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ECL: the Event Constraint Language 3

n Domain Specific Modeling Languages, the metamodel captures the domain concepts and their rela-
tionships. The Object Constraint Language (OCL) can be used to add structural invariants or to describe
pre and post conditions on method calls. However, both OCL and current metamodeling languages fail
in specifying concurrency, causality relationships and timed behavior of the models.

In this paper, we present a model-driven approach to a formal and explicit specification of causal
and timed relationships within models by extending the OCL. We describe our domain-specific modeling
language dedicated to the definition of such behavioral invariants and illustrate its use on simple use
cases.

1 Introduction

Models abstract away complex systems to focus on the relevant aspects only. An adequate abstractions
should allow early validation/verification of the system. Consequently, the model and its underlying
semantics are often specific and driven by the expected kinds of analyses and the nature of the properties to
be verified. In many domains, models abstract the relative orderings of actions whose execution order are
of prime importance: business process models, web services orchestrations, real-time/critical systems. . .

Since the mid 70s, computer science has used various kinds of models to abstract systems and perform
analyses [1]. These models were first described by specific-purpose languages, now called Domain-
Specific Languages (DSL). DSLs define relevant entities pertaining to the target domain. These entities
are coupled by domain specialists with a formal behavioral semantics [2–7].

Nowadays, creating a DSL is well accepted and has been popularized by the tooling facilities pro-
vided by the MDE technologies. A metamodel defines concepts and relations of A specific language
and can be used to generate powerful editors and programming interfaces. However, the help is mainly
provided for the definition of structural models (i.e., static models) but little help is given to ease the sim-
ulation/execution of the models. Among the approaches that provide tooling to specify the (meta)model
dynamics [8–10], either the models can be executed/simulated only at the very last stage of the devel-
opment process (once all model behaviors are encoded) or they fail to capture concurrency and loosely
synchronized systems (like required for distributed or multi-core systems). Additionally, executable mod-
els often “implement” a specific solution while the problem could accept various ones. This is mainly
related to the fine granularity of the description needed by existing tools to make the model executable.

An alternative to defining a DSL is the Unified Modeling Language (UML) [11], a general-purpose
modeling language. Several UML profiles have been defined to extend the UML with stereotypes that de-
note relevant domain-specific entities. Applying a stereotype to a model element maps this model element
to a domain entity, therefore enforcing the commonly accepted domain entity semantics. Some tooling
can then be reused (e.g., the graphical editors) but simulators/analysis tools still have to be developed
according to the domain semantics.

What is missing in the current modeling approaches (DSL and UML-based) is an executable semantic
model that captures within the same technological space and explicitly, the behavioral invariants to which
the domain model must conform, i.e., the constraints under which the model is amenable to analyses.
Such behavioral constraints on the model should not over restrict the future model refinement/implemen-
tation and should be given from the very first stages of the development process. They should encapsulate,
formally and explicitly, the behavioral semantics of a model for a specific domain but should not be a pro-
gramming language that encodes a specific usage of the domain concepts. In this paper, we propose to
add the possibility to specify behavioral invariants on a model by slightly extending the Object Constraint
Language (OCL [9]). Models built with the approach are amenable to formal analysis and can be used
either in simulation to bring confidence in the developed model or used as a reference model when trans-
formations are performed to other analysis-specific formal languages. The proposed behavioral invariants
focus on event ordering but can be complemented by the already existing features of OCL like pre/post
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4 J. DeAntoni

conditions.
The next section gives the rationale for this work. Section 3 discusses related approaches. Section 4

describes our proposal: a language dedicated to the definition of behavioral invariants, and its integration
within OCL. The approach is illustrated by the specification of some behavioral invariants on a DSL and
a UML model.

2 Motivations and prerequisites
Being able to constrain the relative execution ordering of actions in a model is of prime importance to
conduct analysis. More precisely, depending on the execution constraints considered, some analyses are
possible while others are not. The meaningful constraints as well as the associated analysis techniques
have been largely studied in various domains [12–14]. The so-called Models of Computations (MoC)
largely focus on the events while data are very often left aside This is the case, for instance, for syn-
chronous approaches where the clock calculus is at the center of the process [15] that entirely depends on
the synchrony hypothesis. This is also the case in real-time scheduling theory, where the hypotheses are
quite different. Assuming regular execution of tasks (periodic, sporadic), the model can be analyzed with
exact or approximate analytical approaches. Our goal is to provide a formalism to capture the hypotheses
taken and the synchronization constraints as part of model driven engineering.

The Object Constraint Language (OCL [9]) is already largely used to capture constraints on (meta)models.
The OCL is a declarative textual language that provides constraints and object query expressions on any
MOF model or meta-model. These constraints can be either invariants or pre/post conditions on the be-
haviors. Invariants are used to specify structural restrictions on the instances of the model on which they
are specified. The pre/post conditions are used to specify contracts on the state of the system before and
after the execution of a specific behavior. The language intends to be simple enough to be used by any
designer while being formally defined.

The OCL is said to be side effect free in the sense that the evaluation of constraints never modify the
state of the system. However, it is possible in OCL to define new attributes and methods on (meta)classes.
These definitions can then be used in the specification of constraints. For instance in the example 1, the
number of children of a Person is stored in a new integer attribute, named nb_children for each Person
object. The integer is initialized with the size of the children collection of the Person (meta)class:

Listing 1: Example of attribute definition in OCL

1 c o n t e x t Pe r s on
2 def : n b _ c h i l d r e n : I n t e g e r = s e l f . c h i l d r e n −> s i z e ( )

Such attributes can then be used in any constraints as if they were part of the (meta)model. It is also
possible to define temporary variables to ease the reading of constraints. For instance, in the example 2, a
temporary variable maxChildrenNumber is used in the invariant expression but cannot be used anywhere
else. Additionally, in this constraint the attribute previously defined is used.

Listing 2: Example of invariant and temporary variable in OCL

1 c o n t e x t Pe r s on
2 inv notTooMuchChi ldren :
3 l e t maxChildrenNumber : I n t e g e r =
4 s e l f . l i v i n g C o u n t r y . maximalNumberOfChi ldren in
5 s e l f . n b _ c h i l d r e n <= maxChildrenNumber

Our motivation comes from the fact that some simple behavioral constraints cannot be expressed in
OCL. Such constraints have to hold all along the execution and we call them behavioral invariants. A
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ECL: the Event Constraint Language 5

first example of behavioral invariant could be: “for all components, output data ports are always pro-
duced simultaneously”. A second different example can be: “For concept C1,it is only possible to call
one method at a time, i.e., methods cannot be called concurrently”. This behavioral invariants may be
applicable to every model of the domain and may be expressed at the metamodel level. These kinds
of constraints cannot be specified in OCL while they are really important for the understanding of the
metamodel behavior.

There also exists application-specific behavioral invariants. They can be related to performance issues
(e.g., deadline) or to specific synchronization mechanisms dictated by the application (consider vehicle
indicators for instance). They can also reflect the good way to use a concept of the model. For instance,
an application-specific behavioral invariant is: “The init() method must be called first, before any other
method”. If specified on a UML model, this last behavioral invariant can be expressed in OCL but by
putting a precondition on every other method than init(). It makes this simple constraint difficult to
understand and it reflects badly the goal of the constraint. Additionally, because the specification of this
constraint in OCL has to use ’messages’ it cannot be specified on a domain specific model.

In order to enable the specification of behavioral invariants, we want to slightly extend the OCL with
the possibility to define event attributes and temporary events. These events specify interesting events in
the (meta)model (e.g., the call of a behavior, the reception of a data on a port, or any other (meta)model
specific events). They may not be specified in the metamodel because they are used only to specify the
behavioral semantics of the model and are not concepts of the modeled domain. Adding them directly in
the model would over complexify the model for no reason. By making events explicit, it is possible to
specify behavioral invariants on them (and particularly the ones under which the system is amenable to
analysis). These behavioral invariants must be specified by using a formal but intuitive language to stay
aligned with the OCL.

Amongst the benefits expected from such an extension of the OCL, we can cite, model simulation
/ animation at a high abstraction level (without precise specification of any data-dependent behavior),
transformation checking, execution trace verification, generation of observers for the implementation,
easier communication among domain specialists.

The next section describes related works that focus either on the extension of the OCL or on the
explicit specification of behaviors at the metamodel level.

3 Related works

Our approach aims at extending the OCL so that the specification of behavioral invariants. Our goal is to
specify the synchronization relationships amongst the events of a model. There exist various approaches
that extends the OCL to enhance the behavioral constraint expressiveness. First we want to avoid ambigu-
ity by stating that our goal is clearly not to put (some of) the temporal logic operators in the OCL; this has
already been done in other approaches [16–18]. Adding temporal logics to the OCL is a good way to take
benefits from a very expressive and formal language. However, it gets a rather low acceptance due to the
complexity of temporal logics itself and the lack of abstraction mechanisms of such approaches. An alter-
native approach has been proposed by Flake et al. [19]. It consists in enhancing the OCL message-related
concepts to add expressiveness on the pre/post condition constraints. The authors highlight the lack of
expressiveness of the OCL behavioral constraints and proposes a clean and formal integration with the
OCL semantics. Almost the same approach has been conducted in [20]. Two main drawbacks of these
approaches have been identified. First, by focusing on the message-related concepts of OCL, they restrict
the use of their approach to the UML. It is not possible to use any message-related concept on a DSL. It
is also a problem of OCL itself, whose utilization is, nowadays, not intended to be limited to the UML.
The second drawback of the approach is that, by using pre/post conditions to specify the synchronization,
it is difficult to specify synchronizations that must be respected independently of a specific behavior. For
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6 J. DeAntoni

instance constraints due to the allocation of various components on a single processor or on the contrary
due to the allocation on a distributed platform cannot be easily specified since they cannot be directly
associated with a specific behavior or message call.

Cariou et al. [10] proposed an approach to specify the semantics of models by using the OCL. While
we share with them the same goal, they chose to do it by using a contract-based approach (i.e., by using
the pre/post conditions). An interesting point shared with [21] is that they highlight the need to add some
data used only to represent the dynamic state of the system. Consequently, they add specific methods to
process these data and more precisely to specify (by using pre/post conditions) when the other behaviors
can or cannot be called. For instance they add a run_to_completion() method to a state machine to specify
contracts on the system state before and after the execution of the method. Their preconditions mainly
rely on the concepts of UML events and it is not clear how it can be used in a DSL where such events
do not exist. Also, because they use OCL without any extensions, they suffer from the same restrictions
as the one identified by approaches that worked on OCL extensions: no message manipulation outside of
the UML, poor synchronization capabilities, no way to specify concurrency explicitly and no operators
to handle time.

All the proposed approaches use mechanisms based on pre/post conditions to specify the behavioral
aspects of models. We believe that it is important to introduce explicit events and behavioral invariants
to complement such approaches. Explicit events create a mandatory bridge between the static aspects of
a metamodel and its dynamics (as stated in [21]). Behavioral invariants specify constraints that must be
true independently of any method call. For instance, we want to be able to specify that two components
allocated on a single CPU cannot be concurrent without giving any detail on the actual “behavior” of
the CPU. The goal of behavioral invariants is to specify the acceptable (partial) orderings between the
occurrences of the events and consequently has strong relations to the notion of MoC.

Finally, when speaking about making domain-specific executable models, we should mention Ker-
Meta [8]. KerMeta is a metamodeling language, which allows structural and behavioral semantics to be
defined directly within a metamodel. By using aspect-oriented modeling, KerMeta is well integrated in a
modeling process. A classical use of KerMeta consists in specifying the behavioral semantics as aspects
of a specific metamodel. The KerMeta framework is then able to weave the aspects into the Domain Spe-
cific Metamodel and each model that conforms to this metamodel is then an executable model. KerMeta
has a great expressiveness that allows general descriptions and data manipulation but this expressiveness
is achieved by using a java-like language. This language is too much operational and is used to implement
a specific solution rather than to specify and declare a set of possible solutions. This way it is not pos-
sible to specify behavioral invariants directly. Such invariants would represent a large set of acceptable
executions, like causality relationships for distributed systems. Obviously such invariants can be encoded
in the KerMeta language but the invariants should be accessible as first-class citizens if analyses have to
be conducted. Also KerMeta does not support timed invariants or concurrency operators (like periodic
execution, parallel execution, deadline, etc.). However, the aspect-oriented feature of KerMeta is an ele-
gant way to weave in a metamodel the data that represent the system states as well as the behaviors that
process these data during the execution. For these reasons, we are currently studying a merge of both
approaches: KerMeta for data manipulation, explicit events to refer to actions on these manipulations
(call, start, suspend. . . ) and the behavioral invariants to specify the orchestration of these manipulations
in a non restrictive way.

4 Proposition

We want to be able to specify behavioral invariants on structural metamodels and models. To do so, we
use the notion of event, an event being a totally ordered set of event occurrences. The behavioral invariants
are then specific kinds of OCL expressions that restrict the (partial) ordering of the event occurrences in
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ECL: the Event Constraint Language 7

the system. The language used to specify the behavioral invariants must be formal but easy to use by
any designer. Additionally the expressiveness of the language must allow various kind of constraints
to be specified, from loosely to very strong synchronizations between the events. Finally, to match the
OCL style, this language must be declarative. We chose to adapt the Clock Constraint Specification
Language (CCSL) to the OCL. CCSL, is a model-based declarative language initially introduced in the
OMG MARTE profile [22]. It is used to specify relationships between clocks (i.e., events). CCSL has a
formal semantics [23] that defines valid partial order according to a given CCSL specification or rejects the
specification when there are some contradictions. As a concrete syntax to handle logical time expressions,
the CCSL has proved to be very expressive at different levels of abstraction.

Logical time has been successfully used in several domains. It was first introduced by Lamport to
represent the execution of distributed systems [24]. It has then been extended and used in distributed
systems to check the communication and causality path correctness [25]. During the same period, logical
time has also been intensively used in synchronous languages [26,27] for its polychronous and multiform
nature (i.e., based on several time references). In the synchronous domain it has proved to be adaptable to
various levels of description, from very flexible causal descriptions to precisely timed ones [28]. Actually,
the notion of logical time is often used every day when a specific event is taken as a reference. For
instance, consider the sentence “Component 1 is executed twice as often as Component 2”. An event is
then expressed relative to another one, that is used as a reference. No reference to physical time is given.
However, given the execution occurrences of Component 1, the execution occurrences of Component 2
can be deduced. Another example is: “init() must be called before any other methods”. Once again, you
schedule an event in time relatively to another one (this time in a very loosely synchronized way). This
is the main idea of using logical time. In this context, physical time is a particular case of logical time
where events generated by a physical clock are taken as references. Consequently, logical and multiform
time allows considering not only the distance between two event occurrences (that would be expressed
relative to the physical time) but also the relative ordering of event occurrences.

By taking advantage of logical time, CCSL has been used successfully in several domains ranging
from the expression of the Synchronous Data-Flow (SDF) model of computation [29] to the specification
of temporal constraints for EAST-ADL models [30] but also to reflect the behavioral impact of imple-
mentation on requirements [31] and so on [32–39].

The problem of CCSL is twofold. In the one hand it can only specify constraints in extension (i.e., for
each concept instances in a model) so that it is difficult to use on big models. In the other hand, CCSL
only deals with constraints between the events and cannot take benefits from contract based approaches.

By adapting CCSL to the specification of behavioral invariants in OCL, we want to take benefits of
both languages and we aim at providing a meaningful constraint language for MDE.

Before the presentation of the proposed language, we starts with an informal description of CCSL and
its underlying mathematical model.

4.1 CCSL concepts and relations
In this paper, we describe only a small subset of CCSL, focusing on syntactic and semantic aspects suffi-
cient to understand the examples given at the end of the paper. The syntax and the semantics of full CCSL
is available in a technical report [23] and an overview is available at http://timesquare.inria.
fr.

A simplified view of the CCSL metamodel is given in Figure 11. A TimeSystem (aka CCSL specifica-
tion) consists of a finite set of Clocks, and the parallel composition of a set of ClockConstraints (denoted
| in the remainder). A clock is a strictly ordered set of instants, usually infinite. Two instants belonging
to different clocks are possibly related by a causal or a temporal relationship. Causality is denoted 4.
It can be refined into a temporal relationship, either a strict precedence (denoted ≺) or a coincidence

1The whole metamodel in ecore is available at http://timesquare.inria.fr/resources/metamodel/
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8 J. DeAntoni

(denoted ≡). By combining such relationships, a time system is the specification of partially ordered sets
of instants [40]. A clock constraint specifies generic relationships between (infinitely) many instants of
the constrained clocks.

Figure 1: Simplified CCSL metamodel

A clock constraint is either a ClockRelation or a ClockSpecification. A clock relation mutually con-
strains its parameters according to its type. A clock specification is either a ClockExpression or a simple
reference to an element (e.g., a clock, an integer, etc) (ElementRef ). A clock expression has parameters
and specifies a new clock according to the type of expressions and of its parameters.

The types of the clock relations and expressions are defined in a Library. Low abstraction level
constraints are defined in a kernel library. CCSL allows for the definition of user-defined constraints by
combining existing relations imported from a set of kernel relations or from another user-defined library.
It makes easier the use of complex constraints. However it makes the syntax quite verbose; especially for
the binding of the formal parameters of the declaration to the actual ones of the constraint. This is not
detailed here and we consider that the order of the parameters are used to bind them.

In this paper, we consider two types of clock relations, whose parameters are clocks references:

• the precedence (denoted ≺ ), which specifies that all instants of the first parameter occur before
the corresponding instants of the second parameter.

• the coincidence (denoted = ), which specifies that all instants of the first parameter are simultane-
ous/synchronous with the corresponding instants of the second parameter.

We also only use two clock expressions:

• Union expression (denoted c1 + c2), whose resulting clock ticks synchronously with each of the
clocks provided as parameters.

• delayedFor expression (denoted c $ n on ref ), which takes two clocks (c and ref ) as first and
second parameters and an integer (n) as third parameter. The resulting clock ticks synchronously
with the nth tick of ref after each tick of c.

Inria



ECL: the Event Constraint Language 9

Example We consider two clocks A, B constrained by the following CCSL specification S.

S =
(
A ≺ B | B ≺ (A $ 1 on A)

)
(1)

This specification is slightly reformulated to facilitate the semantic explanations: we introduced one
implicit clock C that evolves in coincidence with the delayedFor clock expression of the previous speci-
fication.

S = A ≺ B |
(
C = A $ 1 on A

)
| B ≺ C (2)

Figure 2: A timing diagram of the example in equation 2

Equation 2 is actually specifying that clock A and B alternate, as represented in the timing diagram
Figure 2 provided by the TIMESQUARE environment [41] (blue dashed arrows represent precedences and
red diamond lines represent coincidences). This kind of construction can be defined in a library so that
the alternates relation can be directly used as if it was part of the language (without corrupting the formal
semantics). The corresponding RelationDeclaration is then:

def Alternates(clock leftClock, clock rightClock) , (3)

leftClock ≺ rightClock |
C = leftClock $ 1 on leftClock |
rightClock ≺ C)

This is the goal of the libraries to provide domain-specific constraints, constructed by semantic spe-
cialists but used by (meta)model designers. In this section, the concrete syntax is not the one used in the
tool but has been used in the semantic definition because it is more concise than the actual one. The ac-
tual concrete syntax definition is available here: http://timesquare.inria.fr/index.php?
slab=extendedccsl-grammar

4.2 CCSL operational semantics
This paragraph gives the flavor of the CCSL semantics without falling into the details. Please refer to [23]
for a more precise definition. A CCSL specification is an executable model. An execution of a CCSL
specification is an infinite sequence of reaction steps. Each reaction step computes the set of clocks
that can/must “tick” to represent the evolution of the system. This set is computed according to the
specified constraints. The computation is based on the resolution of a boolean expression defined by the
conjunction of the boolean expressions induced by the clock constraints of the system. Consequently,
each clock constraint corresponds to a boolean expression. Once a reaction is computed, the system
evolves by propagating the result of the reaction in the system.
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10 J. DeAntoni

4.3 extension of the OCL metamodel: ECL
Our goal is to allow the manipulation of logical time according to the semantics defined by CCSL but in
an OCL-like manner (i.e., possibly at the metamodel level and by intension instead of by extension). A
first solution consists in creating a specific OCL library that extends the existing OCL standard library
with the notion of event and some predefined constraints on them. However, this method does not allow
the creation of domain-specific behavioral invariants (i.e., like the constraints of a CCSL library). To avoid
repulsing users with difficult specifications, we extended the OCL metamodel itself so that the use of high
abstraction level constraints is possible. We named this metamodel ECL for Event Constraint Language,
however, because any other constraints from OCL are accepted by the metamodel, the name should surely
be reconsidered.

ECL added three new possibilities to the OCL language:

1. The definition of Event; in the same way than the already existing definition of new attributes or
temporary attributes

2. The initialization of an event from already existing event(s) and model attributes

3. The specification of relations between the events in the model; in the same way than already existing
relations between other attributes.

There exist various implementation of the OCL specification. We chose to extend the implementation
provided in the eclipse MDT2. This implementation supports several metamodel depending on whether
we consider the “complete OCL” or only fragments specified, for instance, in UML constraints. To avoid
being intrusive in every metamodel, we decided to create a new metamodel extending the complete OCL
metamodel. Our extension is shown in Figure 3. The yellow metaclasses are the ones from the existing
OCL metamodels, the ones in Red are new metaclasses, and the ones in blue are from the CCSL meta-
model. Actually only the relation and expression declarations are imported from the CCSL metamodel
in order to take benefits from the semantics of kernel relations and expressions defined in the MARTE
profile as well as from user-defined library.

An ECLDocument is the root of the specification. An ECLDocument is a CompleteOCLDocument.
Only specific imports are added to enable references to relation and expression libraries. Imports are
specified by an ImportStatement. It contains the path of a library file whose RelationDeclaration and
ExpressionDeclaration are used by the relations and expressions of the ECL specification. To allow the
addition of events to a (meta)model, we have added the new type EventType. This type can be used in
a classical OCL definition (like in listing 1) as well as in temporary variables (like in listing 2). Note
that it does not, in anyway, make side effects since these values/methods are not used in the model itself,
they are just used by the ECL specification. Additionally, these attributes can be initialized and read
but cannot be assigned, as requested by the OCL specification. An EventType can be parameterized by
a referredElement used to specify the (meta)model element the event attribute is associated with. This
referred element is an ExpCS, i.e., an OCL expression, so that it can be a navigating expression, querying
a specific modeling element (e.g. self , or self.incoming− > select(i|i.stuff <> null)− > first()).
When specifying a new attribute of type EventType, the event has to be initialized. The EventLiteralExp
is a way to initialize the event attribute. It possesses a value, which specifies the role of the event with
regards to its referred element. This role is an enumeration (EventKind). A Relation is an OCL expression
whose goal is exactly the same than the CCSL relation, i.e. constraining the relative order between the
occurrences of the events in its parameter list. The type of a relation is a RelationDeclaration. The
parameters are also OCL expressions so that they can be specified by a navigating expression, querying a
specific event or a specific model attribute depending on the type of the parameters specified in its type.
Note that, a relation declaration has an ordered set of variables. The first parameter in a relation is then

2http://wiki.eclipse.org/MDT/OCL
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ECL: the Event Constraint Language 11

Figure 3: the extension of the OCL metamodel to allow the specification of behavioral invariants
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12 J. DeAntoni

bound to the first variable in its type, the second with the second and so on... In OCL, one can use a let
expression (LetExpCS) to create a temporary variable from other model elements or variables, and used
it in a constraint. When the constraint is a relation on events, one can need to consider an event which
results from the relative evolution of other events as well as on other parameters (for instance the union
of a set of events). The ECLExpression can be used in a let expression to specify a temporary event.
Similarly to relations, the type of an ECL expression is an ExpressionDeclaration.

The result of the metamodel extension is the possibility to specify behavioral invariants as well as
any other OCL constraints. Of course to make it usable, we have also modified the concrete syntax.
The implementation of OCL in eclipse uses XText3. We extended the syntax with three main keywords:
Event, Relation and Expression. All the other introduced keywords are used to specify the event kind
enumeration. Examples of OCL specifications with behavioral invariants are provided in section 4.5. The
next section details the use of such behavioral invariants.

4.4 ECL tooling and usages
The first goal of an OCL specification is to improve the specification of the model-based specification.
The invariants specify structural constraints on models. Many tools provide a checker to validate these
invariants on a specific model. Considering the pre and post conditions, they require another kind of
tools because they refer to the execution of the model. They can be used in different manners according
to the context. A first use of them consists in translating the pre post conditions to their equivalent in
a programming language when the targeted language supports such contracts (e.g., for KerMeta and the
Eiffel languages). A second use consists in using such contracts as a reference for model manipulations
(e.g., transformations, execution, ...) where the manipulation is said to be correct when it respects such
contracts [10, 42].

In the same way than pre and post conditions, we will use behavioral invariants in different ways ac-
cording to the context. The main goal is to take benefits of the specification in order to provide confidence
either in the developed model or in its manipulation/implementation. We have seen that the extension of
the OCL language is based on the semantics of the CCSL language. As far as we know, there exists two
frameworks able to process a CCSL specification to take advantage of it [41,43]. To take benefits of these
tools, we generated a CCSL specification according to the ECL specification and an input model. By
doing so, we can exploit the possibilities provided by these tools depending on the context:

• obtaining a satisfying trace model linked with the model (in any cases)

• generation of timing diagrams (in any cases)

• graphical animation of the model (if modeled in the Papyrus tool)

• generation of observers to have a run-time checking of the implementation (for esterel and VHDL
languages)

• checking of some execution traces according to the specification (if the trace is based on the open
trace format)

• exhaustive simulation of synchronization properties (when the state space is finite by translation to
timed petri nets)

In order to create the corresponding CCSL specification, we realized an high order transformation
whose inputs are the ECL constraints and the domain-specific metamodel and whose result is a trans-
formation from a domain-specific model to a CCSL specification (see Fig. 4). This last transformation

3http://www.eclipse.org/Xtext/
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is reusable for all models that conform to the metamodel used in input of the high order transformation.
From a technological point of view, the first transformation has been implemented using acceleo4. It
generates a QVTO transformation5 that can be used to automatically create CCSL specifications.

Figure 4: models and transformations to take benefits from CCSL tooling

4.5 Examples of behavioral invariant specification at the metamodel level
4.5.1 Simple Component Model

This first example explains how to specify some behavioral invariants on a specific metamodel, like the
component metamodel introduced in Figure 5. We specify the behavioral invariants by using relation
declaration whose semantics has been introduced in section 4.1. In this section, we use the textual syntax
of ECL and relation declaration are referred by their textual name instead of the mathematical syntax
introduced in Section 4.1.

The first behavioral invariant we want to specify is taken from section 2. It states that “for a Compo-
nent, it is only possible to call one behavior at a time”. In other words, if one behavior has already started,
no other behaviors can be started while the first one has not finished.

To specify this behavioral invariant, the first step consists in choosing the model elements that are
relevant from a behavioral constraints point of view. In this example, both Component (line 8 of Figure 6)

4http://www.eclipse.org/acceleo/
5http://wiki.eclipse.org/M2M/Operational_QVT_Language_(QVTO)
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Figure 5: A sketchy and partial component metamodel

and Behavior (line 15 of Figure 6) are used. In a second step, we define, for these elements, the events
used in the invariant. In our case, the start and the end of a behavior are used. We consequently define two
event attributes in the context of a Behavior (line 9 and 10 of Figure 6). It is now necessary to constrain
these events. We first specify that the start of a behavior always precedes its stop. This is specified
by the startPrecedesStop behavioral invariant (line 12,13 of Figure 6), that uses the Precedes relation
declaration from a CCSL library. Now, because we do not want more than one behavior to execute at a
time, it means that they cannot start simultaneously. This is the goal of the second behavioral invariant,
named notSimultaneousStarts on the line 16 and 17 of Figure 6. This invariant specifies an Exclusion
relation on a collection of events. It means that all events in the collection are exclusive with each other.
Note that this is a simplification of the CCSL syntax where exclusion on a set must be specified for each
pair of clocks in the set. Finally, in the last behavioral invariant we specified that no behavior can start
if another one has already started. Consequently, it is impossible to observe two consecutive start events
without a stop. This is done by using temporary events (line 20 and 21). These events, named allStart and
allStop are respectively defined by the Union of all start and stop events of the behavior of a component.
These temporary events are then constrained to Alternates.

This example has been used to present the idea behind our extension of the OCL. In the next subsec-
tion, we present a more realistic example where an activity diagram is constrained so that it follows the
execution rules of Synchronous Data Flow (SDF [44]) graphs, a formal model suitable to analysis.

4.5.2 Synchronous Data Flow

The goal of this section is not to explain the constraint needed on a UML activity model to give it the
semantics of SDF. The goal is to show how, by using a high level library developed by experts, a model
behavioral semantics can be formally specified. The library internal and details about its specification
can be found in [29]. The result of [29] is that, it is possible to construct a RelationDeclaration, whose
uses on a structurally constrained activity diagram, gives the behavioral semantics of SDF. The structural
constraints put on the activity diagram enforce that the control flow between two actions go through a
join node. The initial mark (delay) of the arc can then be given by using an initial node associated with
this join node. An example of such activity model is provided in Figure 7.

The high abstraction level relation developed in [29] has the following signature: defArc(int delay, event sourceExec, int out, event targetExec, int in)
In this relation, the delay integer represents the initial number of data on the arc. The sourceExec event
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Figure 6: a simple ECL specification in the ECL editor

Figure 7: a UML activity diagram with join node between actions
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represents the atomic execution of the node in input of the join node. Similarly targetExec represents the
atomic execution of the node in output of the join node. The two integers in and out respectively represent
the number of data consumed on a specific arc and the number of data produced on a specific arc when
an action executes.

The behavioral invariant is then call after retrieving the parameters of the relation by using the query
operators provided by OCL. The result of the specification is depicted in Figure 8. On this screenshot,
only the highlighted parts are from our extension; the remaining part of the specification is pure OCL.

Figure 8: an ECL specification to constrain an activity model to conform to SDF semantics

The result of the high order transformation (the QVTo transformation) as well as the CCSL speci-
fication resulting from the transformation can be consulted at http://timesquare.inria.fr/
examples/ECL/. If the first benefit is to provide a concise specification of the behavioral invariants
integrated within a standard language, the second benefit comes from the ease to read and understand the
specification compared to the associated QVTo transformation.

4.6 Critics of the approach and its tooling

The approach is a first step towards a specification of causality relationships, concurrency and logical time
behavior in an MDE approach. It is a fact that creating behavioral invariants requires a good knowledge
and experience of the CCSL introduced in the MARTE profile. The same kind of knowledge and experi-
ence are also required to provide a good metamodel. We believe that the possible use of high abstraction
level libraries and the use of an existing language is a way to reduce the gap between the people that
create formal models and the ones that develop metamodels. Our approach aims at making a separation
between the abstract syntax of a language (the metamodel); its behavioral invariants (i.e., the specifica-
tion of the model of computation); and the implementation of a specific model that must respect both
structural and behavioral constraints. The CCSL semantics was successful in specifying various kinds
of behavioral invariants on models (see the beginning of section 4) but more experiments are required
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to completely validate the proposition. These experiments have been a motivation for the tooling of the
approach. However there still exist some limitations on the tooling of the approach.

First, we extended the OCL implementation of the eclipse project. This implementation uses various
technologies that are still evolving. It makes it difficult for our editor and transformation to be up to date
with the various releases of these technologies. We consequently wait for the release of the eclipse Juno
before proposing any update site of our tooling.

Also, to exploit tools that process CCSL specifications, we developed an high order transformation that
takes an ECL file as an entry. The main limit comes from this transformation. There often exist various
ways to specify the same OCL constraint. In our transformation, only a part of these constructions are
supported. For instance, it is not possible to use more than one relation in a single behavioral invariant.
It is also not supported if in a single invariant classical OCL Boolean expressions are put in conjunction
with an ECL relation. These kinds of limitations are not very inconvenient, and we tried to support all
part of the language needed to drive new experiments. Additionally, by using the TIMESQUARE software
environment, it is possible to have convenient feedback on the resulting semantics, making easier the
development of new semantics for our models (http://timesquare.inria.fr/index.php?
slab=screenshots).

5 Conclusion

This paper presents an extension of the OCL language. This extension allows the explicit specification of
relevant events of a model. It also allows the specification of behavioral invariants. Behavioral invariants
is a way to specify constraints on the partial ordering of the event occurrences in a model. The goal is to
specify the causality relationships, the concurrency and the timed behavior of a model, so that domain-
specific analyses can be conducted. Such behavioral descriptions can then be used in various scenarios
ranging from model animation to generation of observers at runtime. The extension semantics is based
on the Clock Constraint Specification Language (CCSL), a model-based declarative and formal language.

CCSL has been chosen because it supports, by using polychronous logical time, a timed causality
model that brings consistency between interactions of the model element events. CCSL can be used to
specify (not program) the expected behavior of the whole model. The extension, named ECL, proposed
in this paper aims at complementing (not replacing) other features of the OCL language like the use of
pre/post conditions.

ECL simplifies the CCSL language while keeping its formal semantics and allows the specification of
behavioral invariants at the metamodel level. This specification uses relations and expressions defined in
external libraries, by semantic experts. One goal was to keep OCL simple to use by non formal designer
while allowing a formal specification of the causalities and concurrency in a system.

A prototype has been developed to allow the reuse of existing analysis tools like TIMESQUARE.
The tool allows specific formal model to be created, according to the ECL specification. This helped in
demonstrating the benefits of the approach, either to obtain early simulation of models, or to use another
output of the simulation tool (like the verification of execution traces).

There are two main ongoing investigations to extend this work. A short-term objective is to provide
our extension and its tooling as an update site in order to get feedback from the community. The direct
results of this short-term objective is a study about the formal specification of heterogeneous systems;
where a single model uses different relation and expression libraries (i.e., heterogeneous modeling). An-
other future work consists in studying extensions of the language like the capacity to use the notion of
mode to specify behavioral invariants that are dynamically enabled or not according to the value of data
in the model.
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