

(IHT) [13] and hard thresholding pursuit (HTP) [14]. CoSaMP and SP were the first greedy methods shown to have

guarantees in the form of (5) assuming δ4k < δCoSaMP and δ3k ≤ δSP [11, 12, 6, 15]. Following their work, iterative

hard thresholding (IHT) and hard thresholding pursuit (HTP) were shown to have similar guarantees under similar

conditions [13, 14, 16, 6]. Recently, a RIP based guarantee was developed also for OMP [17].

1.2. The Cosparse Analysis Model

Recently, a new signal model called cosparse analysis model was proposed in [18, 19]. The model can be summa-

rized as follows: For a fixed analysis operatorΩ ∈ Rp×d referred to as the analysis dictionary, a signal x ∈ Rd belongs

to the cosparse analysis model with cosparsity ℓ if

ℓ := p − ‖Ωx‖0 . (6)

The quantity ℓ is the number of rows in Ω that are orthogonal to the signal. The signal x is said to be ℓ-cosparse, or

simply cosparse. We denote the indices of the zeros of the analysis representation as the cosupport Λ and the sub-

matrix that contains the rows from Ω that belong to Λ by ΩΛ. As the definition of cosparsity suggests, the emphasis

of the cosparse analysis model is on the zeros of the analysis representation vector Ωx. This contrasts the emphasis

on ‘few non-zeros’ in the synthesis model (2). It is clear that in the case where every ℓ rows in Ω are independent,

x resides in a subspace of dimension d − ℓ that consists of vectors orthogonal to the rows of ΩΛ. In the general case

where dependencies occur between the rows of Ω, the dimension is d minus the rank of ΩΛ. This is similar to the

behavior in the synthesis case where a k-sparse signal lives in a k-dimensional space. Thus, for this model to be

effective, we assume a large value of ℓ.

In the analysis model, recovering x from the corrupted measurements is done by solving the following minimiza-

tion problem [20]:

xA−ℓ0 = argmin
x

‖Ωx‖0 subject to ‖y −Mx‖2 ≤ ǫ. (7)

Solving this problem is NP-complete [18], just as in the synthesis case, and thus approximation methods are required.

As before, we can use an ℓ1 relaxation to (7), replacing the ℓ0 with ℓ1 in (7), resulting with the ℓ1-analysis problem
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[18, 20, 21, 22]. Another option is the greedy approach. A greedy algorithm called Greedy Analysis Pursuit (GAP)

has been developed in [18, 19, 23] that somehow mimics Orthogonal Matching Pursuit [9, 10] with a form of iterative

reweighted least Squares (IRLS) [24]. Other alternatives for OMP, backward greedy (BG) and orthogonal BG (OBG),

were presented in [25] for the case that M is the identity. For the same case, the parallel to the thresholding technique

was analyzed in [26].

1.3. This Work

Another avenue exists for the development of analysis pursuit algorithms – constructing methods that will imitate

the family of greedy-like algorithms. Indeed, we have recently presented preliminary and simplified versions of

analysis IHT (AIHT), analysis HTP (AHTP), analysis CoSaMP (ACoSaMP) and Analysis SP (ASP) in [27, 28] as

analysis versions of the synthesis counterpart methods. This paper re-introduces these algorithms in a more general

form, ties them to their synthesis origins, and analyze their expected performance. The main contribution of the paper

is our result on the stability of these analysis pursuit algorithms. We show that after a finite number of iterations and

for a given constant c0, the reconstruction result x̂ of AIHT, AHTP, ACoSaMP and ASP all satisfy

‖x − x̂‖2 ≤ c0 ‖e‖2 , (8)

under a RIP-like condition on M and the assumption that we are given a good near optimal projection scheme. A

bound is also given for the case where x is only nearly ℓ-cosparse. Similar results for the ℓ1 analysis appear in

[21, 22]. More details about the relation between these papers and our results will be given in Section 6. In addition to

our theoretical results we demonstrate the performance of the four pursuit methods under a thresholding based simple

projection scheme. Both our theoretical and empirical results show that linear dependencies in Ω that result with a

larger cosparsity in the signal x, lead to a better reconstruction performance. This suggests that, as opposed to the

synthesis case, strong linear dependencies within Ω are desired.

This paper is organized as follows:

• In Section 2 we present the notation used along the paper.

• In Section 3 we define a RIP-like property, theΩ-RIP, for the analysis model, proving that it has similar charac-

teristics like the regular RIP. In Section 4 the notion of near optimal projection is proposed and some nontrivial

operators for which a tractable optimal projection exists are exhibited. Both the Ω-RIP and the near optimal

projection are used throughout this paper as a main force for deriving our theoretical results.

• In Section 5 the four pursuit algorithms for the cosparse analysis framework are defined, adapted to the general

format of the pursuit problem we have defined above.

• In Section 6 we derive the success guarantees for all the above algorithms in a unified way. Note that the pro-

vided results can be easily adapted to other union-of-subspaces models given near optimal projection schemes

for them, in the same fashion done for IHT with an optimal projection scheme in [29]. The relation between the

obtained results and existing work appears in this section as well.

• Empirical performance of these algorithms is demonstrated in Section 7 in the context of the cosparse signal

recovery problem. We use a simple thresholding as the near optimal projection scheme in the greedy-like

techniques.

• Section 8 discuss the presented results and concludes our work.

2. Notations and Preliminaries

We use the following notation in our work:

• σM is the largest singular value of M, i.e., σ2
M
= ‖M∗M‖2.

• ‖·‖2 is the euclidian norm for vectors and the spectral norm for matrices. ‖·‖1 is the ℓ1 norm that sums the

absolute values of a vector and ‖·‖0, though not really a norm, is the ℓ0-norm which counts the number of

non-zero elements in a vector.
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• Given a cosupport set Λ, ΩΛ is a sub-matrix of Ω with the rows that belong to Λ.

• For given vectors v, z ∈ R
d and an analysis dictionary Ω, cosupp(Ωv) returns the cosupport of Ωv and

cosupp(Ωz, ℓ) returns the index set of ℓ smallest (in absolute value) elements inΩz. If more than ℓ elements are

zero all of them are returned. In the case where the ℓ-th smallest entry is equal to the ℓ + 1 smallest entry, one

of them is chosen arbitrarily.

• In a similar way, in the synthesis case DT is a sub-matrix of D with columns1 corresponding to the set of indices

T , supp(·) returns the support of a vector, supp(·, k) returns the set of k-largest elements and ⌈·⌉k preserves the

k-largest elements in a vector. In the case where the k-th largest entry is equal to the k + 1 largest entry, one of

them is chosen arbitrarily.

• QΛ = I −Ω†
Λ
ΩΛ is the orthogonal projection onto the orthogonal complement of range(Ω∗

Λ
).

• PΛ = I −QΛ = Ω
†
Λ
ΩΛ is the orthogonal projection onto range(Ω∗

Λ
).

• x̂AIHT/x̂AHTP/x̂ACoSaMP/x̂ASP are the reconstruction results of AIHT/ AHTP/ ACoSaMP/ ASP respectively. Sometimes

when it is clear from the context to which algorithms we refer, we abuse notations and use x̂ to denote the

reconstruction result.

• A cosupportΛ has a corank r if rank(ΩΛ) = r. A vector v has a corank r if its cosupport has a corank r.

• [p] denotes the set of integers [1 . . . p].

• LΩ,ℓ = {Λ ⊆ [p], |Λ| ≥ ℓ} is the set of ℓ-cosparse cosupports and Lcorank
Ω,r

= {Λ ⊆ [p], rank(ΩΛ) ≥ r} is the set of

all cosupports with corresponding corank r.

• WΛ = span⊥(ΩΛ) = {QΛz, z ∈ Rd} is the subspace spanned by a cosparsity set Λ.

• AΩ,ℓ =
⋃

Λ∈LΩ,ℓWΛ is the union of subspaces of ℓ-cosparse vectors and Acorank
Ω,r

=
⋃

Λ∈Lcorank
Ω,r
WΛ is the union

of subspaces of all vectors with corank r. In the case that every ℓ rows of Ω are independent it is clear that

AΩ,ℓ = Acorank
Ω,r

. When it will be clear from the context, we will removeΩ from the subscript.

• x ∈ Rd denotes the original unknown ℓ-cosparse vector and Λx its cosupport.

• v, u ∈ Aℓ are used to denote general ℓ-cosparse vectors and z ∈ Rd is used to denote a general vector.

3. Ω-RIP Definition and its Properties

We now turn to define the Ω-RIP, which parallels the regular RIP as used in [5]. This property is a very important

property for the analysis of the algorithms which holds for a large family of matrices M as we will see hereafter.

Definition 3.1. A matrix M has the Ω-RIP property with a constant δℓ, if δℓ is the smallest constant that satisfies

(1 − δℓ) ‖v‖22 ≤ ‖Mv‖22 ≤ (1 + δℓ) ‖v‖22 , (9)

wheneverΩv has at least ℓ zeroes.

Note that though δℓ is also a function of Ω we abuse notation and use the same symbol for the Ω-RIP as the

regular RIP. It will be clear from the context to which of them we refer and whatΩ is in use with theΩ-RIP. A similar

property that looks at the corank of the vectors can be defined

1By the abuse of notation we use the same notation for the selection sub-matrices of rows and columns. The selection will be clear from the

context since in analysis the focus is always on the rows and in synthesis on the columns.
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Definition 3.2. A matrix M has the corank-Ω-RIP property with a constant δcorank
r , if δcorank

r is the smallest constant

that satisfies

(1 − δcorank
r ) ‖u‖22 ≤ ‖Mu‖22 ≤ (1 + δcorank

r ) ‖u‖22 (10)

whenever the corank of u with respect to Ω is greater or equal to r.

The Ω-RIP, like the regular RIP, inherits several key properties. We present only those related to δℓ, while very

similar characteristics can be derived also for the corank-Ω-RIP. The first property we pose is an immediate corollary

of the δℓ definition.

Corollary 3.3. If M satisfies the Ω-RIP with a constant δℓ then

‖MQΛ‖22 ≤ 1 + δℓ (11)

for any Λ ∈ Lℓ.

Proof: Any v ∈ Aℓ can be represented as v = QΛz with Λ ∈ Lℓ and z ∈ R
d. Thus, the Ω-RIP in (9) can be

reformulated as

(1 − δℓ) ‖QΛz‖22 ≤ ‖MQΛz‖22 ≤ (1 + δℓ) ‖QΛz‖22 (12)

for any z ∈ Rd and Λ ∈ Lℓ. Since QΛ is a projection ‖QΛz‖22 ≤ ‖z‖22. Combining this with the right inequality in (12)

gives

‖MQΛz‖22 ≤ (1 + δℓ) ‖z‖22 (13)

for any z ∈ Rd and Λ ∈ Lℓ. The first inequality in (11) follows from (13) by the definition of the spectral norm. �

Lemma 3.4. For ℓ̃ ≤ ℓ it holds that δℓ ≤ δℓ̃.

Proof: SinceAℓ ⊆ Aℓ̃ the claim is immediate. �

Lemma 3.5. M satisfies the Ω-RIP if and only if

‖QΛ(I −M∗M)QΛ‖2 ≤ δℓ (14)

for any Λ ∈ Lℓ.

Proof: The proof is similar to the one of the regular RIP as appears in [6]. As a first step we observe that Definition 3.1

is equivalent to requiring
∣

∣

∣‖Mv‖22 − ‖v‖22
∣

∣

∣ ≤ δℓ ‖v‖22 (15)

for any v ∈ Aℓ. The latter is equivalent to
∣

∣

∣‖MQΛz‖22 − ‖QΛz‖22
∣

∣

∣ ≤ δℓ ‖QΛz‖22 (16)

for any set Λ ∈ Lℓ and any z ∈ Rd, since QΛz ∈ Aℓ. Next we notice that

‖MQΛz‖22 − ‖QΛz‖22 = z∗QΛM∗MQΛz − z∗QΛz = 〈QΛ(M∗M − I)QΛz, z〉.

Since QΛ(M∗M − I)QΛ is Hermitian we have that

max
z

|〈QΛ(M∗M − I)QΛz, z〉|
‖z‖2

= ‖QΛ(M∗M − I)QΛ‖2 . (17)

Thus we have that Definition 3.1 is equivalent to (14) for any set Λ ∈ Lℓ. �
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Corollary 3.6. If M satisfies the Ω-RIP then

∥

∥

∥QΛ1
(I −M∗M)QΛ2

∥

∥

∥

2
≤ δℓ, (18)

for any Λ1 and Λ2 such that Λ1 ∩ Λ2 ∈ Lℓ.

Proof: Since Λ1 ∩ Λ2 ⊆ Λ1 and Λ1 ∩ Λ2 ⊆ Λ2

∥

∥

∥QΛ1
(I −M∗M)QΛ2

∥

∥

∥

2
≤

∥

∥

∥QΛ2∩Λ1
(I −M∗M)QΛ2∩Λ1

∥

∥

∥

2
.

Using Lemma 3.5 completes the proof. �

As we will see later, we require the Ω-RIP to be small. Thus, we are interested to know for what matrices this

hold true. In the synthesis case, where Ω is unitary and the Ω-RIP is identical to the RIP, it was shown for certain

family of random matrices, such as matrices with Bernoulli or Subgaussian ensembles, that for any value of ǫk if

m ≥ Cǫk k log( m
kǫk

) then δk ≤ ǫk [5, 8, 30], where δk is the RIP constant and Cǫk is a constant depending on ǫk and M.

A similar result for the same family of random matrices holds for the analysis case. The result is a special case of the

result presented in [29].

Theorem 3.7 (Theorem 3.3 in [29]). Let M ∈ R
m×d be a random matrix such that for any z ∈ R

d and 0 < ǫ̃ ≤ 1
3

it

satisfies

P
(∣

∣

∣‖Mz‖22 − ‖z‖22
∣

∣

∣ ≥ ǫ̃ ‖z‖22
)

≤ e−
CMmǫ̃

2 , (19)

where CM > 0 is a constant. For any value of ǫℓ > 0, if

m ≥ 32

CMǫ2r

(

log(
∣

∣

∣Lcorank
r

∣

∣

∣) + (d − r) log(9/ǫr) + t
)

, (20)

then δcorank
r ≤ ǫr with probability exceeding 1 − e−t.

The above theorem is important since it shows that the Ω-RIP holds with a small constant for a large family of

matrices – the same family that satisfy the RIP property. In a recent work it was even shown that by randomizing the

signs of the columns in the matrices that satisfy the RIP we get new matrices that also satisfy the RIP [31]. Thus,

requiring the Ω-RIP constant to be small, as will be done hereafter, is legitimate.

For completeness we present a proof for theorem 3.7 in Appendix A based on [8, 30, 32]. We include in it also

the proof of Theorem 3.8 to follow. In the case thatΩ is in general position
∣

∣

∣Lcorank
r

∣

∣

∣ =
(

p

r

)

≤ (
ep

p−r
)p−r (inequality is by

Stirling’s formula) and thus m ≥ (p − r) log(
ep

p−r
). Since we want m to be smaller than d we need p − ℓ to be smaller

than d. This limits the size of p for Ω since r cannot be greater than d. Thus, we present a variation of the theorem

which states the results in terms of δℓ and ℓ instead of δcorank
r and r. The following theorem is also important because

of the fact that our theoretical results are in terms of δℓ and not δcorank
r . It shows that δℓ is small in the same family of

matrices that guarantees δcorank
r to be small.

Theorem 3.8. Under the same setup of Theorem 3.7, for any ǫℓ > 0 if

m ≥ 32

CMǫ
2
ℓ

(

(p − ℓ) log

(

9p

(p − ℓ)ǫℓ

)

+ t

)

, (21)

then δℓ ≤ ǫℓ with probability exceeding 1 − e−t.

Remark that when Ω is in general position ℓ cannot be greater than d and thus p cannot be greater than 2d [18].

For this reason, if we want to have large values for p we should allow linear dependencies between the rows of Ω.

In this case the cosparsity of the signal can be greater than d. This explains why linear dependencies are a favorable

thing in analysis dictionaries [25]. In Section 7 we shall see that also empirically we get a better recovery when Ω

contains linear dependencies.
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4. Near Optimal Projection

As we will see hereafter, in the proposed algorithms we will face the following problem: Given a general vector

z ∈ Rd, we would like to find an ℓ-cosparse vector that is closest to it in the ℓ2-norm sense. In other words, we would

like to project the vector to the closest ℓ-cosparse subspace. Given the cosupportΛ of this space the solution is simply

QΛz. Thus, the problem of finding the closest ℓ-cosparse vector turns to be the problem of finding the cosupport of

the closest ℓ-cosparse subspace. We denote the procedure of finding this cosupport by

S∗ℓ(z) = argmin
Λ∈Lℓ

‖z −QΛz‖22 . (22)

In the representation domain in the synthesis case, the support of the closest k-sparse subspace is found simply by

hard thresholding, i.e., taking the support of the k-largest elements. However, in the analysis case calculating (22)

is NP-complete with no efficient method for doing it for a general Ω [33]. Thus an approximation procedure Ŝℓ is

needed. For this purpose we introduce the definition of a near-optimal projection [27].

Definition 4.1. A procedure Ŝℓ implies a near-optimal projection QŜℓ(·) with a constant Cℓ if for any z ∈ Rd

∥

∥

∥z −QŜℓ(z)z
∥

∥

∥

2

2
≤ Cℓ

∥

∥

∥z −QS∗
ℓ
(z)z

∥

∥

∥

2

2
. (23)

A clear implication of this definition is that if Ŝℓ implies a near-optimal projection with a constant Cℓ then for any

vector z ∈ Rd and an ℓ-cosparse vector v ∈ Rd

∥

∥

∥z −QŜℓ(z)z
∥

∥

∥

2

2
≤ Cℓ ‖z − v‖22 . (24)

Similarly to the Ω-RIP, the above discussion can be directed also for finding the closest vector with corank r

defining Scorank∗
r and near optimal projection for this case in a very similar way to (22) and Definition 4.1 respectively.

Having a near-optimal cosupport selection scheme for a general operator is still an open problem and we leave

it for a future work. It is possible that this is also NP-complete. We start by describing a simple thresholding rule

that can be used with any operator. Even though it does not have any known (near) optimality guarantee besides

the case of unitary operators, the numerical section will show it performs well in practice. Then we present two

tractable algorithms for finding the optimal cosupport for two non-trivial analysis operators, the one dimensional

finite difference operatorΩ1D-DIF [34] and the fused Lasso operatorΩFUS [35].

Later in the paper, we propose theoretical guarantees for algorithms that use operators that has an optimal or a

near-optimal cosupport selection scheme. We leave the theoretical study of the thresholding technique for a future

work but demonstrate its performance empirically in Section 7 where this rule is used showing that also when near-

optimality is not at hand reconstruction is feasible.

4.1. Cosupport Selection by Thresholding

One intuitive option for cosupport selection is the simple thresholding

Ŝℓ(z) = cosupp(Ωz, ℓ), (25)

which selects as a cosupport the indices of the ℓ-smallest elements after applying Ω on z. As mentioned above,

this selection method is optimal for unitary analysis operators where it coincides with the hard thresholding used in

synthesis. However, in the general case this selection method is not guaranteed to give the optimal cosupport. Its near

optimality constant Cℓ is not close to one and is equal to the fraction of the largest and smallest eigenvalues (which

are not zero) of the submatrices composed of ℓ rows from Ω [27].

One example for an operator for which the thresholding is sub-optimal is the 1D-finite difference operatorΩ1D-DIF.

This operator is defined as:

Ω1D-DIF =









































−1 1 · · ·
... −1 1

. . .

−1 1









































(26)
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(a) The signal z.
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(b) Ω1D-DIFz.
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(c) Projection using thresholding

cosupport selection. The projec-

tion ℓ2-norm error is
√

200.
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(d) Optimal projection. The pro-

jection ℓ2-norm error is 2.5.

Figure 1: Comparison between projection using thresholding cosupport selection and optimal cosupport selection. As it can be seen the thresholding

projection error is much larger than the optimal projection error by a factor much larger than 1

In this case, given a signal z, applyingΩ1D-DIF on it, result with a vector of coefficients that represents the differences in

the signal. The thresholding selection method will select the indices of the ℓ smallest elements inΩz as the cosupport

Λz. For example, for the signal z ∈ R
201 in Fig 1(a) that contains 100 times one, 100 times minus one and 1.5 as

the last element, the thresholding will select the cosupport to be the first 199 coefficients in Ω1D-DIFz that appears in

Fig 1(b) and thus the projected vector will be the one in Fig 1(c). Its error in the ℓ2-norm sense is
√

200. However,

selecting the cosupport to be the first 99 elements and last 100 elements result with the projected vector in Fig. 1(d),

which has a smaller projection error (2.5). Thus, it is clear that the thresholding is sub-optimal for Ω1D-DIF. In a

similar way it is also sub-optimal for the 2D-finite difference operatorΩ2D-DIF that returns the vertical and horizontal

differences of a two dimensional signal. Though not optimal, the use of thresholding with this operator is illustrated

in Section 7 demonstrating that also when a good projection is not at hand, good reconstruction is still possible.

4.2. Optimal Analysis Projection Operators

As mentioned above, in general it would appear that determining the optimal projection is computationally difficult

with the only general solution being to fully enumerate the projections onto all possible cosupports. Here we highlight

two cases where it is relatively easy (polynomial complexity) to calculate the optimal cosparse projection.

4.2.1. Case 1: 1D finite difference

For the 1D finite difference operator the analysis operator is not redundant (p = d − 1) but neither is it invertible.

As we have seen, a simple thresholding does not provide us with the optimal cosparse projection. Thus, in order to

determine the best ℓ-cosparse approximation for a given vector z we take another route and note that we are looking

for the closest (in the ℓ2-norm sense to z) piecewise constant vector with p − ℓ change-points. This problem has been

solved previously in the signal processing literature using dynamic programming (DP), see for example: [34]. Thus

for this operator it is possible to calculate the best cosparse representation in O(d2) operations. The existence of a

DP solution follows from the ordered localized nature of the finite difference operator. To the best of our knowledge,

there is no known extension to 2D finite difference.

4.2.2. Case 2: Fused Lasso Operator

A redundant operator related to the 1D finite difference operator is the so-called fused Lasso operator, usually used

with the analysis ℓ1-minimization [35]. This usually takes the form:

ΩFUS =

(

Ω1D-DIF

ǫI

)

. (27)

LikeΩ1D-DIF this operator works locally and therefore we can expect to derive a DP solution to the approximation

problem. This is presented below.
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Remark 4.2. Note that in terms of the cosparsity model the ǫ parameter plays no role. This is in contrast to the

traditional convex optimization solutions where the value of ǫ is pivotal [22]. It is possible to mimic the ǫ dependence

within the cosparsity framework by considering a generalized fused Lasso operator of the form:

ΩǫFUS =













































Ω1D-DIF

Ω1D-DIF

...

Ω1D-DIF

I













































. (28)

where the number of repetitions of the Ω1D-DIF operator (and possibly the I operator) can be selected to mimic a

weight on the number of nonzero coefficients of each type. For simplicity we only consider the case indicated by (27)

4.2.3. A recursive solution to the optimal projector forΩFUS

Rather than working directly with the operator ΩFUS we make use of the following observation. An ℓ-cosparse

vector v (or k-sparse vector) for ΩFUS is a piecewise constant vector with k1 change points and k2 non-zero entries

such that k1 + k2 = k = p− ℓ, where p = 2d−1. To understand better the relation between k1 and k2, notice that k1 = 0

implies equality of all entries, so k2 = 0 or d, hence ℓ = p or d−1. Conversely, considering d ≤ ℓ < p or 0 ≤ ℓ < d−1

implies k1 , 0. It also implies that there is at least one nonzero value, hence k2 , 0.

Thus, an ℓ-cosparse vector v for ΩFUS can be parameterized in terms of a set of change points, {ni}i=0:k1+1, and a

set of constants, {µi}i=1:k1+1, such that:

v j = µi, ni−1 < j ≤ ni (29)

with the convention that n0 = 0 and nk1+1 = d, unless stated otherwise. We will also make use of the indicator vector,

s, defined as:

si =















0 if µi = 0,

1 otherwise
for 1 ≤ i ≤ k1 + 1. (30)

Using this alternative parametrization we can write the minimum distance between a vector z and the set of k-sparse

fused Lasso coefficients as:

Fk(z) = min
1≤k1≤k

min
{ni}i=1:k1

{µi}i=1:k1+1

nk1
<d

k1+1
∑

i=1

ni
∑

j=ni−1+1

(z j − µi)
2,

subject to

k1+1
∑

i=1

si(ni − ni−1) = k − k1

(31)

Although this looks a formidable optimization task we now show that it can be computed recursively through a

standard DP strategy, modifying the arguments in [34].

Let us define the optimal cost, Ik(L, ω, k1), for the vector [z1, . . . , zL]T with k1 change points and sk1+1 = ω, as:

Ik(L, ω, k1) = min
{ni}i=1:k1

{si}i=1:k1+1

nk1
<L, nk1+1=L
sk1+1=ω

k1+1
∑

i=1

ni
∑

j=ni−1+1

(z j − µi)
2,

subject to

k1+1
∑

i=1

si(ni − ni−1) = k − k1

and µi =
si

ni − ni−1

ni
∑

l=ni−1+1

zl

(32)

where we have set µi to the optimal sample means. Notice that calculating Ik(L, ω, k1) is easy for k1 ≤ k ≤ 1. Thus,

we calculate it recursively considering two separate scenarios:
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Case 1: ω = 0 where the last block of coefficients are zero. This gives:

Ik(L, 0, k1) =min
nk1<L





















































L
∑

j=nk1
+1

(z j)
2 + min

{ni}i=1:k1−1

{si}i=1:k1−1

nk1−1<nk1

sk1
=1

k1
∑

i=1

ni
∑

j=ni−1+1

(z j − µi)
2





















































,

subject to

k1
∑

i=1

si(ni − ni−1) = (k − 1) − (k1 − 1)

and µi =
si

ni − ni−1

ni
∑

l=ni−1+1

zl,

(33)

(noting that if sk1+1 = 0 then sk1
= 1 since otherwise nk1

would not have been a change point). This simplifies to

the recursive formula:

Ik(L, 0, k1) = min
nk1
<L



















L
∑

j=nk1
+1

(z j)
2 + Ik−1(nk1

, 1, k1 − 1)



















(34)

Case 2: ω = 1 when the final block of coefficients are non-zero we have:

Ik(L, 1, k1) = min
nk1
<L

nk1+1=L
sk1





































L
∑

j=nk1
+1

(z j − µk1+1)2 + min
{ni}i=1:k1−1

{si}i=1:k1−1

nk1−1<nk1

k1
∑

i=1

ni
∑

j=ni−1+1

(z j − µi)
2





































,

subject to

k1
∑

i=1

si(ni − ni−1) = (k − L + nk1
− 1) − (k1 − 1)

and µi =
si

ni − ni−1

ni
∑

l=ni−1+1

zl.

(35)

This simplifies to the recursive relationship:

Ik(L, 1, k1) = min
nk1
<L

sk1



















L
∑

j=nk1
+1

(z j − µk1+1)2 + Ik−L+nk1
−1(nk1

, sk1
, k1 − 1)



















subject to µk1+1 =

L
∑

l=nk1
+1

zl/
(

L − nk1

)

(36)

Equations (34) and (36) are sufficient to enable the calculation of the optimal projection in polynomial time,starting

with k1 ≤ k ≤ 1 and recursively evaluating the costs for k ≥ k1 ≥ 1. Finally, we have Fk(z) = mink1≤k,ω∈{0,1} Ik(d, ω, k1).

The implementation details are left as an exercise for the reader.

5. New Analysis algorithms

5.1. Quick Review of the Greedy-Like Methods

Before we turn to present the analysis versions of the greedy-like techniques we recall their synthesis versions.

These use a prior knowledge about the cardinality k and actually aim at approximating a variant of (3)

argmin
α

‖y −MDα‖22 subject to ‖α‖0 ≤ k. (37)
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For simplicity we shall present the greedy-like pursuits for the case D = I. In the general case M should be replaced

with MD, x with α and the reconstruction result should be x̂ = Dα̂. In addition, in the algorithms’ description we do

not specify the stopping criterion. Any standard stopping criterion, like residual’s size or relative iteration change, can

be used. More details can be found in [11, 12].

IHT and HTP: IHT [13] and HTP [14] are presented in Algorithm 1. Each IHT iteration is composed of two basic

steps. The first is a gradient step, with a step size µt, in the direction of minimizing ‖y −Mx‖22. The step size can be

either constant in all iterations (µt = µ) or changing [36]. The result vector xg is not guaranteed to be sparse and thus

the second step of IHT projects xg to the closest k-sparse subspace by keeping its largest k elements. The HTP takes

a different strategy in the projection step. Instead of using a simple projection to the closest k-sparse subspace, HTP

selects the vector in this subspace that minimizes ‖y −Mx‖22 [14, 37].

Algorithm 1 Iterative hard thresholding (IHT) and hard thresholding pursuit (HTP)

Require: k,M, y where y =Mx + e, k is the cardinality of x and e is an additive noise.

Ensure: x̂IHT or x̂HTP: k-sparse approximation of x.

Initialize representation x̂0 = 0 and set t = 0.

while halting criterion is not satisfied do

t = t + 1.

Perform a gradient step: xg = x̂t−1 + µtM∗(y −Mx̂t−1)

Find a new support: T t = supp(xg, k)

Calculate a new representation: x̂t
IHT
= (xg)T t for IHT, and x̂t

HTP
=M

†
T t y for HTP.

end while

Form the final solution x̂IHT = x̂t
IHT

for IHT and x̂HTP = x̂t
HTP

for HTP.

CoSaMP and SP: CoSaMP [11] and SP [12] are presented in Algorithm 2. The difference between these two

techniques is similar to the difference between IHT and HTP. Unlike IHT and HTP, the estimate for the support of x

in each CoSaMP and SP iteration is computed by observing the residual yt
resid
= y −Mxt. In each iteration, CoSaMP

and SP extract new support indices from the residual by taking the indices of the largest elements in M∗yt
resid

. They

add the new indices to the estimated support set from the previous iteration creating a new estimated support T̃ t with

cardinality larger than k. Having the updated support, in a similar way to the projection in HTP, an objective aware

projection is performed resulting with an estimate w for x that is supported on T̃ t. Since we know that x is k-sparse

we want to project w to a k-sparse subspace. CoSaMP does it by simple hard thresholding like in IHT. SP does it by

an objective aware projection similar to HTP.

5.2. Analysis greedy-like methods

Given the synthesis greedy-like pursuits, we would like to define their analysis counterparts. For this task we need

to ’translate’ each synthesis operation into an analysis one. This gives us a general recipe for converting algorithms

between the two schemes. The parallel lines between the schemes are presented in Table 1. Those become more

intuitive and clear when we keep in mind that while the synthesis approach focuses on the non-zeros, the analysis

concentrates on the zeros.

For clarity we dwell a bit more on the equivalences. For the cosupport selection, as mentioned in Section 4,

computing the optimal cosupport is a combinatorial problem and thus the approximation Ŝℓ is used. Having a selected

cosupportΛ, the projection to its corresponding cosparse subspace becomes trivial, given by QΛ.

Given two vectors v1 ∈ Aℓ1 and v2 ∈ Aℓ2 such that Λ1 = cosupp(Ωv1) and Λ2 = cosupp(Ωv2), we know that

|Λ1| ≥ ℓ1 and |Λ2| ≥ ℓ2. Denoting T1 = supp(Ωv1) and T2 = supp(Ωv2) it is clear that supp(Ω(v1 + v1)) ⊆ T1 ∪ T2.

Noticing that supp(·) = cosupp(·)C it is clear that |T1| ≤ p − ℓ1, |T2| ≤ p − ℓ2 and cosupp(Ω(v1 + v2)) ⊇ (T1 ∪ T2)C =

T C
1
∩T C

2
= Λ1∩Λ2. From the last equality we can also deduce that |Λ1 ∩ Λ2| = p−|T1 ∪ T2| ≥ p− (p−ℓ1)− (p−ℓ2) =

ℓ1 + ℓ2 − p.

With the above observations we can develop the analysis versions of the greedy-like algorithms. As in the synthesis

case, we do not specify a stopping criterion. Any stopping criterion used for the synthesis versions can be used also

for the analysis ones.
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Algorithm 2 Subspace Pursuit (SP) and CoSaMP

Require: k,M, y where y =Mx + e, k is the cardinality of x and e is an additive noise. a = 1 (SP), a = 2 (CoSaMP).

Ensure: x̂CoSaMP or x̂SP: k-sparse approximation of x.

Initialize the support T 0 = ∅, the residual y0
resid
= y and set t = 0.

while halting criterion is not satisfied do

t = t + 1.

Find new support elements: T∆ = supp(M∗yt−1
resid
, ak).

Update the support: T̃ t = T t−1 ∪ T∆.

Compute a temporary representation: w =M
†
T̃ t

y.

Prune small entries: T t = supp(w, k).

Calculate a new representation: x̂t
CoSaMP

= wT t for CoSaMP, and x̂t
SP
=M

†
T t y for SP.

Update the residual: yt
resid
= y −Mx̂t

CoSaMP
for CoSaMP, and yt

resid
= y −Mx̂t

SP
for SP.

end while

Form the final solution x̂CoSaMP = x̂t
CoSaMP

for CoSaMP and x̂SP = x̂t
SP

for SP.

Synthesis operation

name

Synthesis operation Analysis operation name Analysis operation

Support selection Largest k elements:

T = supp(·, k)

Cosupport selection Using a near optimal

projection: Λ = Ŝℓ(·)
Orthogonal Projection of

z to a k-sparse subspace

with support T

zT Orthogonal projection of z

to an ℓ-cosparse subspace

with cosupportΛ

QΛz

Objective aware

projection to a k-sparse

subspace with support T

M
†
T

y =

argminv ‖y −Mv‖22 s.t.

vTC = 0

Objective aware projection

to an ℓ-cosparse subspace

with cosupportΛ

argminv ‖y −Mv‖22 s.t.

ΩΛv = 0

Support of v1 + v2 where

supp(v1) = T1 and

supp(v2) = T2

supp(v1 + v2) ⊆ T1 ∪ T2 Cosupport of v1 + v2 where

cosupp(v1) = Λ1 and

cosupp(v2) = Λ2

cosupp(v1 + v2) ⊇
Λ1 ∩ Λ2

Maximal size of T1 ∪ T2

where |T1| ≤ k1 and

|T2| ≤ k2

|T1 ∪ T2| ≤ k1 + k2 Minimal size of Λ1 ∩ Λ2

where |Λ1| ≥ ℓ1 and

|Λ2| ≥ ℓ2

|Λ1 ∩Λ2| ≥ ℓ1 + ℓ2 − p

Table 1: Parallel synthesis and analysis operations

AIHT and AHTP: Analysis IHT (AIHT) and analysis HTP (AHTP) are presented in Algorithm 3. As in the

synthesis case, the choice of the gradient stepsize µt is crucial: If µt’s are chosen too small, the algorithm gets stuck

at a wrong solution and if too large, the algorithm diverges. We consider two options for µt.

In the first we choose µt = µ for some constant µ for all iterations. A theoretical discussion on how to choose µ

properly is given in Section 6.1.

The second option is to select a different µ in each iteration. One way for doing it is to choose an ‘optimal’ stepsize

µt by solving the following problem

µt := argmin
µ

∥

∥

∥y −Mx̂t
∥

∥

∥

2

2
. (38)

Since Λ̂t = Ŝℓ(x̂t−1 + µtM∗(y −Mx̂t−1)) and x̂t = QΛ̂t (xg), the above requires a line search over different values of

µ and along the search Λ̂t might change several times. A simpler way is an adaptive step size selection as proposed

in [36] for IHT. In a heuristical way we limit the search to the cosupport Λ̃ = Ŝℓ(M∗(y −Mx̂t−1)) ∩ Λ̂t−1. This is

the intersection of the cosupport of x̂t−1 with the ℓ-cosparse cosupport of the estimated closest ℓ-cosparse subspace to

M∗(y −Mx̂t−1). Since x̂t−1 = QΛ̃x̂t−1, finding µ turns to be

µt := argmin
µ

∥

∥

∥y −M(x̂t−1 + µQΛ̃M∗(y −Mx̂t−1))
∥

∥

∥

2

2
. (39)
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Algorithm 3 Analysis Iterative hard thresholding (AIHT) and analysis hard thresholding pursuit (AHTP)

Require: ℓ,M,Ω, y where y =Mx + e, ℓ is the cosparsity of x underΩ and e is the additive noise.

Ensure: x̂AIHT or x̂AHTP: ℓ-cosparse approximation of x.

Initialize estimate x̂0 = 0 and set t = 0.

while halting criterion is not satisfied do

t = t + 1.

Perform a gradient step: xg = x̂t−1 + µtM∗(y −Mx̂t−1)

Find a new cosupport: Λ̂t = Ŝℓ(xg)

Calculate a new estimate: x̂t
AIHT
= QΛ̂t xg for AIHT, and x̂t

AHTP
= argminx̃ ‖y −Mx̃‖22 s.t. ΩΛ̂t x̃ = 0 for AHTP.

end while

Form the final solution x̂AIHT = x̂t
AIHT

for AIHT and x̂AHTP = x̂t
AHTP

for AHTP.

Algorithm 4 Analysis Subspace Pursuit (ASP) and Analysis CoSaMP (ACoSaMP)

Require: ℓ,M,Ω, y, a where y =Mx + e, ℓ is the cosparsity of x underΩ and e is the additive noise.

Ensure: x̂ACoSaMP or x̂ASP: ℓ-cosparse approximation of x.

Initialize the cosupportΛ0 = {i, 1 ≤ i ≤ p}, the residual y0
resid
= y and set t = 0.

while halting criterion is not satisfied do

t = t + 1.

Find new cosupport elements: Λ∆ = Ŝaℓ(M
∗yt−1

resid
).

Update the cosupport: Λ̃t = Λ̂t−1 ∩Λ∆.

Compute a temporary estimate: w = argminx̃ ‖y −Mx̃‖22 s.t. ΩΛ̃t x̃ = 0.

Enlarge the cosupport: Λ̂t = Ŝℓ(w).

Calculate a new estimate: x̂t
ACoSaMP

= QΛ̂t w for ACoSaMP, and x̂t
ASP
= argminx̃ ‖y −Mx̃‖22 s.t. ΩΛ̂t x̃ = 0 for ASP.

Update the residual: yt
resid
= y −Mx̂t

ACoSaMP
for ACoSaMP, and yt

resid
= y −Mx̂t

ASP
for ASP.

end while

Form the final solution x̂ACoSaMP = x̂t
ACoSaMP

for ACoSaMP and x̂ASP = x̂t
ASP

for ASP.

This procedure of selecting µt does not require a line search and it has a simple closed form solution.

To summarize, there are three main options for the step size selection:

• Constant step-size selection – uses a constant step size µt = µ in all iterations.

• Optimal changing step-size selection – uses different values for µt in each iterations by minimizing
∥

∥

∥y −Mx̂t
∥

∥

∥

2
.

• Adaptive changing step-size selection – uses (39).

ACoSaMP and ASP: analysis CoSaMP (ACoSaMP) and analysis SP (ASP) are presented in Algorithm 4. The

stages are parallel to those of the synthesis CoSaMP and SP. We dwell a bit more on the meaning of the parameter a

in the algorithms. This parameter determines the size of the new cosupport Λ∆ in each iteration. a = 1 means that

the size is ℓ and according to Table 1 it is equivalent to a = 1 in the synthesis as done in SP in which we select new

k indices for the support in each iteration. In synthesis CoSaMP we use a = 2 and select 2k new elements. 2k is the

maximal support size of two added k-sparse vectors. The corresponding minimal size in the analysis case is 2ℓ − p

according to Table 1. For this setting we need to choose a =
2ℓ−p

ℓ
.

5.3. The Unitary Case

For Ω = I the synthesis and the analysis greedy-like algorithms become equivalent. This is easy to see since in

this case we have p = d, k = d − ℓ, Λ = T C , QΛx = xT and T1 ∪ T2 = Λ1 ∩Λ2 for Λ1 = T C
1

and Λ2 = T C
2

. In addition,

Ŝℓ = S∗ℓ finds the closest ℓ-cosparse subspace by simply taking the smallest ℓ elements. Using similar arguments, also

in the case where Ω is a unitary matrix the analysis methods coincide with the synthesis ones. In order to get exactly

the same algorithms M is replaced with MΩ∗ in the synthesis techniques and the output is multiplied byΩ∗.
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Based on this observation, we can deduce that the guarantees of the synthesis greedy-like methods apply also for

the analysis ones in a trivial way. Thus, it is tempting to assume that the last should have similar guarantees based on

the Ω-RIP. In the next section we develop such claims.

5.4. Relaxed Versions for High Dimensional Problems

Before moving to the next section we mention a variation of the analysis greedy-like techniques. In AHTP,

ACoSaMP and ASP we need to solve the constrained minimization problem minx̃ ‖y −Mx̃‖22 s.t. ‖ΩΛx̃‖22 = 0. For high

dimensional signals this problem is hard to solve and we suggest to replace it with minimizing ‖y −Mx̃‖22 +λ ‖ΩΛx̃‖22,

where λ is a relaxation constant. This results in a relaxed version of the algorithms. We refer hereafter to these

versions as relaxed AHTP (RAHTP) relaxed ASP (RASP) and relaxed ACoSaMP (RACoSaMP).

6. Algorithms Guarantees

In this section we provide theoretical guarantees for the reconstruction performance of the analysis greedy-like

methods. For AIHT and AHTP we study both the constant step-size and the optimal step-size selections. For

ACoSaMP and ASP the analysis is made for a =
2ℓ−p

ℓ
, but we believe that it can be extended also to other values

of a, such as a = 1. The performance guarantees we provide are summarized in the following two theorems. The first

theorem, for AIHT and AHTP, is a simplified version of Theorem 6.5 and the second theorem, for ASP and ACoSaMP,

is a combination of Corollaries 6.9 and 6.14, all of which appear hereafter along with their proofs. Before presenting

the theorems we recall the problem we aim at solving:

Definition 6.1 (Problem P). Consider a measurement vector y ∈ R
m such that y = Mx + e where x ∈ R

d is ℓ-

cosparse, M ∈ Rm×d is a degradation operator and e ∈ Rm is a bounded additive noise. The largest singular value of

M is σM and its Ω-RIP constant is δℓ. The analysis operatorΩ ∈ Rp×d is given and fixed. A procedure Ŝℓ for finding

a cosupport that implies a near optimal projection with a constant Cℓ is assumed to be at hand. Our task is to recover

x from y. The recovery result is denoted by x̂.

Theorem 6.2 (Stable Recovery of AIHT and AHTP). Consider the problem P and apply either AIHT or AHTP

with a certain constant step-size or an optimal changing step-size, obtaining x̂t after t iterations. If

(Cℓ − 1)σ2
M

Cℓ
< 1 (40)

and

δ2ℓ−p < δ1(Cℓ, σ
2
M),

where δ1(Cℓ, σ
2
M

) is a constant guaranteed to be greater than zero whenever (40) is satisfied and Cℓ is the near-optimal

projection constant for cosparsity ℓ (Definition 4.1), then after a finite number of iterations t∗

∥

∥

∥x − x̂t∗
∥

∥

∥

2
≤ c1 ‖e‖2 , (41)

implying that these algorithms lead to a stable recovery. The constant c1 is a function of δ2ℓ−p, Cℓ and σ2
M

, and the

constant step-size used is dependent on δ1(Cℓ, σ
2
M

).

Theorem 6.3 (Stable Recovery of ASP and ACoSaMP). Consider the problem P and apply either ACoSaMP or

ASP with a =
2ℓ−p

ℓ
, obtaining x̂t after t iterations. If

(C2

Ŝ
− 1)σ2

M

C2

Ŝ

< 1, (42)

and

δ4ℓ−3p < δ2(CŜ, σ
2
M),
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where CŜ = max(Cℓ,C2ℓ−p) and δ2(CŜ, σ
2
M

) is a constant guaranteed to be greater than zero whenever (42) is satisfied,

then after a finite number of iterations t∗

∥

∥

∥x − x̂t∗
∥

∥

∥

2
≤ c2 ‖e‖2 , (43)

implying that these algorithms lead to a stable recovery. The constant c2 is a function of δ4ℓ−3p, Cℓ, C2ℓ−p and σ2
M

.

Before we proceed to the proofs, let us comment on the constants in the above theorems. Their values can be

calculated using Theorem 6.5, and Corollaries 6.9 and 6.14. In the case where Ω is a unitary matrix, (40) and (42)

are trivially satisfied since Cℓ = C2ℓ−p = 1. In this case the Ω-RIP conditions become δ2ℓ−p < δ1(1, σ2
M

) = 1/3 for

AIHT and AHTP, and δ4ℓ−3p < δ2(1, σ2
M

) = 0.0156 for ACoSaMP and ASP. In terms of synthesis RIP for MΩ∗, the

condition δ2ℓ−p < 1/3 parallels δ2k(MΩ∗) < 1/3 and similarly δ4ℓ−3p < 0.0156 parallels δ4k(MΩ∗) < 0.0156. Note

that the condition we pose for AIHT and AHTP in this case is the same as the one presented for synthesis IHT with a

constant step size [16]. Better reference constants were achieved in the synthesis case for all four algorithms and thus

we believe that there is still room for improvement of the reference constants in the analysis context.

In the non-unitary case, the value of σM plays a vital role, though we believe that this is just an artifact of our proof

technique. For a random Gaussian matrix whose entries are i.i.d with a zero-mean and a variance 1
m

, σM behaves like

d
m

(

1 +

√

d
m

)

. This is true also for other types of distributions for which the fourth moment is known to be bounded

[38]. For example, for d/m = 1.5 we have found empirically that σ2
M
≃ 5. In this case we need Cℓ ≤ 5

4
for (40) to

hold and CŜ ≤ 1.118 for (42) to hold, and both are quite demanding on the quality of the near-optimal projection. For

Cℓ = CŜ = 1.05 we have the conditions δ2ℓ−p ≤ 0.289 for AIHT and AHTP, and δ4ℓ−3p ≤ 0.0049 for ACoSaMP and

ASP; and for Cℓ = CŜ = 1.1 we have δ2ℓ−p ≤ 0.24 for AIHT and AHTP, and δ4ℓ−3p ≤ 0.00032 for ACoSaMP and

ASP.

As in the synthesis case, the Ω-RIP requirements for the theoretical bounds of AIHT and AHTP are better than

those for ACoSaMP and ASP. In addition, in the migration from the synthesis to the analysis we lost more precision

in the bounds for ACoSaMP and ASP than in those of AIHT and AHTP. In particular, even in the case where Ω is

the identity we do not coincide with any of the synthesis parallel RIP reference constants. We should also remember

that the synthesis bound for SP is in terms of δ3k and not δ4k [12]. Thus, we expect that it will be possible to give

a condition for ASP in terms of δ3ℓ−2p with better reference constants. However, our main interest in this work is to

show the existence of such bounds, and in Section 6.5 we dwell more on their meaning.

We should note that here and elsewhere we can replace the conditions on δ2ℓ−p and δ4ℓ−3p in the theorems to

conditions on δcorank
2r−p

and δcorank
4r−3p

and the proofs will be almost the same2. In this case we will be analyzing a version

of the algorithms which is driven by the corank instead of the cosparsity. This would mean we need the near-optimal

projection to be in terms of the corank. In the case where Ω is in a general position, there is no difference between

the cosparsity ℓ and the corank r. However, when we have linear dependencies in Ω the two measures differ and an

ℓ-cosparse vector is not necessarily a vector with a corank r.

As we will see hereafter, our recovery conditions require δ2ℓ−p and δ4ℓ−3p to be as small as possible and for this

we need 2ℓ − p and 4ℓ − 3p to be as large as possible. Thus, we need ℓ to be as close as possible to p and for

highly redundant Ω this cannot be achieved without having linear dependencies in Ω. Apart from the theoretical

advantage of linear dependencies inΩ, we also show empirically that an analysis dictionary with linear dependencies

has better recovery rate than analysis dictionary in a general position of the same dimension. Thus, we deduce that

linear dependencies in Ω lead to better bounds and restoration performance.

Though linear dependencies allow ℓ to be larger than d and be in the order of p, the value of the corank is always

bounded by d and cannot be expected to be large enough for highly redundant analysis dictionaries. In addition,

we will see hereafter that the number of measurements m required by the Ω-RIP is strongly dependent on ℓ and

less effected by the value of r. From the computational point of view we note also that using corank requires its

computation in each iteration which increases the overall complexity of the algorithms. Thus, it is more reasonable to

have conditions on δ2ℓ−p and δ4ℓ−3p than on δcorank
2r−p

and δcorank
4r−3p

, and our study will be focused on the cosparsity based

algorithms.

2At a first glance one would think that the conditions should be in terms of δcorank
2r−d

and δcorank
4r−3d

. However, given two cosparse vectors with coranks

r1 and r2 the best estimation we can have for the corank of their sum is r1 + r2 − p.
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6.1. AIHT and AHTP Guarantees

A uniform guarantee for AIHT in the case that an optimal projection is given, is presented in [29]. The work in [29]

dealt with a general union of subspaces,A, and assumed that M is bi-Lipschitz on the considered union of subspaces.

In our case A = Aℓ and the bi-Lipschitz constants of M are the largest BL and smallest BU where 0 < BL ≤ BU such

that for all ℓ-cosparse vectors v1, v2:

BL ‖v1 + v2‖22 ≤ ‖M(v1 + v2)‖22 ≤ BU ‖v1 + v2‖22 . (44)

Under this assumption, one can apply Theorem 2 from [29] to the idealized AIHT that has access to an optimal

projection and uses a constant step size µt = µ. Relying on Table 1 we present this theorem and replace BL and BU

with 1 − δ2ℓ−p and 1 + δ2ℓ−p respectively.

Theorem 6.4 (Theorem 2 in [29]). Consider the problem P with Cℓ = 1 and apply AIHT with a constant step size µ.

If 1 + δ2ℓ−p ≤ 1
µ
< 1.5(1 − δ2ℓ−p) then after a finite number of iterations t∗

∥

∥

∥x − x̂t∗
∥

∥

∥

2
≤ c3 ‖e‖2 , (45)

implying that AIHT leads to a stable recovery. The constant c3 is a function of δ2ℓ−p and µ.

In this work we extend the above in several ways: First, we refer to the case where optimal projection is not

known, and show that the same flavor guarantees apply for a near-optimal projection3. The price we seemingly have

to pay is that σM enters the game. Second, we derive similar results for the AHTP method. Finally, we also consider

the optimal step size and show that the same performance guarantees hold true in that case.

Theorem 6.5. Consider the problem P and apply either AIHT or AHTP with a constant step size µ or an optimal

changing step size. For a positive constant η > 0, let

b1 :=
η

1 + η
and b2 :=

(Cℓ − 1)σ2
M

b2
1

Cℓ(1 − δ2ℓ−p)
.

Suppose b2

b2
1

=
(Cℓ−1)σ2

M

Cℓ(1−δ2ℓ−p)
< 1, 1 + δ2ℓ−p ≤ 1

µ
<

(

1 +
√

1 − b2

b2
1

)

b1(1 − δ2ℓ−p) and 1
µ
≤ σ2

M
. Then for

t ≥ t∗ ,
log

(

η‖e‖22
‖y‖22

)

log

(

(1 + 1
η
)2( 1
µ(1−δ2ℓ−p)

− 1)Cℓ + (Cℓ − 1)(µσ2
M
− 1) +

Cℓ
η2

) , (46)

∥

∥

∥x − x̂t
∥

∥

∥

2

2
≤ (1 + η)2

1 − δ2ℓ−p

‖e‖22 , (47)

implying that AIHT and AHTP lead to a stable recovery. Note that for an optimal changing step-size we set µ = 1
1+δ2ℓ−p

in t∗ and the theorem conditions turn to be b2

b2
1

< 1 and 1 + δ2ℓ−p < (1 +
√

1 − b2

b2
1

)b1(1 − δ2ℓ−p).

This theorem is the parallel to Theorems 2.1 in [16] for IHT. A few remarks are in order for the nature of the

theorem, especially in regards to the constant η. One can view that η gives a trade-off between satisfying the theorem

conditions and the amplification of the noise. In particular, one may consider that the above theorem proves the

convergence result for the noiseless case by taking η to infinity; one can imagine solving the problem P where e→ 0,

and applying the theorem with appropriately chosen η which approaches infinity. It is indeed possible to show that

the iterate solutions of AIHT and AHTP converges to x when there is no noise. However, we will not give a separate

proof since the basic idea of the arguments is the same for both cases.

3Remark that we even improve the condition of the idealized case in [29] to be δ2ℓ−p ≤ 1
3

instead of δ2ℓ−p ≤ 1
5

.
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As to the minimal number of iterations t∗ given in (46), one may ask whether it can be negative. In order to

answer this question it should be noted that according to the conditions of the Theorem the term inside the log in the

denominator (46) is always greater than zero. Thus, t∗ will be negative only if ‖y‖22 < η ‖e‖22. Indeed, in this case 0

iterations suffice for having the bound in (47).

The last remark is on the step-size selection. The advantage of the optimal changing step-size over the constant

step-size is that we get the guarantee of the optimal constant step-size µ = 1
1+δ2ℓ−p

without computing it. This is

important since in practice we cannot evaluate the value of δ2ℓ−p. However, the disadvantage of using the optimal

changing step-size is its additional complexity for the algorithm. Thus, one option is to approximate the optimal

selection rule by replacing it with an adaptive one, for which we do not have a theoretical guarantee. Another option

is to set µ = 6/5 which meets the theorem conditions for small enough δ2ℓ−p, in the case where an optimal projection

is at hand.

We will prove the theorem by proving two key lemmas first. The proof technique is based on ideas from [16]

and [29]. Recall that the two iterative algorithms try to reduce the objective
∥

∥

∥y −Mx̂t
∥

∥

∥

2

2
over iterations t. Thus,

the progress of the algorithms can be indirectly measured by how much the objective
∥

∥

∥y −Mx̂t
∥

∥

∥

2

2
is reduced at each

iteration t. The two lemmas that we present capture this idea. The first lemma is similar to Lemma 3 in [29] and

relates
∥

∥

∥y −Mx̂t
∥

∥

∥

2

2
to

∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2
and similar quantities at iteration t − 1. We remark that the constraint 1

µ
≤ σ2

M
in

Theorem 6.5 may not be necessary and is added only for having a simpler derivation of the results in this theorem.

Furthermore, this is a very mild condition compared to 1
µ
<

(

1 +
√

1 − b2

b2
1

)

b1(1 − δ2ℓ−p) and can only limit the range

of values that can be used with the constant step size versions of the algorithms.

Lemma 6.6. Consider the problem P and apply either AIHT or AHTP with a constant step size µ satisfying 1
µ
≥

1 + δ2ℓ−p or an optimal step size. Then, at the t-th iteration, the following holds:

∥

∥

∥y −Mx̂t
∥

∥

∥

2

2
−

∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2
≤ Cℓ

(

‖y −Mx‖22 −
∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2

)

(48)

+Cℓ

(

1

µ(1 − δ2ℓ−p)
− 1

)

∥

∥

∥M(x − x̂t−1)
∥

∥

∥

2

2
+ (Cℓ − 1)µσ2

M

∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2
.

For the optimal step size the bound is achieved with the value µ = 1
1+δ2ℓ−p

.

The proof of the above lemma appears in Appendix B. The second lemma is built on the result of Lemma 6.6.

It shows that once the objective
∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2
at iteration t − 1 is small enough, then we are guaranteed to have small

∥

∥

∥y −Mx̂t
∥

∥

∥

2

2
as well. Given the presence of noise, this is quite natural; one cannot expect it to approach 0 but may

expect it not to become worse. Moreover, the lemma also shows that if
∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2
is not small, then the objective

in iteration t is necessarily reduced by a constant factor.

Lemma 6.7. Suppose that the same conditions of Theorem 6.5 hold true. If
∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2
≤ η2 ‖e‖22, then

∥

∥

∥y −Mx̂t
∥

∥

∥

2

2
≤

η2 ‖e‖22. Furthermore, if
∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2
> η2 ‖e‖22, then

∥

∥

∥y −Mx̂t
∥

∥

∥

2

2
≤ c4

∥

∥

∥y −Mxt−1
∥

∥

∥

2

2
(49)

where

c4 :=

(

1 +
1

η

)2 (

1

µ(1 − δ2ℓ−p)
− 1

)

Cℓ + (Cℓ − 1)(µσ2
M − 1) +

Cℓ

η2
< 1.

Having the two lemmas above, the proof of the theorem is straightforward.

Proof:[Proof of Theorem 6.5] When we initialize x̂0 = 0, we have
∥

∥

∥y −Mx̂0
∥

∥

∥

2

2
= ‖y‖22. Assuming that ‖y‖2 > η ‖e‖2

and applying Lemma 6.7 repeatedly, we obtain

∥

∥

∥y −Mx̂t
∥

∥

∥

2

2
≤ max(ct

4 ‖y‖22 , η2 ‖e‖22).
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Since ct
4
‖y‖22 ≤ η2 ‖e‖22 for t ≥ t∗, we have simply

∥

∥

∥y −Mx̂t
∥

∥

∥

2

2
≤ η2 ‖e‖22 (50)

for t ≥ t∗. If
∥

∥

∥y −Mx̂0
∥

∥

∥

2
= ‖y‖2 ≤ η ‖e‖2 then according to Lemma 6.7, (50) holds for every t > 0. Finally, we observe

∥

∥

∥x − x̂t
∥

∥

∥

2

2
≤ 1

1 − δ2ℓ−p

∥

∥

∥M(x − x̂t)
∥

∥

∥

2

2
(51)

and, by the triangle inequality,

∥

∥

∥M(x − x̂t)
∥

∥

∥

2
≤

∥

∥

∥y −Mx̂t
∥

∥

∥

2
+ ‖e‖2 . (52)

By plugging (50) into (52) and then the resulted inequality into (51), the result of the Theorem follows. �

As we have seen, the above AIHT and AHTP results hold for the cases of using a constant or an optimal changing

step size. The advantage of using an optimal one is that we do not need to find µ that satisfies the conditions of the

theorem – the knowledge that such a µ exists is enough. However, its disadvantage is the additional computational

complexity it introduces. In Section 5 we have introduced a third option of using an approximated adaptive step size.

In the next section we shall demonstrate this option in simulations, showing that it leads to the same reconstruction

result as the optimal selection method. Note, however, that our theoretical guarantees do not cover this case.

6.2. ACoSaMP Guarantees

Having the results for AIHT and AHTP we turn to ACoSaMP and ASP. We start with a theorem for ACoSaMP.

Its proof is based on the proof for CoSaMP in [6].

Theorem 6.8. Consider the problem P and apply ACoSaMP with a =
2ℓ−p

ℓ
. Let CŜ = max(Cℓ,C2ℓ−p) and suppose

that there exists γ > 0 such that

(1 +CŜ)

(

1 −
( CŜ
(1 + γ)2

− (CŜ − 1)σ2
M

)

)

< 1. (53)

Then, there exists δACoSaMP(CŜ, σ
2
M
, γ) > 0 such that, whenever δ4ℓ−3p ≤ δACoSaMP(CŜ, σ

2
M
, γ), the t-th iteration of the

algorithm satisfies

∥

∥

∥x − x̂t
∥

∥

∥

2
≤ ρ1ρ2

∥

∥

∥x − x̂t−1
∥

∥

∥

2
+ (η1 + ρ1η2) ‖e‖2 , (54)

where

η1 ,

√

2+Cℓ
1+Cℓ
+ 2
√

Cℓ +Cℓ
√

1 + δ3ℓ−2p

1 − δ4ℓ−3p

,

η2
2 ,

(1 + δ3ℓ−2p

γ(1 + α)
+

(1 + δ2ℓ−p)C2ℓ−p

γ(1 + α)(1 + γ)
+

(C2ℓ−p − 1)(1 + γ)σ2
M

(1 + α)(1 + γ)γ

)

,

ρ2
1 ,

1 + 2δ4ℓ−3p

√
Cℓ +Cℓ

1 − δ2
4ℓ−3p

,

ρ2
2 , 1 −

(

√

δ4ℓ−3p −
√

C2ℓ−p

(1 + γ)2

(

1 −
√

δ2ℓ−p

)2
− (C2ℓ−p − 1)(1 + δ2ℓ−p)σ2

M

)2

and

α =

√

δ4ℓ−3p

√

C2ℓ−p

(1+γ)2

(

1 −
√

δ2ℓ−p

)2
− (C2ℓ−p − 1)(1 + δ2ℓ−p)σ2

M
− √

δ4ℓ−3p

.

Moreover, ρ2
1
ρ2

2
< 1, i.e., the iterates converges.
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The constant γ plays a similar role to the constant η of Theorem 6.5. It gives a tradeoff between satisfying the

theorem conditions and the noise amplification. However, as opposed to η, the conditions for the noiseless case are

achieved when γ tends to zero. An immediate corollary of the above theorem is the following.

Corollary 6.9. Consider the problemP and apply ACoSaMP with a =
2ℓ−p

ℓ
. If (53) holds and δ4ℓ−3p < δACoSaMP(CŜ, σ

2
M
, γ),

where CŜ and γ are as in Theorem 6.8 and δACoSaMP(CŜ, σ
2
M
, γ) is a constant guaranteed to be greater than zero when-

ever (42) is satisfied, then for any

t ≥ t∗ =

⌈

log(‖x‖2 / ‖e‖2)

log(1/ρ1ρ2)

⌉

,

∥

∥

∥x − x̂t∗

ACoSaMP

∥

∥

∥

2
≤

(

1 +
1 − (ρ1ρ2)t∗

1 − ρ1ρ2

(η1 + ρ1η2)

)

‖e‖2 , (55)

implying that ACoSaMP leads to a stable recovery. The constants η1, η2, ρ1 and ρ2 are the same as in Theorem 6.8.

Proof: By using (54) and recursion we have that

∥

∥

∥x − x̂t∗

ACoSaMP

∥

∥

∥

2
≤ (ρ1ρ2)t∗

∥

∥

∥x − x̂0
ACoSaMP

∥

∥

∥

2
(56)

+(1 + ρ1ρ2 + (ρ1ρ2)2 + . . . (ρ1ρ2)t∗−1) (η1 + ρ1η2) ‖e‖2 .

Since x̂0
ACoSaMP

= 0, after t∗ iterations, one has

(ρ1ρ2)t∗
∥

∥

∥x − x̂0
ACoSaMP

∥

∥

∥

2
= (ρ1ρ2)t∗ ‖x‖2 ≤ ‖e‖2 . (57)

By using the equation of geometric series with (56) and plugging (57) into it, we get (55). �

We turn now to prove the theorem. Instead of presenting the proof directly, we divide the proof into several

lemmas. The first lemma gives a bound for ‖x − w‖2 as a function of ‖e‖2 and
∥

∥

∥PΛ̃t (x − w)
∥

∥

∥

2
.

Lemma 6.10. Consider the problem P and apply ACoSaMP with a =
2ℓ−p

ℓ
. For each iteration we have

‖x − w‖2 ≤ 1
√

1 − δ2
4ℓ−3p

∥

∥

∥PΛ̃t (x − w)
∥

∥

∥

2
+

√

1 + δ3ℓ−2p

1 − δ4ℓ−3p

‖e‖2 . (58)

The second lemma bounds
∥

∥

∥x − x̂t
ACoSaMP

∥

∥

∥

2
in terms of

∥

∥

∥PΛ̃t (x − x̂t
ACoSaMP

)
∥

∥

∥

2
and ‖e‖2 using the first lemma.

Lemma 6.11. Consider the problem P and apply ACoSaMP with a =
2ℓ−p

ℓ
. For each iteration we have

∥

∥

∥x − x̂t
∥

∥

∥

2
≤ ρ1

∥

∥

∥PΛ̃t (x − w)
∥

∥

∥

2
+ η1 ‖e‖2 , (59)

where η1 and ρ1 are the same constants as in Theorem 6.8.

The last lemma bounds
∥

∥

∥PΛ̃t (x − w)
∥

∥

∥

2
with

∥

∥

∥x − x̂t−1
ACoSaMP

∥

∥

∥

2
and ‖e‖2.

Lemma 6.12. Consider the problem P and apply ACoSaMP with a =
2ℓ−p

ℓ
. if

C2ℓ−p <
σ2

M
(1 + γ)2

σ2
M

(1 + γ)2 − 1
, (60)

then there exists δ̃ ACoSaMP(C2ℓ−p, σ
2
M
, γ) > 0 such that for any δ2ℓ−p < δ̃ ACoSaMP(C2ℓ−p, σ

2
M
, γ)

∥

∥

∥PΛ̃t (x − w)
∥

∥

∥

2
≤ η2 ‖e‖2 + ρ2

∥

∥

∥x − x̂t−1
∥

∥

∥

2
. (61)

The constants η2 and ρ2 are as defined in Theorem 6.8.

19



The proofs of Lemmas 6.10, 6.11 and 6.12 appear in Appendix D, Appendix E and Appendix F respectively.

With the aid of the above three lemmas we turn to prove Theorem 6.8.

Proof:[Proof of Theorem 6.8] Remark that since 1 + CŜ > 1 we have that (53) implies
CŜ

(1+γ)2 − (CŜ − 1)σ2
M
≥ 0.

Because of that the condition in (60) in Lemma 6.12 holds. Substituting the inequality of Lemma 6.12 into the

inequality of Lemma 6.11 gives (54). The iterates convergence if ρ2
1
ρ2

2
=

1+2δ4ℓ−3p

√
Cℓ+Cℓ

1−δ2
4ℓ−3p

ρ2
2
< 1. By noticing that

ρ2
2
< 1 it is enough to require 1+Cℓ

1−δ2
4ℓ−3p

ρ2
2
+

2δ4ℓ−3p

√
Cℓ

1−δ2
4ℓ−3p

< 1. The last is equivalent to

(1 +Cℓ)





















1 −



















√

δ4ℓ−3p −

√

C2ℓ−p

(1 + γ)2

(

1 −
√

δ2ℓ−p

)2
− (C2ℓ−p − 1)(1 + δ2ℓ−p)σ2

M



















2


















(62)

+ 2δ4ℓ−3p

√

Cℓ − 1 + δ2
4ℓ−3p < 0.

It is easy to verify that ζ(C, δ) , C
(1+γ)2

(

1 −
√
δ
)2
− (C − 1)(1 + δ)σ2

M
is a decreasing function of both δ and C

for 0 ≤ δ ≤ 1 and C > 1. Since 1 ≤ C2ℓ−p ≤ CŜ, δ2ℓ−p ≤ δ4ℓ−3p and δ ≥ 0 we have that ζ(CŜ, δ4ℓ−3p) ≤
ζ(C2ℓ−p, δ4ℓ−3p) ≤ ζ(C2ℓ−p, δ2ℓ−p) ≤ ζ(1, 0) = 1

(1+γ)2 ≤ 1. Thus we have that −1 ≤ −(
√

δ4ℓ−3p − ζ(C2ℓ−p, δ2ℓ−p))2 ≤
−δ4ℓ−3p + 2

√

δ4ℓ−3p − ζ(CŜ, δ4ℓ−3p). Combining this with the fact that Cℓ ≤ CŜ provides the following guarantee for

ρ2
1
ρ2

2
< 1,

(1 +CŜ)

(

1 − δ4ℓ−3p + 2
√

δ4ℓ−3p (63)

−
CŜ

(1 + γ)2

(

1 − 2
√

δ4ℓ−3p + δ4ℓ−3p

)

+ (CŜ − 1)(1 + δ4ℓ−3p)σ2
M

)

+ 2δ4ℓ−3p

√

CŜ − 1 + δ2
4ℓ−3p < 0.

Let us now assume that δ4ℓ−3p ≤ 1
2
. This necessarily means that δACoSaMP ≤ 1

2
in the end. This assumption implies

δ2
4ℓ−3p

≤ 1
2
δ4ℓ−3p. Using this and gathering coefficients, we now consider the condition

(1 + CŜ)

(

1 −
CŜ

(1 + γ)2
+ (CŜ − 1)σ2

M

)

− 1 + 2(1 +CŜ)

(

1 +
CŜ

(1 + γ)2

)

√

δ4ℓ−3p (64)

+

(

(1 +CŜ)

(

−1 −
CŜ

(1 + γ)2
+ (CŜ − 1)σ2

M

)

+ 2
√

CŜ +
1

2

)

δ4ℓ−3p < 0.

The expression on the LHS is a quadratic function of
√

δ4ℓ−3p. Note that since (53) holds the constant term in the

quadratic function is negative. This guarantees the existence of a range of values [0, δACoSaMP(CŜ, σ
2
M
, γ)] for δ4ℓ−3p for

which (64) holds, where δACoSaMP(CŜ, σ
2
M
, γ) is the square of the positive solution of the quadratic function. In case of

two positive solutions we should take the smallest among them – in this case the coefficient of δ4ℓ−3p in (64) will be

positive.

Looking back at the proof of the theorem, we observe that the value of the constant δACoSaMP(CŜ, σ
2
M
, γ) can poten-

tially be improved: at the beginning of the proof, we have used ρ2
2
≤ 1. By the end, we obtained ρ2

2
≤ ρ−2

1
≤ 0.25 since

ρ1 > 2. If we were to use this bound at the beginning, we would have obtained better constant δACoSaMP(CŜ, σ
2
M
, γ). �

6.3. ASP Guarantees

Having the result of ACoSaMP we turn to derive a similar result for ASP. The technique for deriving a result for

ASP based on the result of ACoSaMP is similar to the one we used to derive a result for AHTP from the result of

AIHT.

Theorem 6.13. Consider the problem P and apply ASP with a =
2ℓ−p

ℓ
. If (53) holds and δ4ℓ−3p ≤ δASP(CŜ, σ

2
M
, γ),

where CŜ and γ are as in Theorem 6.8, and δASP(CŜ, σ
2
M
, γ) is a constant guaranteed to be greater than zero whenever

(53) is satisfied, then the t-th iteration of the algorithm satisfies

∥

∥

∥x − x̂t
ASP

∥

∥

∥

2
≤

1 + δ2ℓ−p

1 − δ2ℓ−p

ρ1ρ2

∥

∥

∥x − x̂t−1
ASP

∥

∥

∥

2
+

(

1 + δ2ℓ−p

1 − δ2ℓ−p

(η1 + ρ1η2) +
2

1 − δ2ℓ−p

)

‖e‖2 . (65)
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and the iterates converges, i.e., ρ2
1
ρ2

2
< 1. The constants η1, η2, ρ1 and ρ2 are the same as in Theorem 6.8.

Proof: We first note that according to the selection rule of x̂ASP we have that

∥

∥

∥y −Mx̂t
ASP

∥

∥

∥

2
≤

∥

∥

∥y −MQΛ̂t w
∥

∥

∥

2
. (66)

Using the triangle inequality and the fact that y =Mx + e for both the LHS and the RHS we have

∥

∥

∥M(x − x̂t
ASP

)
∥

∥

∥

2
− ‖e‖2 ≤

∥

∥

∥M(x −QΛ̂t w)
∥

∥

∥

2
+ ‖e‖2 .

Using the Ω-RIP property of M with the fact that x, x̂ASP and QΛ̂t w are ℓ-cosparse we have

∥

∥

∥x − x̂t
ASP

∥

∥

∥

2
≤

1 + δ2ℓ−p

1 − δ2ℓ−p

∥

∥

∥x −QΛ̂t w
∥

∥

∥

2
+

2

1 − δ2ℓ−p

‖e‖2 .

Noticing that QΛ̂t w is the solution we get in one iteration of ACoSaMP with initialization of x̂t−1
ASP

, we can combine the

above with the result of Theorem 6.8 getting (65). For
1+δ2ℓ−p

1−δ2ℓ−p
ρ1ρ2 < 1 to hold we need that

1 + 2δ4ℓ−3p

√
Cℓ +Cℓ

(1 − δ4ℓ−3p)2
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√
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√
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√
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< 1. (67)

Remark that the above differs from what we have for ACoSaMP only in the denominator of the first element in the

LHS. In ACoSaMP 1 − δ2
4ℓ−3p

appears instead of (1 − δ4ℓ−3p)2. Thus, Using a similar process to the one in the proof

of ACoSaMP we can show that (67) holds if the following holds

(1 + CŜ)

(

1 −
CŜ

(1 + γ)2
+ (CŜ − 1)σ2

M

)

− 1 + 2(1 +CŜ)

(

1 +
CŜ

(1 + γ)2

)

√

δ4ℓ−3p (68)

+

(

(1 +CŜ)

(

−1 −
CŜ

(1 + γ)2
+ (CŜ − 1)σ2

M

)

+ 2

√

CŜ + 2

)

δ4ℓ−3p < 0.

Notice that the only difference of the above compared to (64) is that we have +2 instead of +0.5 in the coefficient of

δ4ℓ−3p and this is due to the difference we mentioned before in the denominator in (67). The LHS of (68) is a quadratic

function of
√

δ4ℓ−3p. As before, we notice that if (53) holds then the constant term of the above is positive and thus

δASP(CŜ, σ
2
M
, γ) ≥ 0 exists and is the square of the positive solution of the quadratic function. �

Having Theorem 6.13 we can immediately have the following corollary which is similar to the one we have for

ACoSaMP. The proof resembles the one of Corollary 6.9 and omitted.

Corollary 6.14. Consider the problem P and apply ASP with a =
2ℓ−p

ℓ
. If (53) holds and δ4ℓ−3p ≤ δASP(CŜ, σ

2
M
, γ),

where CŜ and γ are as in Theorem 6.8, and δASP(CŜ, σ
2
M
, γ) is a constant guaranteed to be greater than zero whenever

(42) is satisfied, then for any

t ≥ t∗ =

























log(‖x‖2 / ‖e‖2)

log(1/
1+δ2ℓ−p

1−δ2ℓ−p
ρ1ρ2)

























,

∥

∥

∥xt
ASP
− x

∥

∥

∥

2
≤

(

1 +

1 −
(

1+δ2ℓ−p

1−δ2ℓ−p
ρ1ρ2

)t

1 − 1+δ2ℓ−p

1−δ2ℓ−p
ρ1ρ2

·
(

1 + δ2ℓ−p

1 − δ2ℓ−p

(η1 + ρ1η2) +
2

1 − δ2ℓ−p

) )

‖e‖2 . (69)

implying that ASP leads to a stable recovery. The constants η1, η2, ρ1 and ρ2 are the same as in Theorem 6.8.
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6.4. Non-Exact Cosparse Case

In the above guarantees we have assumed that the signal x is ℓ-cosparse. In many cases, it is not exactly ℓ-cosparse

but only nearly so. Denote by xℓ = QS∗
ℓ
(x)x the best ℓ-cosparse approximation of x, we have the following theorem

that provides us with a guarantee also for this case. Similar result exists also in the synthesis case for the synthesis-ℓ1
minimization problem [39].

Theorem 6.15. Consider a variation of problem P where x is a general vector, and apply either AIHT or AHTP

both with either constant or changing step size; or ACoSaMP or ASP with a =
2ℓ−p

ℓ
, and all are used with a zero

initialization. Under the same conditions of Theorems 6.2 and 6.3 we have for any t ≥ t∗

‖x − x̂‖2 ≤
∥

∥

∥x − xℓ
∥

∥

∥

2
+ c

∥

∥

∥M(x − xℓ)
∥

∥

∥

2
+ c ‖e‖2 , (70)

where t∗ and c are the constants from Theorems 6.2 and 6.3.

Proof: First we notice that we can rewrite y = Mxℓ + M(x − xℓ) + e. Denoting eℓ = M(x − xℓ) + e we can use

Theorems 6.2 and 6.3 to recover xℓ and have

∥

∥

∥xℓ − x̂
∥

∥

∥

2
≤ c

∥

∥

∥eℓ
∥

∥

∥

2
. (71)

Using the triangle inequality for ‖x − x̂‖2 with the above gives

‖x − x̂‖2 ≤
∥

∥

∥x − xℓ
∥

∥

∥

2
+

∥

∥

∥xℓ − x̂
∥

∥

∥

2
≤

∥

∥

∥x − xℓ
∥

∥

∥

2
+ c

∥

∥

∥eℓ
∥

∥

∥

2
. (72)

Using again the triangle inequality for
∥

∥

∥eℓ
∥

∥

∥

2
≤ ‖e‖2 +

∥

∥

∥M(x − xℓ)
∥

∥

∥

2
provides us with the desired result. �

6.5. Theorem Conditions

Having the results of the theorems we ask ourselves whether their conditions are feasible. As we have seen in

Section 3, the requirement on theΩ-RIP for many non-trivial matrices. In addition, as we have seen in the introduction

of this section we need Cℓ and C2ℓ−p to be one or close to one for satisfying the conditions of the theorems. Using

the thresholding in (25) for cosupport selection with a unitary Ω satisfies the conditions in a trivial way since Cℓ =

C2ℓ−p = 1. This case coincides with the synthesis model for which we already have theoretical guarantees. As

shown in Section 4, optimal projection schemes exist for Ω1D-DIF and ΩFUS which do not belong to the the synthesis

framework. For a general Ω, a general projection scheme is not known and if the thresholding method is used the

constants in (25) do not equal one and are not even expected to be close to one [27]. It is interesting to ask whether

there exists an efficient general projection scheme that guarantees small constants for any given operator Ω, or for

specifically structured Ω. We leave these questions as subject for future work. Instead, we show empirically in the

next section that a weaker projection scheme that does not fulfill all the requirements of the theorems leads to a good

reconstruction result. This suggests that even in the absence of good near optimal projections we may still use the

algorithms practically.

6.6. Comparison to Other Works

Among the existing theoretical works that studied the performance of analysis algorithms [18, 22, 26], the result

that resembles ours is the result for ℓ1-analysis in [21]. This work analyzed the ℓ1-analysis minimization problem with

a synthesis perspective. The analysis dictionaryΩ was replaced with the conjugate of a synthesis dictionary D which

is assumed to be a tight frame, resulting with the following minimization problem.

x̂A−ℓ1 = argmin
z

‖D∗z‖1 s.t. ‖y −Mz‖2 ≤ ǫ. (73)

It was shown that if M has the D-RIP [21, 29] with δ7k < 0.6, an extension of the synthesis RIP, then

∥

∥

∥x̂A−ℓ1 − x
∥

∥

∥

2
≤ C̃ℓ1ǫ +

‖D∗x − [D∗x]k‖1√
k

. (74)
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We say that a matrix M has a D-RIP with a constant δk if for any signal z that has a k-sparse representation under D

(1 − δk) ‖z‖22 ≤ ‖Mz‖22 ≤ (1 + δk) ‖z‖22 . (75)

The authors in [21] presented this result as a synthesis result that allows linear dependencies in D at the cost of limiting

the family of signals to be those for which ‖D∗x − [D∗x]k‖1 is small. However, having the analysis perspective, we

can realize that they provided a recovery guarantee for ℓ1-analysis under the new analysis model for the case that Ω

is a tight frame. An easy way to see it is to observe that for an ℓ-cosparse signal x, setting k = p − ℓ, we have that
∥

∥

∥Ωx − [Ω∗x]p−ℓ
∥

∥

∥

1
= 0 and thus in the case ǫ = 0 we get that (74) guarantees the recovery of x by using (73) with

D∗ = Ω. Thus, though the result in [21] was presented as a reconstruction guarantee for the synthesis model, it is

actually a guarantee for the analysis model.

Our main difference from [21] is that the proof technique relies on the analysis model and not on the synthesis one

and that the results presented here are for general operators and not only for tight frames. For instance, the operators

Ω1D-DIF andΩFUS for which the guarantees hold are not tight frames whereΩ1D-DIF is not even a frame. However, the

drawback of our approached compared to the work in [21] is that it is still not known how to perform an optimal or a

near optimal projection for a tight frame.

In the non-exact sparse case our results differ from the one in (74) in the sense that it looks at the projection error

and not at the values of Ωx. It would be interesting to see if there is a connection between the two and whether one

implies the other.

A recent work has studied the ℓ1-analysis minimization with the 2D-DIF operator, also known as anisotropic two

dimensional total-variation (2D-TV) [40]. It would be interesting to see whether similar results can be achieved for

the greedy-like techniques proposed here with 2D-DIF.

7. Experiments

In this section we repeat some of the experiments performed in [18] for the noiseless case (e = 0) and some of the

experiments performed in [23] for the noisy case4.

7.1. Targeted Cosparsity

Just as in the synthesis counterpart of the proposed algorithms, where a target sparsity level k must be selected

before running the algorithms, we have to choose the targeted cosparsity level which will dictate the projection steps.

In the synthesis case it is known that it may be beneficial to over-estimate the sparsity k. Similarly in the analysis

framework the question arises: In terms of recovery performance, does it help to under-estimate the cosparsity ℓ? A

tentative positive answer comes from the following heuristic: Let Λ̃ be a subset of the cosupportΛ of the signal x with

ℓ̃ := |Λ̃| < ℓ = |Λ|. According to Proposition 3 in [18]

κΩ(ℓ̃) ≤ m

2
(76)

is a sufficient condition to identify Λ̃ in order to recover x from the relations y = Mx and ΩΛ̃x = 0. κΩ(ℓ̃) =

maxΛ̃∈Lℓ̃ dim(WΛ̃) is a function of ℓ̃. Therefore, we can replace ℓ with the smallest ℓ̃ that satisfies (76) as the effective

cosparsity in the algorithms. Since it is easier to identify a smaller cosupport set it is better to run the algorithm with

the smallest possible value of ℓ̃, in the absence of noise. In the presence of noise, larger values of ℓ allows a better

denoising. Note, that in some cases the smallest possible value of ℓ̃ will be larger than the actual cosparsity of x. In

this case we cannot replace ℓ with ℓ̃.

We take two examples for selecting ℓ̃. The first is forΩwhich is in general position and the second is forΩ2D−DIF ,

the finite difference analysis operator that computes horizontal and vertical discrete derivatives of an image which is

strongly connected to the total variation (TV) norm minimization as noted before. For Ω that is in general position

κΩ(ℓ̃) = max(d − ℓ, 0) [18]. In this case we choose

ℓ̃ = min

(

d − m

2
, ℓ

)

. (77)

4A matlab package with code for the experiments performed in this paper is in preparation for an open source distribution.
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ForΩDIF we have κΩDIF
(ℓ̃) ≥ d − ℓ

2
−

√

ℓ
2
− 1 [18] and

ℓ̃ = ⌈min((−1/
√

2 +
√

2d − m − 1.5)2, ℓ)⌉. (78)

Replacing ℓ with ℓ̃ is more relevant to AIHT and AHTP than ACoSaMP and ASP since in the last we intersect

cosupport sets and thus the estimated cosupport set need to be large enough to avoid empty intersections. Thus, for

Ω in general position we use the true cosparsity level for ACoSaMP and ASP. For ΩDIF , where linear dependencies

occur, the corank does not equal the cosparsity and we use ℓ̃ instead of ℓ since it will be favorable to run the algorithm

targeting a cosparsity level in the middle. In this case ℓ tends to be very large and it is more likely to have non-empty

intersections .

7.2. Phase Diagrams for Synthetic Signals in the Noiseless Case

We begin with with synthetic signals in the noiseless case. We test the performance of AIHT with a constant step-

size, AIHT with an adaptive changing step-size, AHTP with a constant step-size, AHTP with an adaptive changing

step-size, ACoSaMP with a =
2ℓ−p

ℓ
, ACoSaMP with a = 1, ASP with a =

2ℓ−p

ℓ
and ASP with a = 1. We compare the

results to those of A-ℓ1-minimization [20] and GAP [18]. We use a random matrix M and a random tight frame with

d = 120 and p = 144, where each entry in the matrices is drawn independently from the Gaussian distribution.

We draw a phase transition diagram [41] for each of the algorithms. We test 20 different possible values of m and

20 different values of ℓ and for each pair repeat the experiment 50 times. In each experiment we check whether we

have a perfect reconstruction. White cells in the diagram denotes a perfect reconstruction in all the experiments of

the pair and black cells denotes total failure in the reconstruction. The values of m and ℓ are selected according to the

following formula:

m = δd ℓ = d − ρm, (79)

where δ, the sampling rate, is the x-axis of the phase diagram and ρ, the ratio between the cosparsity of the signal and

the number of measurements, is the y-axis.

Figure 2 presents the reconstruction results of the algorithms. It should be observed that AIHT and AHTP have

better performance using the adaptive step-size than using the constant step-size. The optimal step-size has similar

reconstruction result like the adaptive one and thus not presented. For ACoSaMP and ASP we observe that it is better

to use a = 1 instead of a =
2ℓ−p

ℓ
. Compared to each other we see that ACoSaMP and ASP achieve better recovery than

AHTP and AIHT. Between the last two, AHTP is better. Though AIHT has inferior behavior, we should mention that

with regards to running time AIHT is the most efficient. Afterwards we have AHTP and then ACoSaMP and ASP.

Compared to ℓ1 and GAP we observe that ACoSaMP and ASP have competitive results.

With the above observations, we turn to test operators with higher redundancy and see the effect of linear depen-

dencies in them. We test two operators. The first is a random tight frame as before but with redundancy factor of 2.

The second is the two dimensional finite difference operatorΩ2D-DIF. In Fig. 3 we present the phase diagrams for both

operators using AIHT with an adaptive changing step-size, AHTP with an adaptive changing step-size, ACoSaMP

with a = 1, and ASP with a = 1. As observed before, also in this case the ACoSaMP and ASP outperform AIHT and

AHTP in both cases and AHTP outperform AIHT. We mention again that the better performance comes at the cost of

higher complexity. In addition, as we expected, having redundancies in Ω results with a better recovery.

7.3. Reconstruction of High Dimensional Images in the Noisy Case

We turn now to test the methods for high dimensional signals. We use RASP and RACoSaMP (relaxed versions

of ASP and ACoSaMP defined in Section 5.4) for the reconstruction of the Shepp-Logan phantom from few number

of measurements. The sampling operator is a two dimensional Fourier transform that measures only a certain number

of radial lines from the Fourier transform. The cosparse operator is Ω2D-DIF and the cosparsity used is the actual

cosparsity of the signal under this operator (ℓ = 128014). The phantom image is presented in Fig. 4(a). Using the

RACoSaMP and RASP we get a perfect reconstruction using only 15 radial lines, i.e., only m = 3782 measurements

out of d = 65536 which is less then 6 percent of the data in the original image. The algorithms requires less than 20

iterations for having this perfect recovery. For AIHT and RAHTP we achieve a reconstruction which is only close to
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(a) AIHT, constant step-size
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(b) AIHT, adaptive step-size
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(c) AHTP, constant step-size
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(d) AHTP, adaptive step-size
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(e) ACoSaMP, a =
2ℓ−p
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(f) ACoSaMP, a = 1
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(g) ASP, a =
2ℓ−p
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(h) ASP, a = 1
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(i) A-ℓ1-minimization
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(j) GAP

Figure 2: Recovery rate for a random tight frame with p = 144 and d = 120. From left to right, up to bottom: AIHT with a constant step-size,

AIHT with an adaptive changing step-size, AHTP with a constant step-size, AHTP with an adaptive changing step-size, ACoSaMP with a =
2ℓ−p

ℓ
,

ACoSaMP with a = 1, ASP with a =
2ℓ−p

ℓ
, ASP with a = 1, A-ℓ1-minimization and GAP.

the original image using 35 radial lines. The reconstruction result of AIHT is presented in Fig 4(b). The advantage

of the AIHT, though it has an inferior performance, over the other methods is its running time. While the others need

several minutes for each reconstruction, for the AIHT it takes only few seconds to achieve a visually reasonable result.

Exploring the noisy case, we perform a reconstruction using RASP of a noisy measurement of the phantom with

22 radial lines and signal to noise ratio (SNR) of 20. Figure 4(c) presents the noisy image, the result of applying

inverse Fourier transform on the measurements, and Fig. 4(d) presents its reconstruction result. Note that for the

minimization process we solve conjugate gradients, in each iteration and take only the real part of the result and crop

the values of the resulted image to be in the range of [0, 1]. We get a peak SNR (PSNR) of 36dB. We get similar

results using RACoSaMP but using more radial lines (25).

8. Discussion and Conclusion

In this work we presented new pursuits for the cosparse analysis model. A theoretical study of these algorithms

was performed giving guarantees for stable recovery under the assumptions of the Ω-RIP and the existence of an

optimal or a near optimal projection. We showed that optimal projections exists for some non-trivial operators, i.e.,

operators that do not take us back to the synthesis case. In addition, we showed experimentally that using simpler

kind of projections is possible in order to get good reconstruction results. We demonstrated both in the theoretical and

the empirical results that linear dependencies within the analysis dictionary are favorable and enhance the recovery
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Figure 3: Recovery rate for a random tight frame with p = 240 and d = 120 (up) and a finite difference operator (bottom). From left to right: AIHT

and AHTP with an adaptive changing step-size, and ACoSaMP and ASP with a = 1.

(a) Phantom (b) AIHT - noiseless (c) Noisy Phantom (d) RASP - noisy

Figure 4: From left to right: Shepp Logan phantom image, AIHT reconstruction using 35 radial lines, noisy image with SNR of 20 and recovered

image using RASP and only 22 radial lines. Note that for the noiseless case RASP and RACoSaMP get a perfect reconstruction using only 15

radial lines.

performance.

We are aware that there are still some open questions in this work and we leave them for future research. This

should deal with following:

• Our work assumed the existence of a procedure that finds a cosupport that implies a near optimal projection

with a constant Cℓ. Two examples for optimal cosupport slection schemes were given. However, the existence

of an optimal or a near optimal scheme for a general operator is still an open question. The question is: for

which types of Ω and values of Cℓ we can find an efficient procedure that implies a near optimal projection.

• As we have seen in the simulations, the thresholding procedure, though not near optimal with the theorems

required constants, provides good reconstruction results. A theoretical study of the analysis greedy-like tech-

niques with this cosupport selection scheme is required.

• A family of analysis dictionaries that deserves a special attention is the family of tight frame operators. In

synthesis, there is a parallel between the guarantees of ℓ1-synthesis and the greedy like algorithms. The fact

that a guarantee with a tight frameΩ exists for ℓ1-analysis encourage us to believe that similar guarantees exist

also for the analysis greedy-like techniques.

• In this paper, the noise e was considered to be adversarial. Random white Gaussian case was considered for
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the synthesis case in [15] resulting with near-oracle performance guarantees. It would be interesting to verify

whether this is also the case for the analysis framework.

Appendix A. Proofs of Theorem 3.7 and Theorem 3.8

Theorem 3.7 (Theorem 3.3 in [29]): Let M ∈ R
m×d be a random matrix that satisfies that for any z ∈ R

d and

0 < ǫ̃ ≤ 1
3

P
(∣

∣

∣‖Mz‖22 − ‖z‖22
∣

∣

∣ ≥ ǫ̃ ‖z‖22
)

≤ e−
CMmǫ̃

2 ,

where CM > 0 is a constant. For any value of ǫr > 0, if

m ≥ 32

CMǫ2r

(

log(
∣

∣

∣Lcorank
r

∣

∣

∣) + (d − r) log(9/ǫr) + t
)

,

then δcorank
r ≤ ǫr with probability exceeding 1 − e−t.

Theorem 3.8: Under the same setup of Theorem 3.7, for any ǫℓ > 0 if

m ≥ 32

CMǫ
2
ℓ

(

(p − ℓ) log

(

9p

(p − ℓ)ǫℓ

)

+ t

)

,

then δℓ ≤ ǫℓ with probability exceeding 1 − e−t.

Proof: Let ǫ̃ = ǫr/4, Bd−r = {z ∈ R
d−r, ‖z‖2 ≤ 1} and Ψ an ǫ̃-net for Bd−r with size |Ψ| ≤

(

1 + 2
ǫ̃

)d−r
[30].

For any subspaceWB
Λ
= WΛ ∩ Bd−r such that Λ ∈ Lcorank

r we can build an orthogonal matrix UΩ ∈ R
d×(d−r) such

thatWB
Λ
= {UΛz, z ∈ R

d−r, ‖z‖2 ≤ 1} = UΛBd−r. It is easy to see that ΨΛ = UΛΨ
d−r is an ǫ̃-net for WB

Λ
and that

ΨAcorank
r
= ∪Λ∈Lcorank

r
ΨΛ is an ǫ̃-net forAcorank

r ∩ Bd, where
∣

∣

∣ΨAcorank
r

∣

∣

∣ ≤
∣

∣

∣Lcorank
r

∣

∣

∣ (1 + 2
ǫ̃
)d−r.

We could stop here and use directly Theorem 2.1 from [30] to get the desired result for Theorem 3.7. However,

we present the remaining of the proof using a proof technique from [32, 8]. Using union bound and the properties of

M we have that with probability exceeding 1 −
∣

∣

∣Lcorank
r

∣

∣

∣ (1 + 2
ǫ̃
)d−re−

CMmǫ̃2

2 every v ∈ ΨAcorank
r

satisfies

(1 − ǫ̃) ‖v‖22 ≤ ‖Mv‖22 ≤ (1 + ǫ̃) ‖v‖22 . (A.1)

According to the definition of δcorank
r it holds that

√

1 + δcorank
r = supv∈Acorank

r ∩Bd ‖Mv‖2. SinceAcorank
r ∩Bd is a compact

set there exists v0 ∈ Acorank
r ∩ Bd that achieves the supremum. Denoting by ṽ its closest vector in ΨAcorank

r
and using

the definition of ΨAcorank
r

we have ‖v0 − ṽ‖2 ≤ ǫ̃. This yields

√

1 + δcorank
r = ‖Mv0‖2 ≤ ‖Mṽ‖2 + ‖M(v0 − ṽ)‖2 (A.2)

≤
√

1 + ǫ̃ +

∥

∥

∥

∥

∥

M
v0 − ṽ

‖v0 − ṽ‖ 2

∥

∥

∥

∥

∥

2

‖v0 − ṽ‖2 ≤
√

1 + ǫ̃ +

√

1 + δcorank
r ǫ̃ .

The first inequality is due to the triangle inequality; the second one follows from (A.1) and arithmetics; and the last

inequality follows from the definition of δcorank
r , the properties of ǫ̃-net and the fact that

∥

∥

∥

∥

v0−ṽ

‖v0−ṽ‖2

∥

∥

∥

∥

2
= 1. Reordering

(A.2) gives

1 + δcorank
r ≤ 1 + ǫ̃

(1 − ǫ̃)2
≤ 1 + 4ǫ̃ = 1 + ǫr . (A.3)

where the inequality holds because ǫr ≤ 0.5 and ǫ̃ = ǫr
4
≤ 1

8
. Since we want (A.3) to hold with probability greater than

1 − e−t it remains to require
∣

∣

∣Lcorank
r

∣

∣

∣ (1 + 8
ǫr

)d−re−
CM mǫ2r

32 ≤ e−t. Using the fact that (1 + 8
ǫr

) ≥ 9
ǫr

and some arithmetics

we get (20) and this completes the proof of the theorem.
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We turn now to the proof of Theorem 3.8. Its proof is almost identical to the previous proof but with the difference

that instead of r, Lcorank
r and δcorank

r we look at ℓ, Lℓ and δℓ. In this case we do not know what is the dimension of

the subspace that each cosupport implies. However, we can have a lower bound on it using p − ℓ. Therefore, we use

Bp−ℓ instead of Bd−r. This change provides us with a condition similar to (20) but with p − ℓ in the second coefficient

instead of d − r. By using some arithmetics, noticing that the size of Lℓ is
(

p

ℓ

)

and using Stirling’s formula for upper

bounding it we get (21) and this completes the proof.

Appendix B. Proof of Lemma 6.6

Lemma 6.6: Consider the problem P and apply either AIHT or AHTP with a constant step size µ satisfying
1
µ
≥ 1 + δ2ℓ−p or an optimal step size. Then, at the t-th iteration, the following holds:

∥

∥

∥y −Mx̂t
∥

∥

∥

2

2
−

∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2
≤ Cℓ

(

‖y −Mx‖22 −
∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2

)

(B.1)

+Cℓ

(

1

µ(1 − δ2ℓ−p)
− 1

)

∥

∥

∥M(x − x̂t−1)
∥

∥

∥

2

2
+ (Cℓ − 1)µσ2

M

∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2
.

For the optimal step size the bound is achieved with the value µ = 1
1+δ2ℓ−p

.

Proof: We consider the AIHT algorithm first. We take similar steps to those taken in the proof of Lemma 3 in

[29]. Since 1
µ
≥ 1 + δ2ℓ−p, we have, from the Ω-RIP property of M,

∥

∥

∥M(x̂t − x̂t−1)
∥

∥

∥

2

2
≤ 1

µ

∥

∥

∥x̂t − x̂t−1
∥

∥

∥

2

2
.

Thus,

∥

∥

∥y −Mx̂t
∥

∥

∥

2

2
−

∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2
= −2〈M(x̂t − x̂t−1), y −Mx̂t−1〉 +

∥

∥

∥M(x̂t − x̂t−1)
∥

∥

∥

2

2

≤ −2〈M(x̂t − x̂t−1), y −Mx̂t−1〉 + 1

µ

∥

∥

∥x̂t − x̂t−1
∥

∥

∥

2

2

= −2〈x̂t − x̂t−1,M∗(y −Mx̂t−1)〉 + 1

µ

∥

∥

∥x̂t − x̂t−1
∥

∥

∥

2

2

= −µ
∥

∥

∥M∗(y −Mx̂t−1)
∥

∥

∥

2

2
+

1

µ

∥

∥

∥x̂t − x̂t−1 − µM∗(y −Mx̂t−1)
∥

∥

∥

2

2
.

Note that by definition, x̂t = QŜℓ

(

x̂t−1 + µM∗(y −Mx̂t−1)
)

. Hence, by the Cℓ-near optimality of the projection, we get

∥

∥

∥y −Mx̂t
∥

∥

∥

2

2
−

∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2
≤ −µ

∥

∥

∥M∗(y −Mx̂t−1)
∥

∥

∥

2

2
+

Cℓ

µ

∥

∥

∥x − x̂t−1 − µM∗(y −Mx̂t−1)
∥

∥

∥

2

2
. (B.2)

Now note that

∥

∥

∥x − x̂t−1 − µM∗(y −Mx̂t−1)
∥

∥

∥

2

2

=
∥

∥

∥x − x̂t−1
∥

∥

∥

2

2
− 2µ〈M(x − x̂t−1), y −Mx̂t−1〉 + µ2

∥

∥

∥M∗(y −Mx̂t−1)
∥

∥

∥

2

2

≤ 1

1 − δ2ℓ−p

∥

∥

∥M(x − x̂t−1)
∥

∥

∥

2

2
− 2µ〈M(x − x̂t−1), y −Mx̂t−1〉 + µ2

∥

∥

∥M∗(y −Mx̂t−1)
∥

∥

∥

2

2

=
1

1 − δ2ℓ−p

∥

∥

∥M(x − x̂t−1)
∥

∥

∥

2

2
+ µ

(

‖y −Mx‖22 −
∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2
−

∥

∥

∥M(x − x̂t−1)
∥

∥

∥

2

2

)

+ µ2
∥

∥

∥M∗(y −Mx̂t−1)
∥

∥

∥

2

2
.

Putting this into (B.2), we obtain the desired result for the AIHT algorithm.
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We can check that the same holds true for the AHTP algorithm as follows: suppose that x̂t−1
AHTP

is the (t − 1)-st

estimate from the AHTP algorithm. If we now initialize the AIHT algorithm with this estimate and obtain the next

estimate x̂t
˜AIHT

, then the inequality of the lemma holds true with x̂t
˜AIHT

and x̂t−1
AHTP

in place of x̂t and x̂t−1 respectively. On

the other hand, from the algorithm description, we know that the t-th estimate x̂t
AHTP

of the AHTP satisfies

∥

∥

∥y −Mx̂t
AHTP

∥

∥

∥

2

2
≤

∥

∥

∥y −Mx̂t
˜AIHT

∥

∥

∥

2

2
.

This means that the result holds for the AHTP algorithm as well.

Using a similar argument for the optimal changing step size we note that it selects the cosupport that minimizes
∥

∥

∥Mx −Mx̂t
∥

∥

∥

2

2
. Thus, for AIHT and AHTP we have that

∥

∥

∥Mx −Mx̂t
Opt

∥

∥

∥

2

2
≤

∥

∥

∥Mx −Mx̂t
µ

∥

∥

∥

2

2
for any value of µ, where

x̂t
Opt

and x̂t
µ are the recovery results of AIHT or AHTP with an optimal changing step-size and a constant step-size µ

respectively. This yields that any theoretical result for a constant step-size selection with a constant µ holds true also

to the optimal changing-step size selection. In particular this is true also for µ = 1
1+δ2ℓ−p

. This choice is justified in the

proof of Lemma 6.7. �

Appendix C. Proof of Lemma 6.7

Lemma 6.7: Suppose that the same conditions of Theorem 6.5 hold true. If
∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2
≤ η2 ‖e‖22, then

∥

∥

∥y −Mx̂t
∥

∥

∥

2

2
≤ η2 ‖e‖22. Furthermore, if

∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2
> η2 ‖e‖22, then

∥

∥

∥y −Mx̂t
∥

∥

∥

2

2
≤ c4

∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2

where

c4 :=

(

1 +
1

η

)2 (

1

µ(1 − δ2ℓ−p)
− 1

)

Cℓ + (Cℓ − 1)(µσ2
M − 1) +

Cℓ

η2
< 1.

Proof: First, suppose that
∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2
> η2 ‖e‖22. From Lemma 6.6, we have

∥

∥

∥y −Mx̂t
∥

∥

∥

2

2
≤ Cℓ ‖y −Mx‖22 + (Cℓ − 1)(µσ2

M − 1)
∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2
(C.1)

+Cℓ

(

1

µ(1 − δ2ℓ−p)
− 1

)

∥

∥

∥M(x − x̂t−1)
∥

∥

∥

2

2
.

Remark that all the coefficients in the above are positive because 1 + δ2ℓ−p ≤ 1
µ
≤ σ2

M
and Cℓ ≥ 1. Since y −Mx = e,

we note

‖y −Mx‖22 <
1

η2

∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2

and, by the triangle inequality,

∥

∥

∥M(x − x̂t−1)
∥

∥

∥

2
≤ ‖y −Mx‖2 +

∥

∥

∥y −Mx̂t−1
∥

∥

∥

2
<

(

1 +
1

η

)

∥

∥

∥y −Mx̂t−1
∥

∥

∥

2
.

Therefore, from (C.1),
∥

∥

∥y −Mx̂t
∥

∥

∥

2

2
< c4

∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2
.

This is the second part of the lemma.

Now, suppose that
∥

∥

∥y −Mx̂t−1
∥

∥

∥

2

2
≤ η2 ‖e‖22. This time we have

∥

∥

∥M(x − x̂t−1)
∥

∥

∥

2
≤ ‖y −Mx‖2 +

∥

∥

∥y −Mx̂t−1
∥

∥

∥

2
≤ (1 + η) ‖e‖2 .
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Applying this to (C.1), we obtain

∥

∥

∥y −Mx̂t
∥

∥

∥

2

2
≤ Cℓ ‖e‖22 + (Cℓ − 1)(µσ2

M − 1)η2 ‖e‖22 +Cℓ

(

1

µ(1 − δ2ℓ−p)
− 1

)

(1 + η)2 ‖e‖22

=

(

Cℓ + (Cℓ − 1)(µσ2
M − 1)η2 +Cℓ

(

1

µ(1 − δ2ℓ−p)
− 1

)

(1 + η)2

)

‖e‖22 = c4η
2 ‖e‖22 .

Thus, the proof is complete as soon as we show c4 < 1, or c4 − 1 < 0.

To see c4 − 1 < 0, we first note that it is equivalent to–all the subscripts are dropped from here on for simplicity of

notation–
1

µ2
− 2(1 − δ)

1 + 1
η

1

µ
+

(C − 1)σ2(1 − δ)

C
(

1 + 1
η

)2
< 0,

or
1

µ2
− 2(1 − δ)b1

1

µ
+ (1 − δ)2b2 < 0.

Solving this quadratic equation in 1
µ
, we want

(1 − δ)
(

b1 −
√

b2
1
− b2

)

<
1

µ
< (1 − δ)

(

b1 +

√

b2
1
− b2

)

.

Such µ exists only when b2

b2
1

< 1. Furthermore, we have already assumed 1+δ ≤ 1
µ

and we know (1−δ)
(

b1 −
√

b2
1
− b2

)

<

1 + δ, and hence the condition we require is

1 + δ ≤ 1

µ
< (1 − δ)

(

b1 +

√

b2
1
− b2

)

,

which is what we desired to prove.

As we have seen in Lemma 6.6, for changing optimal step-size selection, (49) holds for any value of µ that

satisfies the above conditions. Thus, in the bound of changing optimal step-size we put a value of µ that minimizes

c4. This minimization result with 1
µ
=
√

b2(1 − δ2ℓ−p). However, since we need 1
µ
≥ 1 + δ2ℓ−p and have that√

b2(1− δ2ℓ−p) < b1(1− δ2ℓ−p) < 1+ δ2ℓ−p we set 1
µ
= 1+ δ2ℓ−p in c4 for the bound in optimal changing step-size case.

�

Appendix D. Proof of Lemma 6.10

Lemma 6.10: Consider the problem P and apply ACoSaMP with a =
2ℓ−p

ℓ
. For each iteration we have

‖x − w‖2 ≤ 1
√

1 − δ2
4ℓ−3p

∥

∥

∥PΛ̃t (x − w)
∥

∥

∥

2
+

√

1 + δ3ℓ−2p

1 − δ4ℓ−3p

‖e‖2 .

Proof: Since w is the minimizer of ‖y −Mv‖22 with the constraintΩΛ̃t v = 0, then

〈Mw − y,Mu〉 = 0, (D.1)

for any vector u such that ΩΛ̃t u = 0. Substituting y =Mx + e and moving terms from the LHS to the RHS gives

〈w − x,M∗Mu〉 = 〈e,Mu〉, (D.2)
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where u is a vector satisfying ΩΛ̃t u = 0. Turning to look at
∥

∥

∥QΛ̃t (x − w)
∥

∥

∥

2

2
and using (D.2) with u = QΛ̃t (x − w), we

have

∥

∥

∥QΛ̃t (x − w)
∥

∥

∥

2

2
= 〈x − w,QΛ̃t(x − w)〉 (D.3)

= 〈x − w, (I −M∗M)QΛ̃t (x − w)〉 − 〈e,MQΛ̃t (x − w)〉
≤ ‖x − w‖2

∥

∥

∥QΛ∩Λ̃t (I −M∗M)QΛ̃t

∥

∥

∥

2

∥

∥

∥QΛ̃t (x − w)
∥

∥

∥

2
+ ‖e‖2

∥

∥

∥MQΛ̃t (x − w)
∥

∥

∥

2

≤ δ4ℓ−3p ‖x − w‖2
∥

∥

∥QΛ̃t (x − w)
∥

∥

∥

2
+ ‖e‖2

√

1 + δ3ℓ−2p

∥

∥

∥QΛ̃t (x − w)
∥

∥

∥

2
.

where the first inequality follows from the Cauchy-Schwartz inequality, the projection property that QΛ̃t = QΛ̃t QΛ̃t

and the fact that x − w = QΛ∩Λ̃t (x − w). The last inequality is due to the Ω-RIP properties, Corollary 3.6 and that

according to Table 1 |Λ̃t| ≥ 3ℓ − 2p and |Λ ∩ Λ̃t | ≥ 4ℓ − 3p. After simplification of (D.3) by
∥

∥

∥QΛ̃t (x − w)
∥

∥

∥

2
we have

∥

∥

∥QΛ̃t (x − w)
∥

∥

∥

2
≤ δ4ℓ−3p ‖x − w‖2 +

√

1 + δ3ℓ−2p ‖e‖2 .

Utilizing the last inequality with the fact that ‖x − w‖22 =
∥

∥

∥PΛ̃t (x − w)
∥

∥

∥

2

2
+

∥

∥

∥QΛ̃t (x − w)
∥

∥

∥

2

2
gives

‖x − w‖22 ≤
∥

∥

∥PΛ̃t (x − w)
∥

∥

∥

2

2
+

(

δ4ℓ−3p ‖x − w‖2 +
√

1 + δ3ℓ−2p ‖e‖2
)2

. (D.4)

By moving all terms to the LHS we get a quadratic function of ‖x − w‖2. Thus, ‖x − w‖2 is bounded from above by

the larger root of that function; this with a few simple algebraic steps gives the inequality in (58). �

Appendix E. Proof of Lemma 6.11

Lemma 6.11: Consider the problem P and apply ACoSaMP with a =
2ℓ−p

ℓ
. For each iteration we have

∥

∥

∥x − x̂t
∥

∥

∥

2
≤ ρ1

∥

∥

∥PΛ̃t (x − w)
∥

∥

∥

2
+ η1 ‖e‖2 ,

where η1 and ρ1 are the same constants as in Theorem 6.8.

Proof: We start with the following observation

∥

∥

∥x − x̂t
∥

∥

∥

2

2
=

∥

∥

∥x − w + w − x̂t
∥

∥

∥

2

2
= ‖x − w‖22 +

∥

∥

∥x̂t − w
∥

∥

∥

2

2
+ 2(x − w)∗(w − x̂t), (E.1)

and turn to bound the second and last terms in the RHS. For the second term, using the fact that x̂t = QŜℓ(w)w with

(24) gives

∥

∥

∥x̂t − w
∥

∥

∥

2

2
≤ Cℓ ‖x − w‖22 . (E.2)

For bounding the last term, we look at its absolute value and use (D.2) with u = w − x̂t = QΛ̃t (w − x̂t). This leads to

∣

∣

∣(x − w)∗(w − x̂t)
∣

∣

∣ =
∣

∣

∣(x − w)∗(I −M∗M)(w − x̂t) − e∗M(w − x̂t)
∣

∣

∣ .

By using the triangle and Cauchy-Schwartz inequalities with the fact that x−w = QΛ∩Λ̃t (x−w) and w−x̂t = QΛ̃t (w−x̂t)

we have

∣

∣

∣(x − w)∗(w − x̂t)
∣

∣

∣ ≤ ‖x − w‖2
∥

∥

∥QΛ∩Λ̃t (I −M∗M)QΛ̃t

∥

∥

∥

2

∥

∥

∥w − x̂t
∥

∥

∥

2
+ ‖e‖2

∥

∥

∥M(w − x̂t)
∥

∥

∥

2
(E.3)

≤ δ4ℓ−3p ‖x − w‖2
∥

∥

∥w − x̂t
∥

∥

∥

2
+

√

1 + δ3ℓ−2p ‖e‖2
∥

∥

∥w − x̂t
∥

∥

∥

2
,

where the last inequality is due to the Ω-RIP definition and Corollary 3.6.
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By substituting (E.2) and (E.3) into (E.1) we have

∥

∥

∥x − x̂t
∥

∥

∥

2

2
≤ (1 + Cℓ) ‖x − w‖22 + 2δ4ℓ−3p

√

Cℓ ‖x − w‖22 + 2

√

1 + δ3ℓ−2p

√

Cℓ ‖e‖2 ‖x − w‖2 (E.4)

≤
(

(1 + 2δ4ℓ−3p

√

Cℓ +Cℓ) ‖x − w‖2 + 2

√

(1 + δ3ℓ−2p)Cℓ ‖e‖2
)

‖x − w‖2

≤
1 + 2δ4ℓ−3p

√
Cℓ + Cℓ

1 − δ2
4ℓ−3p

∥

∥

∥PΛ̃t (x − w)
∥

∥

∥

2

2

+
2
√

1 + δ3ℓ−2p(1 + (1 + δ4ℓ−3p)
√

Cℓ +Cℓ)

(1 − δ4ℓ−3p)
√

1 − δ2
4ℓ−3p

∥

∥

∥PΛ̃t (x − w)
∥

∥

∥

2
‖e‖2 +

(1 + δ3ℓ−2p)(1 + 2
√

Cℓ +Cℓ)

(1 − δ4ℓ−3p)2
‖e‖22

≤
(

√

1 + 2δ4ℓ−3p

√
Cℓ + Cℓ

√

1 − δ2
4ℓ−3p

∥

∥

∥PΛ̃t (x − w)
∥

∥

∥

2
+

√

2+Cℓ
1+Cℓ
+ 2
√

Cℓ +Cℓ
√

1 + δ3ℓ−2p

1 − δ4ℓ−3p

‖e‖2
)2

,

where for the second inequality we use the fact that δ4ℓ−3p ≤ 1 combined with the inequality of Lemma 6.10, and for

the last inequality we use the fact that (1+ (1+δ4ℓ−3p)
√

Cℓ+Cℓ)
2 ≤ (1+2δ4ℓ−3p

√
Cℓ+Cℓ)(

2+Cℓ
1+Cℓ
+2
√

Cℓ+Cℓ) together

with a few algebraic steps. Taking square-root on both sides of (E.4) provides the desired result. �

Appendix F. Proof of Lemma 6.12

Lemma 6.12: Consider the problem P and apply ACoSaMP with a =
2ℓ−p

ℓ
. if

C2ℓ−p <
σ2

M
(1 + γ)2

σ2
M

(1 + γ)2 − 1
,

then there exists δ̃ ACoSaMP(C2ℓ−p, σ
2
M
, γ) > 0 such that for any δ2ℓ−p < δ̃ ACoSaMP(C2ℓ−p, σ

2
M
, γ)

∥

∥

∥PΛ̃t (x − w)
∥

∥

∥

2
≤ η2 ‖e‖2 + ρ2

∥

∥

∥x − x̂t−1
∥

∥

∥

2
.

The constants η2 and ρ2 are as defined in Theorem 6.8.

In the proof of the lemma we use the following Proposition.

Proposition E.1: For any two given vectors x1, x2 and any constant c > 0 it holds that

‖x1 + x2‖22 ≤ (1 + c) ‖x1‖22 +
(

1 +
1

c

)

‖x2‖2 . (F.1)

The proof of the proposition is immediate using the inequality of arithmetic and geometric means. We turn to the

proof of the lemma.

Proof: Looking at the step of finding new cosupport elements one can observe that QΛ∆ is a near optimal projection

for M∗yt−1
resid
=M∗(y −Mx̂t−1) with a constant C2ℓ−p. The fact that

∣

∣

∣Λ̂t−1 ∩Λ
∣

∣

∣ ≥ 2ℓ − p combined with (24) gives

∥

∥

∥(I −QΛ∆ )M
∗(y −Mx̂t−1)

∥

∥

∥

2

2
≤ C2ℓ−p

∥

∥

∥(I −QΛ̂t−1∩Λ)M∗(y −Mx̂t−1)
∥

∥

∥

2

2
.

Using simple projection properties and the fact that Λ̃t ⊆ Λ∆ with z =M∗(y −Mx̂t−1) we have

∥

∥

∥QΛ̃t z
∥

∥

∥

2

2
≥

∥

∥

∥QΛ∆z
∥

∥

∥

2

2
= ‖z‖22 −

∥

∥

∥(I −QΛ∆ )z
∥

∥

∥

2

2
≥ ‖z‖22 −C2ℓ−p

∥

∥

∥(I −QΛ̂t−1∩Λ)z
∥

∥

∥

2

2
(F.2)

= ‖z‖22 −C2ℓ−p

(

‖z‖22 −
∥

∥

∥QΛ̂t−1∩Λz
∥

∥

∥

2

2

)

= C2ℓ−p

∥

∥

∥QΛ̂t−1∩Λz
∥

∥

∥

2

2
− (C2ℓ−p − 1) ‖z‖22 .
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We turn to bound the LHS of (F.2) from above. Noticing that y = Mx + e and using (F.1) with a constant γ1 > 0

gives

∥

∥

∥QΛ̃t M
∗(y −Mx̂t−1)

∥

∥

∥

2

2
≤

(

1 +
1

γ1

)

∥

∥

∥QΛ̃t M
∗e

∥

∥

∥

2

2
+ (1 + γ1)

∥

∥

∥QΛ̃t M
∗M(x − x̂t−1)

∥

∥

∥

2

2
. (F.3)

Using (F.1) again, now with a constant α > 0, we have

∥

∥

∥QΛ̃t M∗M(x − x̂t−1)
∥

∥

∥

2

2
≤ (1 + α)

∥

∥

∥QΛ̃t (x − x̂t−1)
∥

∥

∥

2

2
+

(

1 +
1

α

)

∥

∥

∥QΛ̃t (I −M∗M)(x − x̂t−1)
∥

∥

∥

2

2
(F.4)

≤ (1 + α)
∥

∥

∥x − x̂t−1
∥

∥

∥

2

2
− (1 + α)

∥

∥

∥PΛ̃t (x − x̂t−1)
∥

∥

∥

2

2
+

(

1 +
1

α

)

∥

∥

∥QΛ̃t (I −M∗M)(x − x̂t−1)
∥

∥

∥

2

2
.

Putting (F.4) into (F.3) and using (18) and Corollary 3.3 gives

∥

∥

∥QΛ̃t M∗(y −Mx̂t−1)
∥

∥

∥

2

2
≤

(1 + γ1)(1 + δ3ℓ−2p)

γ1

‖e‖22 − (1 + α)(1 + γ1)
∥

∥

∥PΛ̃t (x − x̂t−1)
∥

∥

∥

2

2
(F.5)

+

(

1 + α + δ4ℓ−3p +
δ4ℓ−3p

α

)

(1 + γ1)
∥

∥

∥x − x̂t−1
∥

∥

∥

2

2
.

We continue with bounding the RHS of (F.2) from below. For the first element of the RHS we use an altered

version of (F.1) with a constant γ2 > 0 and have

∥

∥

∥QΛ̂t−1∩ΛM∗(y −Mx̂t−1)
∥

∥

∥

2

2
≥ 1

1 + γ2

∥

∥

∥QΛ̂t−1∩ΛM∗M(x − x̂t−1)
∥

∥

∥

2

2
− 1

γ2

∥

∥

∥QΛ̂t−1∩ΛM∗e
∥

∥

∥

2

2
. (F.6)

Using the altered form again, for the first element in the RHS of (F.6), with a constant β > 0 gives

∥

∥

∥QΛ̂t−1∩ΛM∗M(x − x̂t−1)
∥

∥

∥

2

2
≥ 1

1 + β

∥

∥

∥x − x̂t−1
∥

∥

∥

2

2
− 1

β

∥

∥

∥QΛ̂t−1∩Λ(M∗M − I)(x − x̂t−1)
∥

∥

∥

2

2
. (F.7)

Putting (F.7) in (F.6) and using the RIP properties and (18) provide

∥

∥

∥QΛ̂t−1∩ΛM∗(y −Mx̂t−1)
∥

∥

∥

2

2
≥

(

1

1 + β
−
δ2ℓ−p

β

)

1

1 + γ2

∥

∥

∥x − x̂t−1
∥

∥

∥

2

2
−

(1 + δ2ℓ−p)

γ2

‖e‖22 . (F.8)

Using (F.1), with a constant γ3 > 0, (9), and some basic algebraic steps we have for the second element in the RHS of

(F.2)

∥

∥

∥M∗(y −Mx̂t−1)
∥

∥

∥

2

2
≤ (1 + γ3)

∥

∥

∥M∗M(x − x̂t−1)
∥

∥

∥

2

2
+

(

1 +
1

γ3

)

‖M∗e‖22 (F.9)

≤ (1 + γ3)(1 + δ2ℓ−p)σ2
M

∥

∥

∥(x − x̂t−1)
∥

∥

∥

2

2
+

(

1 +
1

γ3

)

σ2
M ‖e‖22 .

By combining (F.5), (F.8) and (F.9) with (F.2) we have

(1 + α)(1 + γ1)
∥

∥

∥PΛ̃t (x − x̂t−1)
∥

∥

∥

2

2
≤

(1 + γ1)(1 + δ3ℓ−2p)

γ1

‖e‖22 +C2ℓ−p

(1 + δ2ℓ−p)

γ2

‖e‖22 (F.10)

+(C2ℓ−p − 1)

(

1 +
1

γ3

)

σ2
M ‖e‖22 +

(

1 + α + δ4ℓ−3p +
δ4ℓ−3p

α

)

(1 + γ1)
∥

∥

∥x − x̂t−1
∥

∥

∥

2

2

+(C2ℓ−p − 1)(1 + γ3)(1 + δ2ℓ−p)σ2
M

∥

∥

∥(x − x̂t−1)
∥

∥

∥

2

2
−C2ℓ−p

(

1

1 + β
−
δ2ℓ−p

β

)

1

1 + γ2

∥

∥

∥x − x̂t−1
∥

∥

∥

2

2
.
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Dividing both sides by (1 + α)(1 + γ1) and gathering coefficients give

∥

∥

∥PΛ̃t (x − x̂t−1)
∥

∥

∥

2

2
≤

(1 + δ3ℓ−2p

γ1(1 + α)
+

(1 + δ2ℓ−p)C2ℓ−p

γ2(1 + α)(1 + γ1)
+

(C2ℓ−p − 1)(1 + γ3)σ2
M

(1 + α)(1 + γ1)γ3

)

‖e‖22 (F.11)

+

(

1 +
δ4ℓ−3p

α
+

(C2ℓ−p − 1)(1 + γ3)(1 + δ2ℓ−p)σ2
M

(1 + α)(1 + γ1)

−
C2ℓ−p

(1 + α)(1 + γ1)(1 + γ2)

(

1

1 + β
−
δ2ℓ−p

β

)

)

∥

∥

∥x − x̂t−1
∥

∥

∥

2

2
.

The smaller the coefficient of
∥

∥

∥x − x̂t−1
∥

∥

∥

2

2
, the better convergence guarantee we obtain. Thus, we choose β =

√
δ2ℓ−p

1−
√
δ2ℓ−p

and α =

√
δ4ℓ−3p

√

C2ℓ−p
(1+γ1)(1+γ2)

(

1−
√
δ2ℓ−p

)2
−

(C2ℓ−p−1)(1+γ3)(1+δ2ℓ−p )σ2
M

1+γ1
−
√
δ4ℓ−3p

so that the coefficient is minimized. The values of γ1, γ2, γ3

provide a tradeoff between the convergence rate and the size of the noise coefficient. For smaller values we get better

convergence rate but higher amplification of the noise. We make no optimization on their values and choose them to

be γ1 = γ2 = γ3 = γ for an appropriate γ > 0. Thus, the above yields

∥

∥

∥PΛ̃t (x − x̂t−1)
∥

∥

∥

2

2
≤

(

1 + δ3ℓ−2p

γ(1 + α)
+

(1 + δ2ℓ−p)C2ℓ−p

γ(1 + α)(1 + γ)
+

(C2ℓ−p − 1)(1 + γ)σ2
M

(1 + α)(1 + γ)γ

)

‖e‖22 (F.12)

+





















1 −



















√

δ4ℓ−3p −

√

C2ℓ−p

(1 + γ)2

(

1 −
√

δ2ℓ−p

)2 − (C2ℓ−p − 1)(1 + δ2ℓ−p)σ2
M



















2


















∥

∥

∥x − x̂t−1
∥

∥

∥

2

2
.

Since PΛ̃t w = PΛ̃t x̂t−1 = 0 the above inequality holds also for
∥

∥

∥PΛ̃t (x − x̂t−1)
∥

∥

∥

2

2
. Inequality (61) follows since the

right-hand side of (F.12) is smaller than the square of the right-hand side of (61).

Before ending the proof, we notice that ρ2, the coefficient of
∥

∥

∥x − x̂t−1
∥

∥

∥

2

2
is defined only when

(C2ℓ−p − 1)(1 + δ2ℓ−p)σ2
M ≤

C2ℓ−p

(1 + γ)2

(

1 −
√

δ2ℓ−p

)2
. (F.13)

First we notice that since 1+ δ2ℓ−p ≥
(

1 −
√

δ2ℓ−p

)2
a necessary condition for (F.13) to hold is (C2ℓ−p − 1)σ2

M
<

C2ℓ−p

(1+γ)2

which is equivalent to (60). By moving the terms in the RHS to the LHS we get a quadratic function of
√

δ2ℓ−p.

The condition in (60) guarantees that its constant term is smaller than zero and thus there exists a positive δ2ℓ−p

for which the function is smaller than zero. Therefore, for any δ2ℓ−p < δ̃ ACoSaMP(C2ℓ−p, σ
2
M
, γ) (F.13) holds, where

δ̃ ACoSaMP(C2ℓ−p, σ
2
M
, γ) > 0 is the square of the positive solution of the quadratic function.
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