Stationary IPA Estimates for Non-Smooth G/G/1/∞ Functionals via Palm Inversion and Level-Crossing Analysis.

Abstract : We give stationary estimates for the derivative of the expectation of a non-smooth function of bounded variation f of the workload in a G/G/1/∞ queue, with respect to a parameter influencing the distribu- tion of the input process. For this, we use an idea of Konstantopoulos and Zazanis based on the Palm inversion formula, however avoiding a limiting argument by performing the level-crossing analysis thereof globally, via Fubini's theorem. This method of proof allows to treat the case where the workload distribution has a mass at discontinuities of f and where the formula has to be modified. The case where the parameter is the speed of service or/and the time scale factor of the input process is also treated using the same approach.
Type de document :
Article dans une revue
Discrete Event Dynamic Systems, Springer Verlag, 1993, 3 (4), pp.347-374. 〈10.1007/BF01439159〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00717364
Contributeur : Jean-Marc Lasgouttes <>
Soumis le : vendredi 13 juillet 2012 - 12:37:41
Dernière modification le : jeudi 11 janvier 2018 - 06:19:10
Document(s) archivé(s) le : jeudi 15 décembre 2016 - 23:12:52

Fichiers

IPA_stat.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Pierre Bremaud, Jean-Marc Lasgouttes. Stationary IPA Estimates for Non-Smooth G/G/1/∞ Functionals via Palm Inversion and Level-Crossing Analysis.. Discrete Event Dynamic Systems, Springer Verlag, 1993, 3 (4), pp.347-374. 〈10.1007/BF01439159〉. 〈hal-00717364〉

Partager

Métriques

Consultations de la notice

376

Téléchargements de fichiers

150