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Abstract

As a complement to a recently proposed quadratic programming (QP)-based
method for linear regression estimation from quantized or binary data, this report
presents a complete input condition ensuring the uniqueness of result of the QP-
based method.

1 Introduction

Quantized data are typically produced by the process of analog-to-digital conversion and
has been widely studied in signal encoding and digital representation. System identifica-
tion based on quantized data has been investigated in quite a few articles [7][10][18][13]
[14][17][1][2][6][5][8][3][4]. Binary data are in principle special cases of quantized data;
however, as the information of original data is greatly lost during this particular quanti-
zation procedure, most of the existing identification methods for quantized data cannot
be directly applied to binary measurements. Hence, some special methods have been
designed [11][12][15][16][6] [3] for this case.

Recently a quadratic programming (QP)-based method for quantized system identi-
fication has been proposed in [9] with the the following advantages:

• The QP-based method has mild requirements on identification experiments.

• The QP-based method is equally applicable to both general quantized data and to
binary measurements without any modification.

After a brief recall of the QP-based method in Section 2, a condition ensuring the
uniqueness of its result will be presented in the following sections.
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2 The QP-based method

Consider the linear regression
z(t) = φT (t)θ + e(t) (1)

with the regression vector φ(t) ∈ R
n, the regression coefficient vector θ ∈ R

n, an additive
white noise e(t), and the discrete sampling index t = 1, 2, 3, . . . , N .

The output z(t) ∈ R is not directly accessible; instead, its quantized counterpart y(t)
is available, which is related to z(t) by a known quantificaton function q(·), i.e.,

y(t) = q (z(t)) = q
(

φT (t)θ + e(t)
)

.

A simple example of the quantification rule q(·) is to round the real value z(t) to the
nearest integer value.

Given the quantized output y(t), the input u(t) and the quantification rule q, the
objective is to estimate the unknown parameter vector θ.

As the quantification rule q(·) is a nonlinear stairwise function and its derivative is
zero except at some singular points, it is impossible to apply gradient-based optimization
methods to minimize the errors between quantified measurement and the nonlinear model
output.

The QP-based method proposed in [9] is as follows. As the quantification rule q is
assumed available, for any observed quantized output y(t) (which takes discrete values),
it is known that

α (y(t)) ≤ z(t) < β (y(t)) , (2)

where α and β are known nonlinear functions depending on q. For example, if the quan-
tification function q simply rounds the real value z(t) to the nearest integer, then,

y(t)− 0.5 ≤ z(t) < y(t) + 0.5.

If the system output before quantification z(t) was directly accessible, the parameters in
θ could be estimated by minimizing the least squares criterion:

θ̂ = argmin
θ

1

N

N
∑

t=1

(

z(t)− φT (t)θ
)2

. (3)

Such a simple method cannot be applied, because z(t) is not directly accessible. However,
some information about z(t) is available through the quantized output y(t), and this in-
formation is expressed by the inequalities (2). By combining the least squares criterion (3)
and the inequalities (2), the parameter vector θ can be estimated through the constrained
optimization problem:

(

ẑ(t), θ̂
)

= arg min
z(t),θ

1

N

N
∑

t=1

(

z(t)− φT (t)θ
)2

, (4)

s.t. α (y(t)) ≤ z(t) < β (y(t)) , ∀t = 1, . . . , N.

This constrained optimization problem can be reformulated in the form of a standard QP
problem as follows. Define

Z :=











z(1)
z(2)
...

z(N)











, Φ :=











φT (1)
φT (2)

...
φT (N)











,

2



we reformulate the loss function in (4) as

1

N

N
∑

t=1

(

z(t)− φT (t)θ
)2

,

=
1

N
(Z − Φθ)T (Z − Φθ)

=
1

N

(

ZTZ − ZTΦθ − θTΦTZ + θTΦTΦθ
)

=
1

N

[

θT ZT
]

[

ΦTΦ −ΦT

−Φ I

] [

θ

Z

]

= :
1

N
XTHX

where

X :=

[

θ

Z

]

, H :=

[

ΦTΦ −ΦT

−Φ I

]

.

The original estimation problem in (4) is then equivalent to a standard QP problem,

min
X

XTHX, (5)

s.t. XL ≤ X ≤ XU .

Here XL and XU are lower and upper bounds of X,

XL :=











θL
α (y (1))

...
α (y (N))











, XU :=











θU
β (y (1))

...
β (y (N))











(6)

where θL and θU are some assumed lower and upper bounds of θ, respectively. If no such
bounds on θ are available, then they can be ignored in the above QP problem. In the
sequel, this way of estimating θ is referred to as the QP-based method. Note that both
z(t) and θ are estimated by the QP-based method; hence the number of unknowns to be
estimated increases with the data length N .

3 The complete Input Condition

This section introduces a so-called complete input condition to ensure unique estimation
of the parameter vector θ and the non quantized output samples in Z.

The matrix H in (5) is positive semi-definite, not strictly positive definite, since

H =

[

ΦTΦ −ΦT

−Φ I

]

=
[

Φ −I
]T [

Φ −I
]

is rank-deficient. Thus, the QP problem (5) is convex, but not strictly convex. As a result,
it is possible that the global minimum is reached at more than one point. The condition
on Φ specified in Definition 1 below, referred to as the complete input condition, ensures
that the global minimum is unique.
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If the matrix Φ ∈ R
N×n has full column rank, then its QR decomposition is

Φ = [Q0 Q1]

[

R0

0

]

(7)

with a unitary matrix [Q0 Q1] composed of Q0 ∈ R
N×n, Q1 ∈ R

N×(N−n), and a non
singular matrix R0 ∈ R

n×n.

Definition 1 If the matrix Φ and the corresponding matrices Q0, Q1 defined in (7) are
such that

1. the matrix Φ ∈ R
N×n has full column rank;

2. the set
{

Z : ZL ≤ Z < ZU , Q
T
1Z = 0

}

is empty or has a singleton element, where
ZL and ZU are as XL and XU defined in (6), after removing the components θL and
θU ;

3. none of the rows of Q1 is solely filled with zeros, nor is any row of Q0.

then the sequence of u(t) constituting Φ is called a complete input.

Proposition 1 If the matrix Φ satisfies the complete input condition defined in Defini-
tion 1, then the minimum of the QP problem (5) is reached at a single point X.

Condition 1 is easy to understand, as it is also required to ensure the uniqueness
of the least squares solution from non quantized data. Conditions 2 prevents that the
unconstrained minimum of the quadratic criterion has a non singleton intersection with
the constrained area of Z, and Conditions 3 excludes degenerate observations.

The formal proof of Proposition 1 is quite lengthy and will be presented in the next
section.

4 Proofs related to the complete input condition

The proof of Proposition 1 will be made in several steps, first considering an equivalent
QP problem by eliminating θ, then the QP problem ignoring the lower and upper bounds
of θ, before considering the original QP problem (5).

4.1 The QP problem after minimization w.r.t. θ

Let us first minimize the quadratic criterion of the QP problem (5) with respect to θ for
any fixed value of Z:

min
θ

XTHX = min
θ
(Z − Φθ)T (Z − Φθ). (8)

This minimization is being considered by ignoring the possibly available lower and upper
bounds of θ, which will be considered later in Section 4.5.
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Since Φ has full column rank (Condition 1 of Definition 1), this minimization amounts
to replacing θ by Φ(ΦTΦ)−1ΦTZ, then

min
θ

XTHX = ZT
(

I − Φ(ΦTΦ)−1ΦT
)2

Z

= ZT
(

I − Φ(ΦTΦ)−1ΦT
)

Z (9)

In what follows, let us first consider the reduced QP problem

min
Z

ZT
(

I − Φ(ΦTΦ)−1ΦT
)

Z (10a)

s.t. ZL ≤ Z ≤ ZU (10b)

whose relationship with the original QP problem (5) is obvious.

4.2 Some notations

The following notations will be used in the proofs.

The loss function

V (Z) , ZT
(

I − Φ(ΦTΦ)−1ΦT
)

Z (11)

The constrained area

C , {Z ∈ R
N : ZL ≤ Z ≤ ZU} (12)

The level set for a given value V̄ > 0

L(V̄ ) , {Z ∈ R
N : V (Z) = V̄ } (13)

For two points Z†, Z‡ ∈ R
N , l(Z†, Z‡) denotes the straight line segment joining Z† and

Z‡ ∈ R
N , i.e.,

l(Z†, Z‡) , {Z ∈ R
N : Z = ρZ† + (1− ρ)Z‡, ρ ∈ [0, 1]} (14)

Remind also the QR decomposition of a full column rank Φ:

Φ = [Q0 Q1]

[

R0

0

]

(15)

with Q0 ∈ R
N×n, Q1 ∈ R

N×(N−n) such that

[Q0 Q1][Q0 Q1]
T = I,

and a non singular matrix R0 ∈ R
n×n. Then it is easy to check that

V (Z) , ZT
(

I − Φ(ΦTΦ)−1ΦT
)

Z

= ZT (I −Q0Q
T
0 )Z

= ZTQ1Q
T
1Z (16)

5



4.3 Some lemmas

Lemma 1 The constrained area C = {Z ∈ R
N : ZL ≤ Z ≤ ZU} is an N-dimensional

hyperrectangle with each of its faces(of dimension 1, 2, . . . , N − 1) parallel to at least one
of the Z-axes, and also orthogonal to at least one of the Z-axes.

These facts are immediate consequences of the definition of the hyperrectangle C.

Lemma 2 If for two given vectors p, q ∈ R
N , the straight line ρp+ q parametrized by the

free real scalar ρ partly belongs to the level set L(V̄ ) = {Z ∈ R
N : V (Z) = V̄ }, or more

precisely, if there exits an interval [ρ1, ρ2] with ρ1 < ρ2 such that

Z ∈ {ξ ∈ R
N : ξ = ρp+ q, ρ ∈ [ρ1, ρ2]} =⇒ Z ∈ L(V̄ ),

then QT
1 p = 0.

To prove this lemma, notice that V (ξ) = V (ρp+ q) = (ρp+ q)TQ1Q
T
1 (ρp+ q), and

(ρp+ q)TQ1Q
T
1 (ρp+ q) = V̄

for all ρ ∈ [ρ1, ρ2], hence the polynomial in ρ

(pTQ1Q
T
1 p)ρ

2 + 2(pTQ1Q
T
1 q)ρ+ qTQ1Q

T
1 q − V̄ = 0

for all ρ ∈ [ρ1, ρ2]. It then yields pTQ1Q
T
1 p = 0, and consequently QT

1 p = 0.

Lemma 3 The converse of Lemma 2 also holds: for two given vectors p, q ∈ R
N , if

QT
1 p = 0, then the straight line ρp+ q parametrized by the free real scalar ρ belongs to the

level set L(qTQ1Q
T
1 q).

The proof of this lemma can be made by inverting the steps of the proof of Lemma 2.

4.4 Complete input condition for the reduced QP problem

Now we are ready to prove the reduced version of Proposition 1, stated as follows.

Proposition 2 If Φ satisfies the complete input condition defined in Definition 1, the
minimum of the reduced QP problem (10) is reached at a single point Z.

Proof of Proposition 2.

For a proof by contradiction, first assume that there are at least two different values
Z† 6= Z‡ in the constrained area C where the constrained minimum V ∗ of the loss function
is reached, i.e.,

V ∗ = V (Z†) = V (Z‡).

Because the considered QP problem is convex, V ∗ is certainly the constrained global min-
imum of V (Z).

Because of Condition 2 specified in Definition 1, V ∗ > 0, hence L(V ∗) is not the
lowest level set of L(0).
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By the convexity of the constrained area C, all the points on the straight line segment
between Z† and Z‡, namely l(Z†, Z‡), are also within C. Because of the convexity of the
loss function V (Z), any point Z ∈ l(Z†, Z‡) satisfies V (Z) ≤ V ∗. On the other hand,
because V ∗ is the global constrained minimum, V (Z) ≥ V ∗, hence certainly V (Z) = V ∗

for any point Z ∈ l(Z†, Z‡). Therefore the segment l(Z†, Z‡) joining Z† and Z‡ belongs
to the level set L(V ∗) and also to the constrained area C.

L(V ∗) and C have at least a common straight line l(Z†, Z‡) joining two distinct
points Z† and Z‡. Depending on the positions of Z† and Z‡ in C (inside or on the
border), the level set L(V ∗) (an (N − 1)-dimensional manifold) either cuts C or is a
tangent hypersurface outside C. More precisely, there are three possible cases regarding
L(V ∗) and C:

1. L(V ∗) cuts C into at least two subsets of non empty volumes, or

2. L(V ∗) partly coincides with an edge (one dimensional face) of C, or

3. L(V ∗) partly coincides with a two or higher dimensional face of C.

For case (1), because V ∗ > 0, the loss function V (Z) < V ∗ would hold for some Z

at one side of the level set L(V ∗) inside one of the separated subsets of C. This case is
impossible, since V ∗ is the global constrained minimum value of V (Z).

For case (2), l(Z†, Z‡) belongs to both L(V ∗) and an edge of C. This edge of C
is parallel to one of the Z-axes (Lemma 1), say Zi, so is l(Z†, Z‡). Then any point
Z ∈ l(Z†, Z‡) can be parametrized as Z = ρei + Z† with ei being the i-th standard basis
vector of RN (a vector filled with zeros except the i-th component equal to 1).

It then follows from Lemma 2 that QT
1 ei = 0. This result implies that the i-th row

of Q1 is filled with zeros, that is in contradiction with Condition 3. Hence this case is
impossible.

For case (3), one of the faces of C, say the face F , shares the common line segment
l(Z†, Z‡) with L(V ∗). The face F can be of dimension m = 2, 3, . . . , or N − 1. The line
segment l(Z†, Z‡) does not coincide with any border of the face F , as any border of F is
a face of C of dimension lower than m, which would be considered at the place of F .

Let Z∗ ∈ l(Z†, Z‡) be a point off any border of the face F . Let also q denote any
column of Q0, then QT

1 q = 0 (remind that [Q0 Q1] is a unitary matrix). By Lemma 3, the
straight line Z = ρq+Z∗ belongs to the same level set L(Z∗TQ1Q

T
1Z

∗) = L(V ∗), because
Z∗ ∈ l(Z†, Z‡) ⊂ L(V ∗).

This straight line Z = ρq + Z∗ belonging to L(V ∗) cannot cross the face F of C,
otherwise L(V ∗) would cut C as treated in case (1). Hence q is parallel to the face F ,
which is orthogonal to one of the Z-axes, say Zi, therefore q is also orthogonal to Zi.
Then qT ei = 0 with ei the i-th standard basis vector of RN . As q is any column of Q0,
then QT

0 ei = 0. This result implies that the i-th row of Q0 is filled with zeros, that is in
contradiction with Condition 3. Hence this case is impossible.

As the cases (1-3) are exhaustive, the assumption made at the begging of this proof,
namely there are at least two different Z values where the constrained minimum is reached,
is impossible. Hence the minimum must be unique under the assumed complete input
condition.
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4.5 Back to the original QP problem

Now let us consider the QP prolem (5), but ignore for the moment the possibly available
bounds θL, θU on θ. This QP problem can be solved by minimizing first in θ for any fixed
value of Z, and by solving the the resulting the reduced QP problem (10). It has been
shown that, if Φ satisfies the complete input condition, then the reduced QP problem (10)
has a unique solution in Z, say Z∗ then θ∗ , (ΦTΦ)−1ΦTZ∗ is also unique. The pair θ∗, Z∗

then constitutes the unique solution of the QP prolem (5).

Finally, let us consider the QP prolem (5) with the possibly available bounds on θ,
namely θL ≤ θ ≤ θU . This has the effect of further constraining the previously considered
problem into a convex subset, which preserves the uniqueness of the solution, under the
complete input condition. Hence Proposition 1 is proved.
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