Asymptotics and scalings for large product-form networks via the Central Limit Theorem

Abstract : The asymptotic behaviour of a closed BCMP network, with $n$ queues and $m_n$ clients, is analyzed when $n$ and $m_n$ become simultaneously large. Our method relies on Berry-Esseen type approximations coming in the Central Limit Theorem. We construct critical sequences $m^0_n$, which are necessary and sufficient to distinguish between saturated and non-saturated regimes for the network. Several applications of these results are presented. It is shown that some queues can act as bottlenecks, limiting thus the global efficiency of the system.
Type de document :
Article dans une revue
Markov Processes and Related Fields, Polymath, 1996, 2 (2), pp.317-348
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00717735
Contributeur : Jean-Marc Lasgouttes <>
Soumis le : vendredi 13 juillet 2012 - 14:58:45
Dernière modification le : vendredi 25 mai 2018 - 12:02:05
Document(s) archivé(s) le : dimanche 14 octobre 2012 - 03:05:15

Fichiers

bignet.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00717735, version 1
  • ARXIV : 1207.3237

Collections

Citation

Guy Fayolle, Jean-Marc Lasgouttes. Asymptotics and scalings for large product-form networks via the Central Limit Theorem. Markov Processes and Related Fields, Polymath, 1996, 2 (2), pp.317-348. 〈hal-00717735〉

Partager

Métriques

Consultations de la notice

384

Téléchargements de fichiers

113