Parallel algebraic domain decomposition solver for the solution of augmented systems

Abstract : We consider the parallel iterative solution of indefinite linear systems given as augmented systems. Our numerical technique is based on an algebraic non overlapping domain decomposition technique that only exploits the graph of the sparse matrix. This approach to high-performance, scalable solution of large sparse linear systems in parallel scientific computing, is to combine direct and iterative methods. We report numerical and parallel performance of the scheme on large matrices arising from the finite element discretization of linear elasticity in structural mechanics problems.
Liste complète des métadonnées

https://hal.inria.fr/hal-00719512
Contributeur : Luc Giraud <>
Soumis le : vendredi 20 juillet 2012 - 09:25:57
Dernière modification le : vendredi 17 juin 2016 - 01:04:31

Identifiants

Collections

Citation

Emmanuel Agullo, Luc Giraud, Abdou Guermouche, Azzam Haidar, Jean Roman. Parallel algebraic domain decomposition solver for the solution of augmented systems. Advances in Engineering Software, Elsevier, 2012, 60-61, pp.23-30. 〈10.1016/j.advengsoft.2012.07.004〉. 〈hal-00719512〉

Partager

Métriques

Consultations de la notice

530