M. J. Anderson and J. Robinson, Permutation Tests for Linear Models, Australian <html_ent glyph="@amp;" ascii="&"/> New Zealand Journal of Statistics, vol.43, issue.1, pp.75-88, 2001.
DOI : 10.1111/1467-842X.00156

C. Chu, S. K. Kim, Y. Lin, Y. Yu, G. R. Bradski et al., Mapreduce for machine learning on multicore, NIPS, pp.281-288, 2006.

J. Dean and S. Ghemawat, MapReduce, Communications of the ACM, vol.51, issue.1, pp.107-113, 2008.
DOI : 10.1145/1327452.1327492

R. M. Duvoisin, L. Villasana, M. J. Davis, D. G. Winder, and J. Raber, Opposing roles of mGluR8 in measures of anxiety involving non-social and social challenges, Behavioural Brain Research, vol.221, issue.1, pp.50-54, 2011.
DOI : 10.1016/j.bbr.2011.02.049

A. C. Chen, ) with theta power of event-related oscillations and alcohol dependence, American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, vol.13, issue.17, pp.150-359, 2009.
DOI : 10.1002/ajmg.b.30818

F. Bunea, Penalized least squares regression methods and applications to neuroimaging, NeuroImage, vol.55, issue.4, pp.1519-1527, 2011.
DOI : 10.1016/j.neuroimage.2010.12.028

G. Schumann, The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology, Molecular Psychiatry, vol.47, issue.12, pp.1128-1139, 2010.
DOI : 10.1016/j.brainres.2006.03.029

J. Elia, Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder, Nature Genetics, vol.79, issue.1, pp.78-84, 2012.
DOI : 10.1186/gb-2003-4-5-p3

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310555

J. L. Stein, Voxelwise genome-wide association study (vGWAS), NeuroImage, vol.53, issue.3, pp.1160-1174, 2010.
DOI : 10.1016/j.neuroimage.2010.02.032

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900429

M. J. Robbins, Evaluation of the mGlu8 receptor as a putative therapeutic target in schizophrenia, Brain Research, vol.1152, pp.215-227, 2007.
DOI : 10.1016/j.brainres.2007.03.028

O. Kohannim, Boosting power to detect genetic associations in imaging using multilocus , genome-wide scans and ridge regression, Biomedical Imaging: From Nano to Macro IEEE International Symposium on, pp.1855-1859, 2011.

S. Laguitton, Soma-workflow: a unified and simple interface to parallel computing resources, MICCAI Workshop on High Performance and Distributed Computing for Medical Imaging, 2011.

S. Purcell, PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses, The American Journal of Human Genetics, vol.81, issue.3, pp.559-575, 2007.
DOI : 10.1086/519795

W. J. Kent, The Human Genome Browser at UCSC, Genome Research, vol.12, issue.6, pp.996-1006, 2002.
DOI : 10.1101/gr.229102

D. Freedman and D. Lane, A nonstochastic interpretation of reported significance levels, Journal of Business & Economic Statistics, vol.1, issue.4, pp.292-98, 1983.

V. Fritsch, G. Varoquaux, B. Thyreau, J. Poline, and B. Thirion, Detecting Outlying Subjects in High-Dimensional Neuroimaging Datasets with Regularized Minimum Covariance Determinant, Med Image Comput Comput Assist Interv, vol.41, issue.3, pp.264-271, 2011.
DOI : 10.1016/j.neuroimage.2008.02.042

URL : https://hal.archives-ouvertes.fr/inria-00626857

X. Gao, L. C. Becker, D. M. Becker, J. D. Starmer, and M. A. Province, Avoiding the high Bonferroni penalty in genome-wide association studies, Genetic Epidemiology, vol.165, issue.1, pp.100-105, 2010.
DOI : 10.1002/gepi.20430

S. Hayasaka and T. E. Nichols, Validating cluster size inference: random field and permutation methods, NeuroImage, vol.20, issue.4, pp.2343-2356, 2003.
DOI : 10.1016/j.neuroimage.2003.08.003

P. E. Kennedy, Randomization tests in econometrics, Journal of Business & Economic Statistics, vol.13, issue.1, pp.85-94, 1995.

N. Meinshausen and P. Bühlmann, Stability selection, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.7, issue.4, pp.417-473, 2010.
DOI : 10.1111/j.1467-9868.2010.00740.x

D. A. Nielsen, F. Ji, V. Yuferov, A. Ho, A. Chen et al., Genotype patterns that contribute to increased risk for or protection from developing heroin addiction, Molecular Psychiatry, vol.155, issue.4, pp.417-428, 2008.
DOI : 10.1158/1078-0432.CCR-05-2440

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810149

S. D. Pollak and D. J. Kistler, Early experience is associated with the development of categorical representations for facial expressions of emotion, Proceedings of the National Academy of Sciences, vol.99, issue.13, pp.999072-9076, 2002.
DOI : 10.1073/pnas.142165999

G. Salimi-khorshidi, S. M. Smith, and T. E. Nichols, Adjusting the effect of nonstationarity in cluster-based and TFCE inference, NeuroImage, vol.54, issue.3, pp.2006-2019, 2011.
DOI : 10.1016/j.neuroimage.2010.09.088

S. M. Smith and T. E. Nichols, Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference, NeuroImage, vol.44, issue.1, pp.83-98, 2009.
DOI : 10.1016/j.neuroimage.2008.03.061

H. Takaki, R. Kikuta, H. Shibata, H. Ninomiya, N. Tashiro et al., ) with schizophrenia, American Journal of Medical Genetics, vol.53, issue.1, pp.6-14, 2004.
DOI : 10.1002/ajmg.b.20108

M. Vounou, T. E. Nichols, and G. , Discovering genetic associations with high-dimensional neuroimaging phenotypes: A sparse reduced-rank regression approach, NeuroImage, vol.53, issue.3, pp.1147-1159, 2010.
DOI : 10.1016/j.neuroimage.2010.07.002