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Abstract: The theory of non-commutative rings allows determining whether or not there exists
an equation called algebraically essential in order to estimate the delay on a nonlinear system.
In this paper, it firstly recalls some literature results on algebraically essential equation. Then it
is shown that this equation is generally not enough to guarantee the delay estimation, thus the
notion of persistent signal with respect to delay estimation is introduced. Furthermore, based
on the definitions of algebraically essential equation and of persistent signal, a delay estimation
algorithm is proposed. Some simulation results have been presented in order to highlight the
robustness (with respect to measurement noise) of the proposed algorithm.
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1. INTRODUCTION

Time-delay systems are widely used to model concrete
systems in engineering sciences, such as biology, chemistry,
mechanics and so on Kolmanovskii and Myshkis (1999);
Niculescu (2001); Richard (2003). Among all, delay esti-
mation is one of the important topics in the field of time-
delay systems.

Up to now, various techniques have been proposed for
the delay identification problem, such as identification by
using variable structure observers Drakunov et al., by a
modified least squares technique Ren et al. (2005), by con-
volution approach Belkoura (2005), by using the fast iden-
tification technique proposed in Fliess and Sira-Ramirez
(2004) to deal with online identification of continuous-time
systems with structured entries Belkoura et al. (2009) and
so on.

Our previous work in Zheng et al. (2011) proposed neces-
sary and sufficient conditions to deduce an essential alge-
braic equation (which will be recalled in the next section)
for nonlinear time delay systems with unknown inputs,
which can be used to estimate the corresponding time
delay. This paper presents a delay estimation algorithm
for the deduced essential equation based on the results of
Zheng et al. (2011). The work of this paper can be seen
as a further study of Zheng et al. (2011) by proposing an
optimization method to estimate the delay. Unlike many
existing methods in the literature which are generally for
linear time delay system (see for example Björklund and

Ljung (2003)), the proposed algorithm works as well for
nonlinear time delay systems. Moreover, this algorithm is
robust with respect to noise.

This paper is organized as follows. Section 2 recalls some
necessary elements involved in this paper, which are given
in Xia et al. (2002) and Zheng et al. (2011). The delay
estimation algorithm is presented in Section 3, and an
illustrative example and the corresponding simulations are
given in Section 4 to highlight the proposed algorithm.

2. RECALL OF NECESSARY ELEMENTS

The proposed delay estimation algorithm of this paper is
based on the algebraic framework introduce in Xia et al.
(2002), and is an extension result of Zheng et al. (2011).
Therefore, before stating the main result, it is necessary
to recall the involved elements.

2.1 Algebraic framework

Let denote τ the basic time delay, and assume that the
times delays are multiple times of τ . Consider the following
nonlinear time-delay system:


















ẋ = f(x(t− iτ)) +
s

∑

j=0

gj(x(t− iτ))u(t− jτ)

y = h(x(t− iτ)) = [h1(x(t− iτ)), . . . , hp(x(t− iτ))]T

x(t) = ψ(t), u(t) = ϕ(t), t ∈ [−sτ, 0]
(1)



where x ∈ W ⊂ Rn denotes the state variables, u =
[u1, . . . , um]T ∈ Rm is the unknown admissible input, y ∈
Rp is the measurable output. Without loss of generality, we
assume that p ≥ m. And i ∈ S− = {0, 1, . . . , s} is a finite
set of constant time-delays, f , gj and h are meromorphic
functions 1 , f(x(t− iτ)) = f(x, x(t−τ), . . . , x(t−sτ)) and
ψ : [−sτ, 0] → Rn and ϕ : [−sτ, 0] → Rm denote unknown
continuous functions of initial conditions. In this work, it
is assumed for initial conditions ψ and ϕ, (1) admits a
unique solution.

Based on the algebraic framework introduced in Xia et al.
(2002), let K be the field of meromorphic functions of a
finite number of the variables from {xj(t−iτ), j ∈ [1, n], i ∈
S−}. With the standard differential operator d, define the
vector space E over K:

E = spanK{dξ : ξ ∈ K}

which is the set of linear combinations of a finite number
of one-forms from dxj(t− iτ) with row vector coefficients
in K. For the sake of simplicity, we introduce backward
time-shift operator δ, which means

δiξ(t) = ξ(t− iτ), ξ(t) ∈ K, for i ∈ Z+ (2)

and
δi (a(t)dξ(t)) = δia(t)δidξ(t)

= a(t− iτ)dξ(t− iτ)
(3)

for a(t)dξ(t) ∈ E , and i ∈ Z+.

Let K(δ] denote the set of polynomials of the form

a(δ] = a0(t) + a1(t)δ + · · ·+ ara(t)δ
ra (4)

where ai(t) ∈ K. The addition in K(δ] is defined as usual,
but the multiplication is given as

a(δ]b(δ] =

ra+rb
∑

k=0

i≤ra,j≤rb
∑

i+j=k

ai(t)bj(t− iτ)δk (5)

Note that K(δ] satisfies the associative law and it is a non-
commutative ring (see Xia et al. (2002)). However, it is
proved that the ring K(δ] is a left Ore ring Ježek (1996);
Xia et al. (2002), which enables to define the rank of a
module over this ring. Let M denote the left module over
K(δ]: M = spanK(δ]{dξ, ξ ∈ K}, where K(δ] acts on dξ

according to (2) and (3).

With the definition of K(δ], (1) can be rewritten in a more
compact form as follows:















ẋ = f(x, δ) +
m
∑

i=1

Giui(t)

y = h(x, δ)
x(t) = ψ(t), u(t) = ϕ(t), t ∈ [−sτ, 0]

(6)

where f(x, δ) = f(x(t − iτ)) and h(x, δ) = h(x(t − iτ))

with entries belonging to K, Gi =
∑s

j=0 g
j
i δ

j with entries

belonging to K(δ].

2.2 Notations and Definitions

Let f(x(t−jτ)) and h(x(t−jτ)) for 0 ≤ j ≤ s respectively
be an n and p dimensional vector with entries fr ∈ K for
1 ≤ r ≤ n and hi ∈ K for 1 ≤ i ≤ p. Let

∂hi

∂x
=

[

∂hi

∂x1
, · · · ,

∂hi

∂xn

]

∈ K1×n(δ] (7)

1 means quotients of convergent power series with real coefficients
Conte et al. (1999); Xia et al. (2002).

where for 1 ≤ r ≤ n:

∂hi

∂xr
=

s
∑

j=0

∂hi

∂xr(t− jτ)
δj ∈ K(δ]

then the Lie derivative for nonlinear systems without
delays can be extended to nonlinear time-delay systems as
it was first proposed by Oguchi et al. (2002). Our extension
is based on the framework of Xia et al. (2002) as follows:

Lfhi =
∂hi

∂x
(f) =

n
∑

r=1

s
∑

j=0

∂hi

∂xr(t− jτ)
δj (fr) ∈ K (8)

For j = 0, (8) is the classical definition of the Lie derivative
of h along f . For hi ∈ K, define

LGi
hi =

∂hi

∂x
(Gi) ∈ K(δ]

After having defined the derivative of function belonging
to K(δ], let study the time delay identification for system
(6).

Definition 1. An output equation

α(h, ḣ . . . , h(k), δ) = 0 (9)

is said to involve δ in an essential way if it cannot be
written as α(h, ḣ . . . , h(k), δ) = a(δ]α̃(h, ḣ . . . , h(k)) with
a(δ] ∈ K(δ].

As stated in Anguelova and Wennberg (2008), if there
exists a function for (6) containing only the output, its
derivatives and delays in an essential way, then the delay
can be identified by numerically finding zeros of such a
function. Thus delay identification for (6) becomes to seek
such a function.

Remarks 1.
Existence of equation (9) is not enough to guarantee the
possibility to estimate the delay δ. For examples:
• if h, ḣ . . . , h(k) are equal to zero for all t > −τ , equation
(9) is equal to zero for all τ .
• if the signal h is periodic of period T , it is only possible
to detect τ ∈ [0, T [.

2.3 Identifiability

In order to estimate the time delay for (6), one needs
to derive essential equation from (6) which in fact is
equivalent to study the delay identifiability of (6). Our
previous work in Zheng et al. (2011) has given necessary
and sufficient conditions to seek the essential equation for
nonlinear time delay systems.

Generally speaking, two cases are possible. The simplest
case is to estimate the delay from only the outputs of (6).
This implicitly means that the output of (6) is dependent
over K(δ], and the deduced essential equation from the
outputs can be used directly to estimate the delay. The
complicated case is that the output of (6) is independent
over K(δ], i.e., rankK(δ]

∂h
∂x

= p, and this needs to analyze
the dynamics of the studied systems.

Necessary and sufficient condition for the simplest case
has been given in Theorem 1 in Zheng et al. (2011).
For the second case, sufficient condition can be found in
Zheng et al. (2011) (Theorem 3) in order to guarantee
the existence of a function containing only the output, its
derivatives and delays. Theorem 4 of Zheng et al. (2011)



stated necessary and sufficient condition to check whether
the deduced function can be used to estimate the delay.
Since the aim of this paper is to propose delay estimation
algorithm based on our previous work in Zheng et al.
(2011), in order to avoid the redundance, interested reader
can refer to Zheng et al. (2011) for those results.

3. DELAY ESTIMATION ALGORITHM

In this paper, only local estimation of the time delay τ
is investigated. Moreover, we restrict the time delay by
making the following assumption.

Assumption 1. The time delay τ for the studied system
is considered to be constant or sufficiently slowly variable
with respect to the delay estimation process.

It is well-known that the persistent exciting condition in
parameter estimation is necessary. In this paper, the same
assumption is imposed as well, i.e. it is supposed that the
signal is sufficiently persistent with respect to the essential
algebraic equation. It is worthy noting that the notion of
persistent signal is close to that of persistent input Dufour
et al. (2010) (quite different from the universal input
Gauthier and Bornard (1981)) in observation problem or
persistent excitation Narendra and Annaswamy (1987) in
adaptive problem.

Definition 2. The signal is sufficiently persistent with re-
spect to the equation (9) for the interval of delay uncer-
tainty [0, T [, if there exists a bounded θ > 0 such that
there exists one and only one τ ∈ [0, T [ such that

∫ θ

0

(α(h, ḣ . . . , h(j), τ))2dt = 0

For the sake of notation simplicity , the essential equation
α is indifferently noted in function of the operator δ or the
time delay τ . So, based on Definitions 1 and 2, it is thus
possible to design a delay estimation algorithm.
In this paper, only an algorithm based on the classical
descent optimization method is given in order to highlight
the result proposed in Zheng et al. (2011) according to
Definitions 1 and 2 given above. Nevertheless, it is im-
portant to mention that the proposed algorithm is robust
to noise, and can be used to estimate time delay for
nonlinear time delay system, since many existing delay
estimation algorithms in the literature are generally for
linear process (see Björklund and Ljung (2003) and the
reference therein). This restriction to linear estimation is
principally due to:
• In nonlinear case, the estimated time delay is generally
only a local extremum solution. In the algorithm presented
below, this problem is overcome by adding a random pro-
cess.
• For nonlinear equation, a noisy signal will normally
introduce a bias. For example, considering y a signal and
η a Gaussian noise, then E(y + η) is equal to E(y), but
E((y+η)2) is not equal to E(y2). This theoretical difficulty
is overcome in the algorithm proposed below due to the
fact that an exact solution of the essential equation is not
expected. More precisely, if E(α(y, ,̇ .., τe + η)2) is smaller
than E(α(y, ,̇ .., τw)

2) where τe is the exact estimate delay
and τw is a wrong estimate delay, our algorithm work, this
sets the problem of estimation precision with respect to
the noise.

For the sake of simplicity, hereafter, it is assumed that the
unknown time delay τL is a multiple of a known minimum
delay τm (thus τL = Liτm where Li ∈ N is the unknown
integer to be identified) and there exists also a maximum
expected delay τM = LMτm with LM ∈ N and bounded.
Then, the delay estimation algorithm can be stated as
follows.
Step 1: (Initialization step)
At time t = 0, initial values L0 and Lr are obtained from
a random number generator, where L0 and Lr are chosen
in the set {0, 1, ..., LM}.
Step 2:
For t ∈]0, θ[, where θ is the time integration frame (θ is
chosen with respect to Definition 2), the following integrals
are computed:

I(L0) =

∫ θ

0

α(h, ḣ . . . , h(j), L0τm)2dt

I(L0) =

∫ θ

0

α(h, ḣ . . . , h(j), L0τm)2dt (10)

I(L0̄) =

∫ θ

0

α(h, ḣ . . . , h(j), L0̄τm)2dt

I(Lr) =

∫ θ

0

α(h, ḣ . . . , h(j), Lrτm)2dt

where L0 is the max of L0 − 1 and 0; L0̄ is the min

of L0 + 1 and LM . The objective for introducing those
different integrals is to overcome the estimation overflow.

Step 3 (2k + 1 with k = 1):
At time t = θ, L1 is taken equal to the value of the set
{L0, L0, L0̄, Lr} which minimizes I(.) in (10) and a new

Lr is randomly chosen.

Step 4 (2k + 2 with k = 1):
For t ∈]θ, 2θ[=]kθ, (k + 1)θ[ (with k = 1), the following
integrals are computed:

I(L1) =

∫ θ

0

α(h, ḣ . . . , h(j), L0τm)2dt

I(L1) =

∫ θ

0

α(h, ḣ . . . , h(j), L0τm)2dt (11)

I(L1̄) =

∫ θ

0

α(h, ḣ . . . , h(j), L0̄τm)2dt

I(Lr) =

∫ θ

0

α(h, ḣ . . . , h(j), Lrτm)2dt

where L1 is the max of L1 − 1 and 0; L1̄ is the min of

L1 + 1 and LM .

Recursively

Step 2k + 1:
At time t = kθ, Lk is taken equal to the value of the set
{Lk-1, Lk−1, L ¯k−1, Lr} which minimizes I(.) and a new Lr

is randomly chosen.

Step 2k + 2:
For t ∈]kθ, (k+1)θ[, the following integrals are computed:



I(Lk) =

∫ θ

0

(α(h, ḣ . . . , h(j), Lkτm)2dt

I(Lk) =

∫ θ

0

(α(h, ḣ . . . , h(j), (Lk)τm)2dt (12)

I(Lk̄) =

∫ θ

0

(α(h, ḣ . . . , h(j), Lk̄τm)2dt

I(Lr) =

∫

0

θ(α(h, ḣ . . . , h(j), (Lrτm)2dt

where Lk is the max of Lk − 1 and 0; Lk̄ is the min of

L1 + 1 and LM .

4. SIMULATION RESULTS

In order to highlight the proposed algorithm, this section
gives only a simple example for which delay can be
estimated from only its output. For this, let consider the
following dynamical system:















ẋ1 = x2 + 10πx1(1− x21 − x22)
ẋ2 = −x1 + 10πx2(1− x21 − x22)
y1 = x1
y2 = x1δx1 + x21

(13)

It can be seen that
∂h

∂x
=

(

1 0
δx1 + 2x1 + x1δ 0

)

which yields rankK(δ]
∂h
∂x

= 1 and rankK
∂h
∂x

= 2. Thus
Theorem 1 of Zheng et al. (2011) is satisfied, and the time
delay of system (13) can be estimated.

In fact, a straightforward calculation gives

y2 = y1δy1 + y21

which permits to estimate the time delay δ by applying
the algorithm presented in the previous section.

For the simulation, τm is equal to 0.01s, τM is equal to
0.1s, the estimation time frame θ is equal to 0.1s and the
delay to be estimated is 0.03s. Moreover, as it is shown in
Fig 1 the outputs are sinusoidal but with a period greater
than τmax, then the signals are sufficiently persistent with
respect to the considered delay.

The simulation results for different scenarios are depicted
in Fig. 1-6, and one can draw the following conclusions.

• Fig. 1 and Fig. 2 show respectively the outputs y1, y2
and the delay estimation for system without noise, in this
case the proposed algorithm works satisfactorily. • Fig.
3 and Fig. 4 show respectively the outputs y1, y2 and the
delay estimation in the case of correlated noise η (Gaussian
noise of power 0.001). For these simulations, the measured
output y2,mesured is equal to (y1 + η)δ(y1 + η) + (y1 + η)2

and the measured output y1,measured is equal to y1 + η.
In this case, the noise power has no influence on the
delay detection as it is shown in Fig 4. This is due to
the fact that the essential equation is also verified by
y1 + η. Nevertheless, this case is unrealistic and hereafter
a uncorrelated noises will be considered. • Fig. 5 and Fig.
6 show the result with correlated noises. In this case the
measured output y2,mesured is equal to (y1δy1+(y1+)2+η2
and the measured output y1,measured is equal to y1 + η1
with η1 and η2 to uncorrelated gaussian noises of power
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Fig. 1. y1 and y2 without noise
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Fig. 2. Delay estimation without noise
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Fig. 3. y1 and y2 with correlated noises

0.00001. For the considered system and delay estimation
algorithm, this level of noise is an upper limit for correct
delay detection.

5. CONCLUSION

Our previous work of Zheng et al. (2011) gave necessary
and sufficient conditions to deduce the essential equations
for nonlinear time delay systems in order to estimate the
corresponding delay. As a further work based on Zheng
et al. (2011), this paper proposed a delay estimation
algorithm based on the deduced essential equation by
using optimization method. An illustrative example is
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Fig. 4. Delay estimation with correlated noises

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2

3

4

y1
 in

 r
ed

 a
nd

 y
2 

in
 b

lu
e

time

Fig. 5. y1 and y2 with uncorrelated noises
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Fig. 6. Delay estimation with uncorrelated noises

presented as well to show the feasibility and robustness of
the proposed delay estimation algorithm. Future works will
be done to improve the identification algorithm, treating
more than one delay and study the closed loop control
based on the estimation of the state and delays.
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