N

N

Automatic Service Categorisation through Machine
Learning in Emergent Middleware
Amel Bennaceur, Valérie Issarny, Johansson Richard, Moschitti Alessandro,

Spalazzese Romina, Daniel Sykes

» To cite this version:

Amel Bennaceur, Valérie Issarny, Johansson Richard, Moschitti Alessandro, Spalazzese Romina, et
al.. Automatic Service Categorisation through Machine Learning in Emergent Middleware. FMCO
2011 - 10th International Symposium on Formal Methods for Components and Objects, Oct 2011,
Turin, Italy. pp.133-149, 10.1007/978-3-642-35887-6_7 . hal-00718655

HAL Id: hal-00718655
https://inria.hal.science/hal-00718655
Submitted on 17 Jul 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-00718655
https://hal.archives-ouvertes.fr

Automatic Service Categorisation through
Machine Learning in Emergent Middleware

Amel Bennaceur!, Valérie Issarny', Richard Johansson?, Alessandro
Moschitti®, Romina Spalazzese?, Daniel Sykes!

! INRIA, Paris-Rocquencourt, France first.last@inria.fr
2 University of L’Aquila, Italy romina.spalazzese@di.univaq.it
3 University of Trento, Italy moschitti@disi.unitn.it
4 University of Gothenburg, Sweden richard.johansson@svenska.gu.se

Abstract. The modern environment of mobile, pervasive, evolving ser-
vices presents a great challenge to traditional solutions for enabling in-
teroperability. Automated solutions appear to be the only way to achieve
interoperability with the needed level of flexibility and scalability. While
necessary, the techniques used to determine compatibility, as a precursor
to interaction, come at a substantial computational cost, especially when
checks are performed between systems in unrelated domains. To over-
come this, we apply machine learning to extract high-level functionality
information through text categorisation of a system’s interface descrip-
tion. This categorisation allows us to restrict the scope of compatibility
checks, giving an overall performance gain when conducting matchmak-
ing between systems. We have evaluated our approach on a corpus of web
service descriptions, where even with moderate categorisation accuracy,
a substantial performance benefit can be found. This in turn improves
the applicability of our overall approach for achieving interoperability in
the CONNECT project.

1 Introduction

The modern environment of mobile, pervasive, evolving services presents a great
challenge to traditional solutions for enabling interoperability. The scale of com-
plexity and heterogeneity of such devices and services, which adhere to many
different standards and platforms, greatly increases the cost and difficulty of
applying manual approaches. When mobility, dynamic availability, and the po-
tential for evolution are additionally considered, the problem becomes insur-
mountable. Automatic approaches, termed emergent middleware, can overcome
interoperability issues, provided that they are furnished with sufficient and rel-
evant information, in a precise form, about the systems that should interact.
This presents two sub-problems: how best to use the given information, and
how to specify, extract, or discover such information. This paper addresses one
case of the latter, namely, how to extract the high-level, abstract functionality
information of a system, given only its detailed syntactic interface.

This high-level functionality, which we call an affordance, is expressed as a
semantic concept from a domain ontology. Given such information we can effi-
ciently check whether it is reasonable to attempt to make two systems interact.
For example, there is little to be gained from attempting to overcome the differ-
ences between a system whose functionality is described as “Stock” and another
whose functionality is described as “Weather”. On the other hand there is no
guarantee that two systems with the same affordance will be able to interact. To
make a final assessment of compatibility, more in-depth analyses considering the
interface and conversational protocol of the two systems are necessary. Avoiding
such deep, time-consuming analyses motivates our use of affordances. When the
affordances do not match, the detailed analyses can be omitted, providing an
overall performance benefit for solving interoperability issues at runtime.

However, the requirement for affordance information places a burden on the
system designer, and it is likely that legacy systems do not provide such detail.
In this paper we describe an approach based on text categorisation, a machine
learning technique that is able to categorise systems that have interface descrip-
tions into affordances, based on the terms used in the interfaces. For example, an
interface including many instances of the term “ticker” is likely to have the func-
tionality corresponding to the “Stock” affordance. The assignment of affordances
is thus completely automated and the full performance benefit of affordances can
be reaped.

In Sections 2 and 3 we introduce the CONNECT project in which our work
takes place, and outline the approach taken therein for discovering matching
pairs of networked systems and synthesising mediators that enable the systems
to communicate. In Section 4 we describe how text categorisation is applied to
find each system’s high-level functionality, and in Section 5 we show how this
benefits the Discovery and Synthesis Enablers. Section 7 concludes.

2 Background

Our work takes place within the context of the CONNECT project®. The aim of
the project is to overcome interoperability issues between protocols due to their
heterogeneity at various levels by using an approach that dynamically generates
the necessary interoperability solution that allows the systems to interact seam-
lessly. CONNECT hence promotes as a solution the dynamic synthesis of emergent
CONNECTors via which systems communicate. The emergent CONNECTors are
concrete system entities synthesised according to the behavioural semantics of
protocols executed by the interacting parties at application and middleware lay-
ers. The synthesis process is based on a formal foundation for CONNECTors,
which allows learning, reasoning about and adapting the interaction behaviour
of networked systems at runtime.

To reach these objectives the project undertakes interdisciplinary research,
investigating the following issues and related challenges: (i) modelling and rea-

5 http://connect-forever.eu/

http://connect-forever.eu/

|
Networked Networked
System 1 System 2

(Discovery \ \ Learning]
Enabler \ \ Enabler

;7;‘]
(Synthesis) (Deployment)
Enabler Enabler

CONNECTor
[CONNECT Bus |
(" Dependability & e \ e \
> v Security & Trust Monitoring
Performance
Enabler Enabler
Enabler

Fig. 1. CONNECT architecture.

soning about peer system functionality; (ii) modelling and reasoning about con-
nector behaviour; (iii) runtime synthesis of CONNECTors; (iv) learning peer be-
haviour; (v) dependability assurance; and (vi) system architecture. The archi-
tecture to realise these objectives is illustrated in Figure 1.

We call the entities that implement the mechanisms which enable the required

connections enablers. In summary, the enablers being developed as part of the
architecture are:

Discovery Enabler: it discovers the networked systems (our generic term for
services and other systems) in the environment and collects their informa-
tion, including interface description and ontological description. Ontological
information, in particular, is used to perform a more efficient compatibility
check with other systems, i.e., to identify whether, despite possible hetero-
geneity, one system provides the functionality that another requires.
Learning Enabler: it infers models of the systems’ interaction behaviour, i.e.,
models expressing how system services can be properly invoked. This enabler
leverages active automata learning algorithms.

Synthesis Enabler: it performs a compatibility check on the system models
and, if compatible, automatically synthesises a CONNECTor that allows them
to interact properly.

Deployment Enabler: it deploys and manages the synthesised CONNECTOorS;
Monitoring Enabler: it collects information from the CONNECTors, filters it,
and passes it on to other requesting enablers;

Dependability & Performance Enabler: it assesses dependability and perfor-
mance properties at pre-deployment time and at runtime.

— Security and Trust Enabler: it collaborates with the Synthesis Enabler and
with the Monitoring Enabler to check that possible security and trust re-
quirements are met at runtime.

Within the described architecture, this paper focuses on the Discovery and
Synthesis Enablers that benefit from the inference of high-level functionality
through text categorisation.

3 Synthesising Emergent Middleware

Figure 2 outlines our overall approach to supporting emergent middleware by
synthesising mediators dynamically. The key philosophy of this approach is to (i)
discover available networked systems, (ii) complete the descriptions of networked
systems, (iii) find matching pairs among them by analysing the descriptions of
the networked systems, and (iv) synthesise mediators that allow them to interact
by overcoming their incompatibilities.

Description
Completion

Synthesis

A\ 4
NSt
(Cnsz (we] Nss]

Fig. 2. Steps of creating emergent middleware.

Networked systems (NSs) are discovered by the Discovery Enabler. Their
descriptions may be incomplete, leading the Discovery Enabler to invoke mecha-
nisms that can infer the missing information. To infer the interaction behaviour,
the Learning Enabler is invoked, while in this paper we introduce an additional
affordance classifier that is able to infer the system’s high-level functionality.

Given two complete networked system descriptions, the next step consists
of checking their functional compatibility, i.e., whether at high level of abstrac-
tion, the functionality required by one system can be provided by the other (see
Figure 3-@). Functional matching is performed by checking the semantic com-
patibility of the networked systems’ affordances using ontology reasoning. When
a pair of NSs have compatible functionality, we verify that they can be made

interoperable so as to achieve this functionality through behavioural matching
(see Figure 3-@), which is performed by analysing the behaviour of both sys-
tems. Subsequently, we synthesise the appropriate mediator which allows the
two systems to communicate (see Figure 3-©).

Ontologies play a crucial role in supporting automatic service composition
[1]. They formalise the domain-specific knowledge by describing the concepts of
this domain, the functions, and relations between them [2]. Ontology reasoning
is particularly important for inferring the relations between concepts in open
environments [1], i.e., environments that consist of many interacting systems
that are developed by different vendors and are either absolutely unaware of or
have only partial knowledge about the global system.

In the remainder of this section, we describe the model of networked systems
that allows us to reason about their ability to interoperate. Then we describe
the different steps of the matching and synthesis process.

NS; Model
>

Affordance
<Req, A, 1A,0a>
Interface

NS, Model
SR

Affordance
<Prov, B, Is,0B>

a =<a, ia, 0a>
B =<b, ib, 0b>

Behaviour o Functional
Matching
af~B
Yes
a

Behavioural
(2] Matching
Yes

Abstract Mediator
Model

s ,‘Q)\

G0

Fig. 3. Matching and synthesis.

=== Referece
— Reasoning
O Binary check
C_> Process
J

Model

Networked System Model

A networked system requires or provides an affordance to which it gives access
via an explicit interface, and which it realises using a specific behaviour.

The affordance specifies the high-level functionality of a system and is de-
fined as a tuple: F=<t, ¢,4,0> where (i) ¢ stands for provided (denoted prov)
if the system is offering this functionality or required (denoted req) if it is con-
suming it; (i) ¢ gives the semantics of the functionality in terms of an ontology
concept; (iil) 7 (resp. o) specifies the set of the high-level inputs (resp. outputs)
of the functionality, which are defined as ontology concepts. All concepts belong
to the same domain ontology O specifying the application-specific concepts and
relations, i.e., ¢,i,0 € O. Note that a req functionality produces the inputs I
and consumes the corresponding outputs O. In a dual manner, a prov func-
tionality consumes the inputs I and produces the corresponding outputs O. In
the following we focus on the functionality concept ¢ without considering data,
overloading the term affordance where there is no ambiguity.

The interface defines the set of observable actions that the system requires
from or provides to its execution environment, typically provided in the form of
a WSDLS description. An input action o =<op, i, 0> (op,i,0 € O) requires an
operation op for which it produces some input data i and consumes the output
data o. Its dual output action” B =<op, i, o> uses the inputs and produces
the corresponding outputs. An interface Z is then defined as: T ={<opq, ia,
Oa>}U{<@, ig, 05>}'

The system behaviour describes its interaction with its environment and de-
fines how the actions of its interface are co-ordinated to implement a specific
affordance. We build upon state-of-the-art approaches to formalise system inter-
action using labelled transition systems (LTS) [3].

Ontology-based Functional Matching

Functional matching assesses whether the networked systems are functionally
compatible using the following definition. A system requiring the functionality
Fr=<req,cg,iRr,or> and a system providing the functionality Fp=<prov, cp,
ip,op>, are functionally compatible, written Fp — Fg, iff in the associated
ontology:

— cp is a subtype of cp,
— ip is a supertype of ip (contravariant), and
— op is a subtype of og (covariant).

following the Liskov substitution principle [4]. Intuitively, the Fp should provide
at least the functionality required by Fr and may provide more.

Ontology-based Behavioural Matching

Behavioural matching assesses whether the networked systems are behaviourally
compatible, i.e., whether there exists an intermediary system (a mediator) through

5 http://www.w3.org/TR/wsdl
7 Note the use of an overline to denote output actions.

http://www.w3.org/TR/wsdl

which they can safely interact. Towards this end, we first infer the correspon-
dence between the actions of the systems’ interfaces so as to generate the map-
pings that perform the necessary translations between semantically-compatible
actions. Various mappings relations may be defined, which primarily differ ac-
cording to their complexity and inversely proportional flexibility. These map-
pings are generated according to the mediator capabilities, which includes re-
ceiving and sending messages, delaying the delivery of messages, and reasoning
about the semantics of actions in order to generate actions by transforming and
composing the original ones. We use an ontology-based model checking tech-
nique to explore the various possible mappings in order to produce a correct-
by-construction mediator that guarantees that the two systems can successfully
interact. Model checking is used to assess system correctness and automatically
verify concurrent systems by exhaustively exploring the state space, which may
be very large due to state space explosion. Although many solutions have been
proposed to alleviate this issue at runtime [5], behavioural matching remains
substantially more costly than functional matching.

Ontology-based Mediator Synthesis

The mediator enforces interoperation between functionally and behaviourally
compatible systems despite their disparities. Mediator synthesis relies on the
mappings computed during behavioural matching and refines them according to
the characteristics of each networked systems and to the environment.

The specification of system functionality plays a valuable role in generating
emergent middleware. It has also been acknowledged as crucial in open environ-
ments [6]. However, most legacy systems only exhibit their interface description.
Hence, only partial knowledge about the system can be discovered. Given the
central role of the functional matching of affordances in reducing the overall
computation by acting as a filter for the subsequent behavioural matching, it is
important to infer additional knowledge about the functional semantics of each
networked system. Toward this goal, we use machine learning to extract the
affordance of networked systems.

4 Affordance learning and categorisation

The problem consists in learning a classifier that is able to assign an affordance
(specifically the functionality concept ¢) to a networked system automatically.
The networked system has not been seen before, and its description includes
an interface expressed in WSDL, but no affordance information. Note that it
is not always necessary to have an absolutely correct affordance since falsely-
identified matches may be caught in the subsequent detailed checks. Indeed, the
pathological case with many false positives and no false negatives is equivalent
to performing no affordance matching.

Since the interface is described by textual documentation, we can capitalise
on the long tradition of research in text categorisation (TC). This studies ap-
proaches for automatically enriching text documents with semantic information

(metadata). The latter is typically expressed by topic categories: thus TC pro-
poses methods to assign documents to one or more categories. In our case, the
documents to categorise are interface descriptions, and the categories correspond
to affordances. The size of the taxonomy may be small in some cases, such as a
binary set, e.g., {POSITIVE, NEGATIVE} when classifying a customer review as
positive or negative [7], and larger in other cases, such as the various structured
classification systems used in library science. The main tool for implementing
modern systems for automatic document classification is machine learning ap-
plied to documents represented with vector space models.

In order to be able to apply standard machine learning methods for building
categorisers, we need to represent the objects we want to classify by extracting
informative features. Such features are used as indications that an object belongs
to a certain category. For categorisation of documents, the standard representa-
tion of features maps every document into a vector space using the bag-of-words
approach [8]. In this method, every word in the vocabulary is associated with
a dimension of the vector space, allowing the document to be mapped into the
vector space simply by computing the occurrence frequencies of each word. For
example, a document consisting of the string “get Weather, get Station” could
be represented as the vector (..,2,..,1,..,1,..) where, e.g., 2 is the frequency
of the “get” token. The bag-of-words representation is considered the standard
representation underlying most document classification approaches. In contrast,
attempts to incorporate more complex structural information have mostly been
unsuccessful for the task of categorisation of single documents [9] although they
have been successful for complex relational classification tasks [10].

However, the task of classifying interface descriptions is different from classi-
fying raw textual documents. Indeed, the interface descriptions are semi-structured
rather than unstructured, and the representation method clearly needs to take
this fact into account, for instance, by separating the vector space representation
into regions for the respective parts of the interface description. In addition to
the text, various semi-structured identifiers should be included in the feature
representation, e.g., the names of the method and input parameters defined by
the interface. The inclusion of identifiers is important since: (i) the textual con-
tent of the identifiers is often highly informative of the functionality provided by
the respective methods; and (i) the free text documentation is not mandatory
and may not always be present. In a WSDL interface, we may have tags and
structures as illustrated by the text fragment in Figure 4.

It is clear that splitting the CamelCase identifier WeatherForecastSoap into
the tokens soap, weather, and forecast would provide more meaningful and
generalised concepts, which the learning algorithm can use as features. Indeed,
to extract useful word tokens from the identifiers, we split them into pieces based
on the presence of underscores or CamelCase; all tokens are then normalised to
lowercase.

Once the feature representation is available, we use it to learn several classi-
fiers, each of them specialised to recognise if the WSDL expresses some target se-
mantic properties. The latter can also be concepts of an ontology. Consequently,

<wsdl:portType name="WeatherForecastSoap">
<wsdl:operation name="GetWeatherByZipCode">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
Get one week weather forecast for a valid Zip Code (USA)
</wsdl:documentation>
<wsdl:input message="tns:GetWeatherByZipCodeSoapIn" />
<wsdl:output message="tns:GetWeatherByZipCodeSoapOut" />
</wsdl:operation>
<wsdl:operation name="GetWeatherByPlaceName">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
Get one week weather forecast for a place name (USA)
</wsdl:documentation>
<wsdl:input message="tns:GetWeatherByPlaceNameSoapIn" />
<wsdl:output message="tns:GetWeatherByPlaceNameSoapOut" />
</wsdl:operation>
</wsdl:portType>
<wsdl:portType name="WeatherForecastHttpGet">
<wsdl:operation name="GetWeatherByZipCode">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
Get one week weather forecast for a valid Zip Code (USA)
</wsdl:documentation>
<wsdl:input message="tns:GetWeatherByZipCodeHttpGetIn" />
<wsdl:output message="tns:GetWeatherByZipCodeHttpGetOut" />
</wsdl:operation>
<wsdl:operation name="GetWeatherByPlaceName">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
Get one week weather forecast for a place name (USA)
</wsdl:documentation>
<wsdl:input message="tns:GetWeatherByPlaceNameHttpGetIn" />
<wsdl:output message="tns:GetWeatherByPlaceNameHttpGetOut" />
</wsdl:operation>
</wsdl:portType>
<wsdl:portType name="WeatherForecastHttpPost">
<wsdl:operation name="GetWeatherByZipCode">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
Get one week weather forecast for a valid Zip Code (USA)
</wsdl:documentation>
<wsdl:input message="tns:GetWeatherByZipCodeHttpPostIn" />
<wsdl:output message="tns:GetWeatherByZipCodeHttpPostOut" />
</wsdl:operation>
<wsdl:operation name="GetWeatherByPlaceName">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
Get one week weather forecast for a place name (USA)
</wsdl:documentation>
<wsdl:input message="tns:GetWeatherByPlaceNameHttpPostIn" />
<wsdl:output message="tns:GetWeatherByPlaceNameHttpPostOut" />
</wsdl:operation>
</wsdl:portType>

Fig.4. WSDL fragment for a weather service. Our approach treats such docu-
ments as unstructured text.

Category Features
Stock stock, list, symbol
Weather weather, zip, forecast, code

Table 1. Most highly weighted features in the two-category experiment.

our algorithm may be used to learn classifiers that automatically assign ontol-
ogy concepts to actions defined in NS interfaces. Of course, the additional use of
domain (but at the same time general) ontologies facilitates the learning process
by providing effective features for the interface representation. In other words,
WSDL, domain ontologies and any other information contribute to defining the
vector representation used for training the concept classifiers.

To demonstrate the validity of the approach empirically, we experimented
with automatic classification of service topics. These can be used to characterise
the affordance associated with an interface (i.e., using such concepts), from which
it can be inferred if two NSs are implementing compatible affordances or not.

For this purpose, we collected a set of 14 WSDL descriptions to which we
manually assigned two affordance labels (i.e., categories): 8 descriptions were
classified as “Stock” category of Web services, i.e., dealing with stock-markets,
and 6 descriptions in the “Weather” category, i.e., weather-related services. It is
clear that knowing if the offered services belong to the categories above would
help to determine the affordance.

The critical aspect is to find out if such categorisation can be automatically
carried out by our machine learning approach. Thus we applied rigorous statisti-
cal methods for assessing its performance. In particular, we carried out a 3-fold
cross-validation over the above-mentioned dataset. To train the models, we used
linear support vector machines from LIBLINEAR software [11]. In all three ex-
periments (three folds), the achieved precision was 100%, i.e., the classifier was
always able to choose the right category for the unknown interface.

Additionally, we analysed which were the most important features of the
adopted interface representation. For this purpose, we recall that the support
vector learning procedure results in a weight vector where each dimension cor-
responds to the dimensions used in the feature vectors. The magnitude of these
weights can be interpreted as a measure of the importance of the respective fea-
tures. Table 1 shows the most highly weighted features for the two categories. As
we can see, the most prominent are perfect representatives of the classes: for the
“Stock” category, the algorithms has decided that stock is the most important
feature, and similarly for the “Weather” category.

However, testing on only two categories may not provide realistic findings
as many more concepts are typically involved in NS interfaces. Therefore, to
evaluate our approach in a more concrete application scenario, we used a collec-
tion of WSDL documents available on the Web®. Note that these introduce two
sources of complexities: (i) a larger number of concepts and (ii) the WSDL files

® http://www.andreas-hess.info/projects/annotator/ws2003.html

Category P R F n
Mathematics 0.29 0.20 0.24 23

Business 0.17 0.08 0.11 46
Communication 0.71 0.80 0.75 49
Converter 0.57 0.63 0.61 65

CountryInfo 0.64 0.83 0.72 38
Developers 0.18 0.11 0.14 46

Finder 0.55 0.59 0.57 10
Money 0.72 0.72 0.72 56
News 0.70 0.63 0.67 30
Web 0.47 0.46 0.47 39

Table 2. Performance by category.

do not contain natural language descriptions, which clearly facilitate semantic
extraction, i.e., semantic categorisation.

We selected the 10 most frequent categories for a total of 402 documents,
and we trained and evaluated the classifiers using 8-fold cross-validation. In this
experiment, the accuracy was 58%. Table 2 shows a detailed breakdown of the
result. P indicates the precision, which is the number of documents correctly
assigned to a category compared to the number that are correctly or incorrectly
assigned to that category (a precision of 1 means there are no false positives).
R indicates the recall, which is the number of documents correctly assigned to a
category compared to the number that should be assigned to that category (a
recall of 1 means there are no false negatives). For example, the “CountryInfo”
category has a recall of 0.83, meaning that few documents of that category
were falsely assigned to another. n indicates the number of documents manually
assigned to each category while F = %, i.e., the F-measure (harmonic means
between P and R).

Again, we present the most highly weighted features for each category in
Table 3. As we can see, these features are highly representative of the respective
categories.

In summary, in the realistic scenarios our approach decreases its effective-
ness, although preserving its applicability in tasks such as automatic affordance
detection. The results are promising as we achieved good accuracy using basic
TC techniques to train our classifiers, although we did not use structural infor-
mation and background knowledge. Also the statistical learning theory suggests
greater accuracy could be achieved by increasing the size of the training data.
Finally, the meaningfulness of the features selected by the classifier demonstrate
that it can easily derive the best properties, alleviating the designer from the
burden of manual selection.

Category Features
Mathematics calculator, previous, at, value

Business description, chart, parent, n
Communication send, message, email, subject
Converter to, translate, unit, my
CountryInfo country, state, zip, postal
Developers reverse, text, case, generate
Finder whois, who, iwhois, results
Money stock, amount, card, currency
News news, quote, day, daily

Web key, name, valid, d

Table 3. Most highly weighted features in the ten-category experiment.

25000
------- no affordances

= ==-2 affordances
20000 e

= 4 affordances

15000

10000

Matching time (ms)

5000

Number of NSs

Fig. 5. Performance of matching with 0, 2, and 4 affordances.

5 Evaluation

Having shown that automatic service categorisation on the basis of interface
descriptions is indeed feasible, we must now show that the affordances provided
by the categorisation result in the expected benefit to discovery. The purpose of
introducing affordances is to filter the number of service pairs for behavioural
matching with a relatively efficient semantic check, and hence to reduce the
overall time taken to conduct matchmaking when services are discovered.

After performing training offline, we integrated the trained classifier into the
Discovery Enabler, which is responsible for matching pairs of networked systems.
The Discovery Enabler invokes the classifier when it discovers a networked sys-
tem that does not have an affordance. We then measured the time taken by the
Discovery Enabler to perform matchmaking with and without the classifier.

Figure 5 shows the time taken to perform matchmaking after the sequential
discovery of the given number of networked systems (up to 10). The results are

25000
20000 \

15000 \

10000 \\K

T T T
1 2 3 4 5 6 7 8

Number of affordances

Matching time (ms)

5000

Fig. 6. Performance of matching after discovering 10 networked systems.

averaged over ten runs. The line with the steepest average gradient shows the
time taken when no affordances are used, and so no categorisation takes place.
Matchmaking in this case involves performing behavioural matching for every
possible pair, i.e. n? checks for n NSs. The other lines show the time taken
when the services are automatically categorised into two and four affordances
respectively. Having just two affordances reduces the number of behavioural
checks to %2 and adds n? semantic checks. In the results, we find two affordances
gives a 32% reduction in the matching time, and four affordances gives a further
37% reduction.

When two or three systems have been discovered, in the case with four af-
fordances, we do not yet expect any matches. In fact the results show an almost
constant time, around 2 seconds, for matching when no matches are found. This
delay represents the overhead inherent in our prototype implementation of dis-
covery resulting from parsing WSDL and BPEL and other steps internal to
discovery.

Figure 6 shows the reduction in matching time as the number of affordances
increases towards the number of systems. It can be observed that the worst case
time involves one affordance or none, and the best case involves as many affor-
dances as there are networked systems (no semantic matches will be found and
so no behavioural checks will be required). This suggests that the domain on-
tology (taxonomy) in which the affordances are defined should be as detailed as
possible. Note however that increasing the number of affordances can decrease
the accuracy of categorisation as features (tokens in interface descriptions) be-
come increasingly ambiguous. This effect can be seen to an extent in the second
categorisation experiment with 10 categories compared to 2 categories in the
first experiment.

6 Related work

Interoperability is a well known problem and its investigation has been done in
many research contexts. For instance, in the form of supervisory control syn-
thesis [16], discrete controller synthesis [17], component adaptors [18], protocol
conversion [19,20,21], converter synthesis [22] to mention some. A work related
to our mediator synthesis approach is the seminal paper by Yellin and Strom on
protocol adaptor synthesis [23] that proposes an adaptor theory to characterise
and solve the interoperability problem of augmented interfaces of applications.

In more recent years increasing attention has been paid in the Web Service
area to business process integration and automatic mediation, e.g., [24,25,26,27],
which are related to our synthesis of mediators in some aspects. Among them, it
is worth mentioning the paper [28] on behavioural adaptation because it proposes
a matching approach based on heuristic algorithms to match services for the
adapter generation taking into account both the interfaces and the behavioural
descriptions. Moreover, the Web services community has been also investigat-
ing how to support service substitution to enable interoperability with different
implementations of a service (e.g., due to evolution or provision by different ven-
dors). While early work has focused on semi-automated, design-time approaches
[26,29], latest work concentrates on automated, run-time solutions [30,31]. This
latter relates to our work because of the exploitation of ontologies to reason about
interface mapping and the synthesis of mediators according to such mapping.

Despite the wide range of discovery protocols that heavily rely on seman-
tic annotations to perform service matchmaking [12,13] there are few imple-
mentations that do not assume that these services advertise their semantically-
annotated descriptions. The METEOR-S Framework [14] is able to assign se-
mantic concepts to web services by considering their WSDL descriptions but
without taking into account the unstructured data potentially available within
the documentation tag that can give more information about the category the
web service belongs to. Instead of attaching a category concept to a web ser-
vice, SAWSDL-MX2 [15] evaluates the similarity between a pair of web services
based on both structured and unstructured information included in their inter-
faces using support vector machines. This approach is the closest to ours but
is clearly not scalable especially when considering environments where services
may continuously be discovered.

Moreover, these approaches only consider the functionalities of the systems
to perform discovery, which may result in a false positive matching either due to
the imprecision of the learning process or because the behaviour has not been
considered. In our approach, the affordance matching is complemented with
behavioural matching so as to match pairs of systems more accurately. Indeed,
when two systems match we are able to synthesise a mediator that ensures their
interoperation.

7 Conclusions

The work we have described here aims to overcome a limitation of legacy dis-
covery mechanisms, namely that they do not provide a high-level semantic de-
scription of a system’s functionality (that we call an affordance). Through the
application of support vector machines for text categorisation, we have shown
that the burden of categorising systems, that is, determining their high-level
functional semantics, can be lifted from the engineer and performed automati-
cally with reasonable accuracy. The cases of inaccuracy can be divided into false
positives, where two NSs have been assigned the same affordance when in fact
they do not match, and false negatives, where two matching NSs are assigned
different affordances and hence no attempt to connect them will be made. Min-
imising the number of false negatives (i.e. maximising recall) is hence critical for
CONNECT. Greater accuracy may be achieved by finding more nuanced features,
such as the structure of the document or token proximity, on which to base the
categorisation.

Given such categorisation, affordance matching allows us to reduce the num-
ber of behavioural checks performed, and thus increase the performance of the
matchmaking process as a whole. Our results show that the gain is relative to the
number of affordances, with just two affordances providing a 32% performance
increase. This performance increase benefits our overall aim in the CONNECT
project, which is to provide solutions for interoperability at runtime, thus re-
quiring efficient runtime mechanisms to identify compatibility and find solutions
for overcoming incompatibilities.

In future work, we plan to investigate features that improve the accuracy of
the categorisation, and apply categorisation in other specific areas of CONNECT.
For example, it is desirable for each operation in an interface (as well as the in-
terface as a whole) to give its semantics through an associated ontology concept.
The approach taken in this paper may prove applicable to this problem.

Acknowledgements

This research has been supported by the EU FP7 projects: CONNECT — Emergent
Connectors for Eternal Software Intensive Networking Systems (project number
FP7 231167), EternalS — “Trustworthy Eternal Systems via Evolving Software,
Data and Knowledge” (project number FP7 247758) and by the EC Project,
LivingKnowledge — “Facts, Opinions and Bias” in Time (project number FP7
231126).

References

1. Blair, G.S., Bennaceur, A., Georgantas, N., Grace, P., Issarny, V., Nundloll, V.,
Paolucci, M.: The role of ontologies in emergent middleware: Supporting interop-
erability in complex distributed systems. In: Middleware’11. (2011)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.:

The Description Logic Handbook. Cambridge University Press (2003)

Keller, R.M.: Formal verification of parallel programs. Commun. ACM (1976)
Liskov, B.: Keynote address - data abstraction and hierarchy. In: Addendum to the
proceedings on Object-oriented programming systems, languages and applications
(Addendum). OOPSLA ’87, New York, NY, USA, ACM (1987) 17-34

Calinescu, R., Kikuchi, S.: Formal methods @ runtime. In: Monterey Workshop.
(2010) 122-135

Baresi, L., Di Nitto, E., Ghezzi, C.: Toward open-world software: Issue and chal-
lenges. Computer (2006)

Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using
machine learning techniques. In: Proceedings of the 2002 Conference on Empiri-
cal Methods in Natural Language Processing, University of Pennsylvania, United
States (2002) 79-86

Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Technical Report TR74-218, Department of Computer Science, Cornell University,
Ithaca, New York (1974)

Moschitti, A., Basili, R.: Complex linguistic features for text classification: A com-
prehensive study. In: Proceedings of the 26th European Conference on Information
Retrieval Research (ECIR 2004), Sunderland, United Kingdom (2004) 181-196
Moschitti, A.: Kernel methods, syntax and semantics for relational text catego-
rization. In: Proceedings of ACM 17th Conference on Information and Knowledge
Management (CIKM), Napa Valley, United States (2008)

Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A library
for large linear classification. Journal of Machine Learning Research 9 (2008)
1871-1874

Li, H., Du, X., Tian, X.: A wsmo-based semantic web services discovery framework
in heterogeneous ontologies environment. In: KSEM. (2007) 617-622

Pirro, G., Trunfio, P., Talia, D., Missier, P., Goble, C.A.: Ergot: A semantic-based
system for service discovery in distributed infrastructures. In: CCGRID. (2010)
263-272

Oldham, N., Thomas, C., Sheth, A.P., Verma, K.: Meteor-s web service annotation
framework with machine learning classification. In: SWSWPC. (2004) 137-146
Klusch, M., Kapahnke, P., Zinnikus, I.: Sawsdl-mx2: A machine-learning approach
for integrating semantic web service matchmaking variants. In: ICWS. (2009)
335-342

Brandin, B., Wonham, W.: Supervisory control of timed discrete-event systems.
IEEE Transactions on Automatic Control 39(2) (1994)

Ramadge, P., Wonham, W.: Supervisory control of a class of discrete event pro-
cesses. Siam J. Control and Optimization 25(1) (1987)

Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation.
J. Syst. Softw. 74 (2005)

Calvert, K.L., Lam, S.S.: Formal methods for protocol conversion. IEEE Journal
on Selected Areas in Communications 8(1) (1990) 127-142

Lam, S.S.: Correction to ”protocol conversion”. IEEE Trans. Software Eng. 14(9)
(1988) 1376

Okumura, K.: A formal protocol conversion method. In: SIGCOMM. (1986) 30-37
Passerone, R., de Alfaro, L., Henzinger, T.A., Sangiovanni-Vincentelli, A.L.: Con-
vertibility verification and converter synthesis: two faces of the same coin. In:
Proceedings of the 2002 IEEE/ACM international conference on Computer-aided
design. ICCAD ’02 (2002) 132-139

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Trans. Program. Lang. Syst. 19 (1997)

Emilia Cimpian and Adrian Mocan: WSMX Process Mediation Based on Chore-
ographies. In Bussler, C., Haller, A., eds.: Business Process Management Work-
shops. Volume 3812. (2005) 130-143

Vaculin, R., Neruda, R., Sycara, K.P.: An agent for asymmetric process mediation
in open environments. In Kowalczyk, R., Huhns, M.N., Klusch, M., Maamar, Z.,
Vo, Q.B., eds.: SOCASE. Volume 5006 of Lecture Notes in Computer Science.,
Springer (2008) 104-117

Motahari Nezhad, H.R., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
automated adaptation of service interactions. In: WWW ’07: Proceedings of the
16th international conference on World Wide Web, New York, NY, USA, ACM
(2007) 993-1002

Williams, S.K., Battle, S.A., Cuadrado, J.E.: Protocol mediation for adaptation
in semantic web services. In: ESWC. (2006) 635-649

Motahari Nezhad, H.R., Xu, G.Y., Benatallah, B.: Protocol-aware matching of
web service interfaces for adapter development. In: Proceedings of the 19th inter-
national conference on World wide web. WWW ’10, New York, NY, USA, ACM
(2010) 731-740

Ponnekanti, S., Fox, A.: Interoperability among independently evolving Web ser-
vices. In: Proc. ACM/IFIP/USENIX Middleware Conference. (2004) 331-351
Denaro, G., Pezzé, M., Tosi, D.: Ensuring interoperable service-oriented systems
through engineered self-healing. In: Proceedings of ESEC/FSE 2009, ACM Press
(2009)

Cavallaro, L., Nitto, E.D., Pradella, M.: An automatic approach to enable replace-
ment of conversational services. In: ICSOC/ServiceWave. (2009)

HeB3, A., Kushmerick, N.: Learning to attach semantic metadata to web services.
In: International Semantic Web Conference. (2003) 258-273

	Automatic Service Categorisation through Machine Learning in Emergent Middleware
	Amel Bennaceur, Valérie Issarny, Richard Johansson, Alessandro Moschitti, Romina Spalazzese, Daniel Sykes

