
HAL Id: hal-00721280
https://hal.inria.fr/hal-00721280

Submitted on 27 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Achieving Interoperability through Semantics-based
Technologies: The Instant Messaging Case

Amel Bennaceur, Valérie Issarny, Romina Spalazzese, Shashank Tyagi

To cite this version:
Amel Bennaceur, Valérie Issarny, Romina Spalazzese, Shashank Tyagi. Achieving Interoperability
through Semantics-based Technologies: The Instant Messaging Case. ISWC 2012 - 11th International
Semantic Web Conference, Nov 2012, Boston, United States. �hal-00721280�

https://hal.inria.fr/hal-00721280
https://hal.archives-ouvertes.fr

Achieving Interoperability through
Semantics-based Technologies:
The Instant Messaging Case

Amel Bennaceur1, Valérie Issarny1, Romina Spalazzese2, and Shashank Tyagi3

1 INRIA, Paris-Rocquencourt, France
2 University of L’Aquila, L’Aquila, Italy

3 Institute of Technology, Banaras Hindu University, India

Abstract. The success of pervasive computing depends on the ability
to compose a multitude of networked applications dynamically in or-
der to achieve user goals. However, applications from different providers
are not able to interoperate due to incompatible interaction protocols
or disparate data models. Instant messaging is a representative exam-
ple of the current situation, where various competing applications keep
emerging. To enforce interoperability at runtime and in a non-intrusive
manner, mediators are used to perform the necessary translations and
coordination between the heterogeneous applications. Nevertheless, the
design of mediators requires considerable knowledge about each applica-
tion as well as a substantial development effort. In this paper we present
an approach based on ontology reasoning and model checking in order
to generate correct-by-construction mediators automatically. We demon-
strate the feasibility of our approach through a prototype tool and show
that it synthesises mediators that achieve efficient interoperation of in-
stant messaging applications.

Keywords: Interoperability, Composition, Ontology, Verification, Me-
diation, Universal Instant Messaging

1 Introduction

Pervasive computing promises a future where a multitude of networked applica-
tions dynamically discover one another and seamlessly interconnect in order to
achieve innovative services. However, this vision is hampered by a plethora of
independently-developed applications with compatible functionalities but which
are unable to interoperate as they realise them using disparate interfaces (data
and operations) and protocols. Compatible functionalities means that at a high
enough level of abstraction, the functionality provided by one application is se-
mantically equivalent to that required by the other.

The evolution of instant messaging (IM) applications provides a valuable in-
sight into the challenges facing interoperability between today’s communicating
applications. Indeed, the number of IM users is constantly growing – from around
1.2 billion in 2011 to a predicted 1.6 billion in 2014 [20] – with an increasing

2 Bennaceur et al.

emphasis on mobility – 11% of desktop computers and 18% of smartphones have
instant messaging applications installed [18]– and the scope of IM providers is
expanding to include social networking such as Facebook that embeds native
IM services onto their Web site. Consequently, different versions and competing
standards continue to emerge. Although this situation may be frustrating from a
user perspective, it seems unlikely to change. Therefore, many solutions that ag-
gregate the disparate systems, without rewriting or modifying them, have been
proposed [12]. These solutions use intermediary middleware entities, called medi-
ators [23] – also called mediating adapters [24], or converters [4] – which perform
the necessary coordination and translations to allow applications to interoperate
despite the heterogeneity of their data models and interaction protocols.

Nevertheless, creating mediators requires a substantial development effort
and thorough knowledge of the application-domain. Moreover, the increasing
complexity of today’s software systems, sometimes referred to as Systems of Sys-
tems [14], makes it almost impossible to manually develop ‘correct’ mediators,
i.e., mediators guaranteeing deadlock-free interactions and the absence of un-
specified receptions [24]. Starlink [3] assists developers in this task by providing
a framework that performs the necessary mediation based on a domain-specific
description of the translation logic. Although this approach facilitates the devel-
opment of mediators, developers are still required to understand both systems
to be bridged and to specify the translations.

Furthermore, in pervasive environments where there is no a priori knowledge
about the concrete applications to be connected, it is essential to guarantee
that the applications associate the same meaning to the data they exchange,
i.e., semantic interoperability [10]. Ontologies support semantic interoperability
by providing a machine-interpretable means to automatically reason about the
meaning of data based on the shared understanding of the application domain [1].
Ontologies have been proposed for Instant Messaging although not for the sake of
protocol interoperability but rather for semantic archiving and enhanced content
management [8]. In a broader context, ontologies have also been widely used
for the modelling of Semantic Web Services, and to achieve efficient service
discovery and composition [16]. Semantic Markup for Web Services4 (OWL-
S) uses ontologies to model both the functionality and the behaviour of Web
services. Besides semantic modelling, Web Service modelling Ontology (WSMO)
supports runtime mediation based on pre-defined mediation patterns but without
ensuring that such mediation does not lead to a deadlock [6]. Although ontologies
have long been advocated as a key enabler in the context of service mediation,
no principled approach has been proposed yet to the automated synthesis of
mediators by systematically exploiting ontologies [2].

This paper focuses on distributed applications that exhibit compatible func-
tionalities but are unable to interact successfully due to mismatching interfaces
or protocols. We present an approach to synthesise mediators automatically to
ensure the interoperation of heterogeneous applications based on the semantic
compatibility of their data and operations. Specifically, we rely on a domain-

4 http://www.w3.org/Submission/OWL-S/

Achieving Interoperability through Semantic-based Technologies 3

specific ontology (e.g., an IM ontology) to infer one-to-one mappings between
the operations of the applications’ interfaces and exploit these mappings to gen-
erate a correct-by-construction mediator. Our contribution is threefold:

– Formal modelling of interaction protocols. We introduce an ontology-based
process algebra, which we call Ontology-based Finite State Processes (OFSP),
to describe the observable behaviour of applications. The rationale behind a
formal specification is to make precise and rigorous the description and the
automated analysis of the observable behaviour of applications.

– Automated generation of mediators for distributed systems. We reason about
the semantics of data and operations of each application and use a domain
ontology to establish, if they exist, one-to-one mappings between the opera-
tions of their interfaces. Then, we verify that these mappings guarantee the
correct interaction of the two applications and we generate the corresponding
mediator.

– Framework for automated mediation. We provide a framework that refines
the synthesised mediator and deploys it in order to automatically translate
and coordinate the messages of mediated applications.

Section 2 examines in more detail the challenges to interoperability using
the IM case. Section 3 introduces the ontology-based model used to specify the
interaction protocols of application. Section 4 presents our approach to the au-
tomated synthesis of mediators that overcome data and protocol mismatches of
functionally compatible applications and illustrates it using heterogeneous in-
stant messaging applications. Section 5 describes the tool implementation while
Section 6 reports the experiments we conducted with the instant messaging
applications and evaluate the approach. The results show that our solution sig-
nificantly reduces the programming effort and ensures the correctness of the
mediation while preserving efficient execution time. Section 7 examines related
work. Finally, Section 8 concludes the paper and discusses future work.

2 The Instant Messaging Case

Instant messaging (IM) is a popular application for many Internet users and
is now even embedded in many social networking systems such as Facebook.
Moreover, since IM allows users to communicate in real-time and increases their
collaboration, it is suitable for short-lived events and conferences such as In-
stant Communities for online interaction at the European Future Technologies
Conference and Exhibition5 (FET’11) that took place in May 2011.

Popular and widespread IM applications include Windows Live Messen-
ger6(commonly called MSN messenger), Yahoo! Messenger7, and Google Talk8

5 http://www.fet11.eu/
6 http://explore.live.com/windows-live-messenger/
7 http://messenger.yahoo.com/
8 http://www.google.com/talk/

4 Bennaceur et al.

which is based on the Extensible Messaging and Presence Protocol9 (XMPP)
standard protocol. These IM applications offer similar functionalities such as
managing a list of contacts or exchanging textual messages. However, a user of
Yahoo! Messenger is unable to exchange instant messages with a user of Google
Talk. Indeed, there is no common standard for IM. Thus, users have to maintain
multiple accounts in order to interact with each other (see Figure 1). This sit-
uation, though cumbersome from a user perspective, unfortunately reflects the
way IM – like many other existing applications – has developed.

XMPP System

XMPP Client XMPP Client
XMPP

MSNP System
MSN Client MSN Client

MSNP

Fig. 1. Interoperability issue between heterogeneous IM systems

A solution that guarantees interoperability between heterogeneous IM appli-
cations has to cope with the following heterogeneity dimensions:

– Data heterogeneity. MSN Messenger protocol (MSNP), the protocol used by
Windows Live Messenger, uses text-based messages whose structure includes
several constants with predefined values. On the other hand, the Yahoo!
Messenger Protocol (YMSG) defines binary messages that include a header
and key-value pairs. As for XMPP messages, they are defined according to
a given XML Schema.

– Protocol heterogeneity. Even though IM applications are simple and quite
similar, each one communicates with its own proprietary application server
used to authenticate and to relay the messages between instant messaging
clients. Consequently, each application has its own interaction protocol.

Achieving interoperability between independently developed systems has been
one of the fundamental goals of middleware research. Prior efforts have largely
concentrated on solutions where conformance to the same standard is required
e.g., XMPP. However, compliance to a unique standard is not always feasible
given the competitive pressures in the marketplace.

Middleware-based approaches define a common abstraction interface (e.g.,
Adium10) or an intermediary protocol (e.g., J-EAI11 and CrossTalk [17]) pro-
mote interoperability in a transparent manner. However, relying on a fixed in-
termediary interface or protocol might become restrictive over time as new func-
tionalities and features emerge. By synthesising mediators automatically and
rigorously we relieve developers from the burden of implementing or specifying
such mediators and further ensures their correctness.

9 http://www.xmpp.org/
10 http://adium.im/
11 http://www.process-one.net

Achieving Interoperability through Semantic-based Technologies 5

Semantics-based solutions (e.g., SAM [8] and Nabu12) use ontologies to en-
hance the functionalities of IM application by reasoning about the content of
messages and overcoming mismatches at the data level but assume the use of
the same underlying communication protocol. Hence, even though an enormous
amount of work is being carried out on the development of concrete interoper-
ability solutions that rely on ontologies to overcome application heterogeneity,
none propose an approach to generate mediators able to overcome both data and
protocol heterogeneity. In the next section, we introduce our ontology-based ap-
proach to interoperability that automatically synthesises mediators to transpar-
ently solve both data and protocol mismatches between functionally compatible
applications at runtime.

3 Ontology-based Modelling of Interaction Protocols

Automated mediation of heterogeneous applications requires the adequate mod-
elling of their data and interaction protocols. In this section, we introduce OFSP
(Ontology- based Finite State Processes), a semantically-annotated process al-
gebra to model application behaviour.

3.1 Ontologies in a Nutshell

An ontology is a shared, descriptive, structural model, representing reality by a
set of concepts, their interrelations, and constraints under the open-world as-
sumption [1]. Ontologies are defined by domain experts, not by the application
developers, to represent shared knowledge about a specific domain.

The Web Ontology Language13 (OWL) is a W3C standard language to for-
mally model ontologies in the Semantic Web. Many OWL ontologies have been
developed for specific domains, e.g., Sinica BOW14 (Bilingual Ontological Word-
net) for English-Chinese integration. In addition, work on ontology alignment
deals with the possible usage of distinct ontologies in the modelling of different
systems from the same domain, as illustrated by the W3C Linking Open Data
project15. OWL is based on description logic (DL), which is a knowledge rep-
resentation formalism with well-understood formal properties [1]. Concepts are
defined as OWL classes. Relations between classes are called OWL properties.
Ontology reasoners are used to support automatic inference on concepts in or-
der to reveal new relations that may not have been recognised by the ontology
designers. Traditionally, the basic reasoning mechanism is subsumption16[1]:

12 http://nabu.opendfki.de/
13 http://www.w3.org/TR/owl2-overview/
14 http://BOW.sinica.edu.tw/
15 http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects
16 The subsumption relation can be used to implement other inferences, such as satis-

fiability and equivalence, using pre-defined reductions.

6 Bennaceur et al.

Definition 1 (v : Subsumption). A concept C is subsumed by a concept D in
a given ontology O, written C v D, if in every world consistent with the axioms
of the ontology O the set denoted by C is a subset of the set denoted by D.

The subsumption relation is both transitive and reflexive and defines a hierarchy
of concepts. This hierarchy always contains a built-in top concept owl:Thing and
bottom concept owl:Nothing.

<<owlClass>>
Conversation

hasConversationID: String
hasRecipientID: String
hasSenderID:string

<<owlClass>>
InstantMessage

hasMessage:String

<<owlClass>>
Authentication

<<owlClass>>
XMPP_Authentication

<<owlClass>>
MSN_Authentication

<<owlClass>>
Logout

<<owlClass>>
XMPP_Logout

<<owlClass>>
MSN_Logout

<<owlClass>>
User

hasUserID: String

<<owlClass>>
Recipient

hasRecipientID: String

<<owlClass>>
Sender

hasSenderID: String

<<owlClass>>
ChatRoom

+isPartOf {some}

+hasSender {some}+hasRecipient {some}

Fig. 2. The instant messaging ontology

Figure 2 depicts the instant messaging ontology. An InstantMessage class has
at least one sender hasSender{some}, one recipient hasRecipient{some}, and one
message hasMessage. hasSender{some} and hasRecipient{some} are object properties
that relate an instant message to a sender or a recipient while hasMessage is a
data property associated with the InstantMessage class. The Sender and Recipient

classes are subsumed by the User class. Indeed, any instance of the two former
classes is also an instance of the latter. A Conversation is performed between
a sender (who initialises it) and a recipient, and the conversation has its own
identifier. An instant message isPartOf a conversation. A ChatRoom is a specific
conversation and hence is subsumed by Conversation.

3.2 Modelling Protocols using Ontology-based FSP

The interaction protocol of an application describes how the operations of its
interface are coordinated in order to achieve a specified functionality. We build
upon state-of-the-art approaches to formalise interaction protocols using process
algebra, in particular Finite State Processes (FSP) [13]. FSP has proven to be a
convenient formalism for specifying concurrent systems. Although another pro-
cess algebra would have worked equally well, we choose FSP for convenience and
to exploit the Labelled Transition System Analyser (LTSA) in order to automate
reasoning and analysis of interaction protocols specified as finite processes. Ta-
ble 1 gives an overview of FSP, while the interested reader is referred to [13] for
further details.

Each process P is associated with an interface αP that defines the set of
observable actions that the application requires from/provides to its running
environment. We structure these actions and annotate them using a domain

Achieving Interoperability through Semantic-based Technologies 7

ontology O so as to specify their semantics, resulting in Ontology-based FSP
(OFSP). An input action a =<op, I, O> specifies a required operation op ∈
O for which the application produces a set of input data I = {in ∈ O} and
consumes a set of output data O = {out ∈ O}. The dual output action17 b =<op,
I, O> refers to a provided operation op for which the application uses the inputs
I and produces the corresponding outputs O. Note that all actions are annotated
using the same domain ontology O describing the application-specific concepts
and relations.

FSP Syntax

αP P ’s interface

a → P Action prefix

a → P |b → P Choice

P ;Q Sequential composition

P‖Q Parallel composition

END Predefined process, denotes successful termination

FSP Semantics

P
a→ P ′ P transits with action a into P ′

P
s⇒ P ′, shorthand for P

a1→ P1...
an→ P ′

s = 〈a1, ..., an〉 , ai ∈ αP ∪ τ

traces(P) The set of all successfully-terminating traces of P : {s | P s⇒ END}

Table 1. FSP overview

The rationale behind this notation is to enable behavioural analysis based
on the semantics of process actions. Indeed, only if both sides of communica-
tion assign the same semantics to their actions, can they interact correctly. In
addition, τ is used to denote an internal action that cannot be observed by the
environment.

MSNClient = (<MSN Authentication Request, {UserID}, {Challenge} >
→ <MSN Authentication Response, {Response}, {Authentication ok} >
→ ExchangeMsgs).

ExchangeMsgs = (<CreateChatRoom, {UserID}, {ConversationID} >
→ <JoinChatRoom,{UserID},{Acceptance} >→P1

| < JoinChatRoom, {UserID}, {Acceptance} >
→ < {ChatRoomInfo, ∅, {ConversationID} > →P1),

P1 = (<InstantMessage, {UserID, ConversationID, Message}, ∅ > → P1
| <InstantMessage, {UserID, ConversationID, Message}, ∅ > → P1
| <MSN Logout, {UserID}, ∅ > → END).

Fig. 3. OFSP specification of MSNP
XMPPClient = (< XMPP Authentication Request, {UserID}, {Challenge } >

→ <XMPP Authentication Response, {Response}, {Authentication ok} >
→ ExchangeMsgs).

ExchangeMsgs = (<InstantMessage, {SenderID, RecepientID, Message}, ∅ >→ ExchangeMsgs
| <InstantMessage, {SenderID, RecipientID, Message}, emptyset >
→ ExchangeMsgs
| < XMPP Logout, {UserID}, emptyset >→ END).

Fig. 4. OFSP specification of XMPP

The concepts and properties defined in the IM ontology are used to spec-
ify MSNP and XMPP clients using OFSP, as illustrated in Figures 3 and 4

17 Note the use of an overline as a convenient shorthand notation to denote output
actions

8 Bennaceur et al.

respectively, focusing on message exchange. Each IM application performs au-
thentication and logout with the associated server. Before exchanging messages,
the MSNP application has to configure a chat room, which is an MSN conversa-
tion between the user that initiates the conversation (sender) and the user who
accepts to participate in this conversation (recipient). In XMPP each message
simply contains both the sender and the recipient identifiers.

4 Ontology-based Approach to Mediator Synthesis

In this section we consider two functionally-compatible applications, described
through OFSP processes P1 and P2, that are unable to interoperate due to differ-
ences in their interfaces or protocols. Functional compatibility means that their
required/provided high-level functionalities are semantically equivalent [12]. Our
aim is to enforce their interoperation by synthesising a mediator that addresses
these differences and guarantees their behavioural matching. The notion of be-
havioural matching is formally captured through refinement [11]. A process Q
refines a process P if every trace of Q is also a trace of P , i.e., traces(Q) ⊆
traces(P). However, this notion of refinement analyses the dynamic behaviour
of processes assuming close-world settings, i.e., the use of the same interface to
define the actions of both processes. What is needed is a notion of compatibil-
ity that takes into account the semantics of actions while relying on a mediator
process M to compensate for the syntactic differences between actions and guar-
antees that the processes communicate properly.

To this end, we first reason about the semantics of actions so as to infer the
correspondences between the actions of the processes’ interfaces and generate the
mapping processes that perform the necessary translations between semantically
compatible actions. Various mapping relations may be defined. They primarily
differ according to their complexity and inversely proportional flexibility. In this
paper we focus on one-to-one mappings, i.e., direct correspondences between
actions. During the synthesis step, we explore the various possible mappings in
order to produce a correct-by-construction mediator, i.e., a mediator M that
guarantees that the composite process P1‖M‖P2 reaches an END state, or de-
termines that no such mediator exists.

In this section we introduce the semantic compatibility of actions, and use
it to define behavioural matching. Then, we present the automated synthesis
algorithm.

4.1 Semantic Compatibility of Actions

A sine qua non condition for two processes P1 and P2 to interact is to agree on the
data they exchange. However, independently-developed applications often define
different interfaces. The mediator can compensate for the differences between
interfaces by mapping their actions if and only if they have the same semantics.
We first define the notion of action subsumption and then, use it to define the
semantic compatibility of actions.

Achieving Interoperability through Semantic-based Technologies 9

Definition 2 (vO : Action Subsumption). An action a1 =<op1, I1, O1> is
subsumed by an action a2 =<op2, I2, O2> according to a given ontology O, noted
a1 vO a2, iff: (i) op2 v op1, (ii) ∀i2 ∈ I2,∃i1 ∈ I1 such that i1 v i2, and (iii)
∀o1 ∈ O1,∃o2 ∈ O2 such that o2 v o1.

The idea behind this definition is that an input action can be mapped to an
output one if the required operation is less demanding; it provides richer input
data and needs less output data. This leads us to the following definition of
semantic compatibility of actions:

Definition 3 (≈O : Semantic Compatibility of Actions). An action a1 is
semantically compatible with an action a2, denoted a1 ≈O a2, iff a1 is subsumed
by a2 (i.e., a1 is required and a2 provided) or a2 is subsumed by a1 (a2 is required
and a1 provided) .

The semantic compatibility between two actions allows us to generate an
action mapping process as follows:

MO(a1, a2) =

{
a1

O7−→ a2 if a1 is subsumed by a2

a2
O7−→ a1 if a2 is subsumed by a1

The process that maps action a1 to action a2, written a1
O7−→ a2 captures each

input data from the input action, assigns it to the appropriate input of the
output action (i2 ← i1), then takes each output data of the output action and
assigns it to the expected output of the input action (o1 ← o2). This assignment
is safe since an instance of i1 (resp. o2) is necessarily an instance i2 of (resp. o1).

Let us consider a1=<InstantMessage,{UserID,ConversationID,Message},∅> associ-
ated to the MSN client and a2=<InstantMessage,{SenderID,RecipientID,Message},∅>

associated to the XMPP client. The IM ontology indicates that (i) Sender is
subsumed by User, and (ii) Conversation is associated with some Recipient. Conse-
quently, a1 is subsumed by a2.

4.2 Behavioural Matching through Ontology-based Model Checking

We aim at assessing behavioural matching of two processes P1 and P2 given
the semantic compatibility of their actions according to an ontology O. To this
end, we first filter out communications with third party processes [19]. The
communicating trace set of P1 with P2, noted traces(P1)↑OP2 is the set of all
successfully-terminating traces of P1 restricted to the observable actions that
have semantically compatible actions in αP2.

Definition 4 (↑O : Communicating Trace Set). traces(P1)↑OP2
def
=

{s = 〈a1, a2, ..., an〉 , ai ∈ αP1 | P1
s⇒ END such that ∀ai,∃bi ∈ αP2|ai ≈O bi}

As an illustration, both the MSNP and XMPP IM clients perform their
authentication and logout with their respective servers. Additionally, MSNP also
performs the actions related to the ChatRooms with its servers. Consequently
their communicating traces sets are restricted to instant message exchange.

10 Bennaceur et al.

Then, two traces s1 = 〈a1a2...an〉 and s2 = 〈b1b2...bn〉 semantically match,
written s1 ≡O s2, iff their actions semantically match in sequence.

Definition 5 (≡O : Semantically Matching Traces).

s1 ≡O s2
def
= ai ≈O bi 1 ≤ i ≤ n

The associated mapping is then as follows:

MapO(s1, s2) = MO(a1, b1); ...;MO(an, bn)

Based on the semantic matching of traces, a process P2 ontologically refines a
process P1 (P1 |=O P2) iff each trace of P2 semantically matches a trace of P1:

Definition 6 (|=O : Ontological Refinement).

P1 |=O P2
def
= ∀s2 ∈ traces(P2)↑OP1, ∃s1 ∈ traces(P1)↑OP2 : s2≡O s1

By checking ontological refinement between P1 and P2, we are able to determine
the following behavioural matching relations:

– Exact matching–(P1 |=O P2) ∧ (P2 |=O P1): assesses compatibility for sym-
metric interactions such as peer-to-peer communication where both processes
provide and require the similar functionality.

– Plugin matching–(P1 |=O P2) ∧ (P2 6|=O P1): evaluates compatibility for
asymmetric interactions such as client-server communication where P1 is
providing a functionality required by P2.

– No matching–(P1 6|=O P2) ∧ (P2 6|=O P1): identifies behavioural mismatch.

Behavioural matching is automated through ontology-based model checking.
Model checking is an attractive and appealing approach to ensure system cor-
rectness that proved to be a very sound technique to automatically verify con-
current systems. The gist of model checking approaches is the exhaustive state
exploration. This exploration is performed by model checkers using efficient al-
gorithms and techniques that make it possible to verify systems of up to 101300

states in few seconds [7]. However, even if these techniques effectively handle
very large systems, the actions of the models they consider are usually simple
strings and the verification matches actions based on their syntactic equality. We
build upon these model checking techniques but further match actions based on
their semantic compatibility. The semantic compatibility of actions is defined
based on the domain knowledge encoded within a given ontology.

Referring to the IM case, all the traces of MSNP and XMPP processes seman-
tically match. Subsequently, these two processes are in exact matching relation,
and a mediator can be synthesised to perform action translations and enable
their correct interaction.

4.3 Automated Mediator Synthesis

In the case where P1 and P2 match, that is exact matching in the case of peer-
to-peer communication or plugin matching in the case of client/server commu-
nication, we synthesise the mediator that makes them properly interact. The

Achieving Interoperability through Semantic-based Technologies 11

algorithm incrementally builds a mediator M by forcing the two protocols to
progress synchronously so that if one requires an action a, the other must provide
a semantically compatible action b. The mediator compensates for the syntactic
differences between their actions by performing the necessary transformations,
which is formalised as follows:

MediatorO(P1, P2) = ‖Map(s1, s2) such that
s2 ∈ traces(P2)↑OP1, s1 ∈ traces(P1)↑OP2 : s2≡O s1

In the IM case, we are able to produce the mediator for the MSNP and XMPP
processes as illustrated in Figure 5. The mediator intercepts an instant message
sent by an MSNP user and forwards it to the appropriate XMPP user. Similarly,
each instant message sent by an XMPP user, is forwarded by the mediator to
the corresponding MSNP user.

Map1 = (<InstantMessage, {SenderID, RecepientID, Message}, ∅ >

→ <InstantMessage, {UserID, ConversationID, Message}, ∅ >→ END).
Map2 = (< InstantMessage, {UserID, ConversationID, Message}, ∅ >

→ <InstantMessage, {SenderID, RecepientID, Message}, ∅ >→ END).
‖Mediator = (Map1‖Map2).

Fig. 5. OFSP specification of the Mediator between MSNP and XMPP

5 Implementation

In order to validate our approach, we have combined the LTSA18 model checker
with an OWL-based reasoner to achieve ontological refinement leading to the
OLTSA tool (Figure 6-¶). LTSA is a free Java-based verification tool that au-
tomatically composes, analyses, graphically animates FSP processes and checks
safety and liveness properties against them.

MSNP OFSP SpecificationOLTSA

Mediator (OFSP)

Mediator (MTL)

XMPP OFSP Specification

Starlink
XMPP Client MSNP Client

 IM Ontology
ab
dc

e

1

2

3

 Model Transformation

Fig. 6. Mediation Architecture

In the case where the processes match, a concrete mediator that implements
the actual message translation is deployed atop of the Starlink framework [3], see
Figure 6-¸. Starlink interprets the specification of mediators given in a domain-
specific language called Message Translation Logic (MTL). An MTL specification

18 http://www.doc.ic.ac.uk/ltsa/

12 Bennaceur et al.

describes a set of assignments between message fields. The messages correspond
to action names and the fields to the name of input/output data. Note that
the OFSP description focuses on the ontological annotations and not the the
actual name. Therefore, we refine the OFSP specification of the mediator so as
to generate the associated MTL before deploying the mediator atop of Starlink,
see Figure 6-·.

Let us consider the mapping Map1 (see Figure 5), which transforms an XMPP
input action to the associated MSNP action. Figure 7 shows a small fragment of
the associated translation logic described in MTL and which corresponds to the
assignment of the UserID field of the XMPP message (ReceivedInstantMessage) to
the SenderID field of of the MSNP message (SDG) with the mediator transiting
from state XS1 to state MR1.

The tool, the IM ontology, and a video demonstration are available at http:
//www-roc.inria.fr/arles/download/imInteroperability/.

<translationlogic>
<assignment>
<f ie ld>
<s t a t e l ab e l>MR1</s t a t e l ab e l><message>SDG</message>
<xpath>/ f i e ld / p r im i t i v eF i e l d [l a b e l =’UserID ’] / value</xpath>
</f ie ld>
<f ie ld>
<s t a t e l ab e l>XS1</s t a t e l ab e l><message>ReceivedInstantMessage</message>
<xpath>/ f i e ld / p r im i t i v eF i e l d [l a b e l =’SenderID ’] / value</xpath>
</f ie ld></assignment>

</translationlogic>

Fig. 7. Translation logic to map MSNP and XMPP instant messages

6 Assessment

In this section we first report a set of experiments we conducted to evaluate the
effectiveness of our approach when applying it to the instant messaging case.
Then, we discuss some of its quality properties.

6.1 Experimental Results

We have evaluated the time for translating one protocol to the other by the syn-
thesised mediator and the effort required by the developer to enable mediation.
We have hand-coded a mediator that makes MSNP, YMSG, XMPP interop-
erable in order to gauge the complexity of the mediation. We considered the
Windows Live Messenger for MSNP, Yahoo! Messenger for YMSG, and Pid-
gin19 for XMPP. We run the OLTSA tool and the Starlink framework on a Mac
computer with a 2,7 GHz processor and 8 GB of memory.

In the first experiment, we measured the time taken to translate from one
protocol to another. We repeated the experiments 50 times and reported the
mean time for each case in Table 2. The hand-coded mediator is approximately
3 times faster than the synthesised one. This is mainly due to the fact that the
execution framework (Starlink) is interpreting the models at runtime whereas
the hand-coded one is already compiled and hence more efficient.

19 http://www.pidgin.im/

Achieving Interoperability through Semantic-based Technologies 13

In the second experiment, we measured the time for synthesising the media-
tor (see Table 3). One can note that action mapping is the most time consuming
step as it necessitates ontology reasoning in order to infer semantically matching
actions while the behavioural matching is performed is less than 1 ms. Never-
theless, this step needs to be performed once only and is definitely faster than
hand-coding the mediator or even specifying it. Moreover, for each new version
of one of the protocols, the hand-coded mediator has to be re-implemented and
re-compiled, Starlink requires the specification of the translation logic to be re-
specified whereas the automated synthesis requires only the specification of the
protocol to be re-loaded.

Hand-
coded

Mediator atop
Starlink

YMSG ↔ MSNP 22 69
MSNP ↔ XMPP 52 131
YMSG ↔ XMPP 44 126

Table 2. Translation time (ms)

Act.
mapping

Beh.
match.

YMSG ↔ MSNP 306 <1
MSNP ↔ XMPP 252 <1
YMSG ↔ XMPP 244 <1

Table 3. Time for Synthesis (ms)

The third experiment measures the effort demanded from the developer to
produce mediators between different IM applications. We calculate the number
of Java code lines of the hand-coded mediator, the number of lines of DSL
specification that need to be specified for Starlink and those needed to specify
the individual applications for the automated synthesis.

Hand-Coded Starlink Automated

YMSG ↔ MSNP 1172 258 96
MSNP ↔ XMPP 750 198 84
YMSG ↔ XMPP 945 168 76

Table 4. Development effort

The results are given in Table 4. One can notice that although Starlink re-
duces considerably (around 4 times) the lines of code that need to be written,
the automated approach requires the OFSP specifications only and decreases
this number drastically (around 10 times). This is mainly due to (i) the use of
OFSP to model the interaction protocols, which introduces an ontology-based
domain-specific language grounded in process algebra and especially targeted
for concurrent systems. For example, the MSNP behaviour is described in Star-
link using 30 XML lines and only 6 lines with our approach (ii) Further, the
translation code need not be specified. More importantly, unlike the hand-coded
or the Starlink versions where the developer is required to know both proto-
cols and define the translation manually, the protocols are specified separately
in the automated version. Thus, each IM provider can independently specify
its own protocol. Finally, we are investigating within the Connect20 project
learning-based techniques to infer such a specification automatically [2].

To sum up, our automated approach to interoperability significantly reduces
the programming effort and ensures the correctness of the translation while
requiring a negligible time for synthesising the mediator and guaranteeing good
performances at translation time.

20 http://connect-forever.eu/

14 Bennaceur et al.

6.2 Qualitative Assessment

In addition to the above-mentioned performances, our approach satisfies the
following properties:

– Correctness by construction. The correctness of the mediation, i.e., the ab-
sence of deadlock and unspecified receptions [24], is guaranteed by construc-
tion. Indeed, if there is an exact match between P1 and P2 then the parallel
composition P1‖M‖P2 is deadlock free. Exact matching means that each
trace of P1 (P2) has a corresponding semantically-matching trace in P2 (P1),
which amounts to setting P1 (P2) as a safety property that needs to be ver-
ified by P2 (P1). This verification is performed by exhaustively exploring
the state space. Note though that efficient model checkers use optimisation
techniques to reduce the space if possible. The reduction techniques are even
more efficient in the case of process algebra.

– Formal yet tractable DSL specification. OFSP introduces an ontology-based
domain-specific language grounded in process algebra. Process algebra con-
stitute a very expressive behavioural specification language for complex con-
current systems while ontologies are the model of choice to describe data
semantics. Furthermore, standard modelling languages that developers are
familiar with (e.g., BPEL or CDL) can be used to specify the interaction pro-
tocols and then automatically translate them to FSP using existing tools21.

– Dealing with encryption. When encryption is enforced (e.g., Google Talk
encrypts XMPP messages), the mediator cannot parse or modify these mes-
sages all the way between the initial sender and the ultimate receiver. Trans-
parency cannot be ensured anymore. Instead, the user get involved and han-
dles some of the translation tasks [22]. In the Google Talk case, the mediator
uses a robot (bot) that the user adds to its contact list. The robot manages a
set of commands, e.g., IM <destinationID> <message> to send a message
message to user destinationID.

7 Related Work

The problem of mediating applications has been studied in different domains.
Middleware solutions focus on providing abstraction and execution environments
that enable interoperation by providing an abstract interface and exploiting re-
flection [9], by translating into a common intermediary protocol such as in the
case of Enterprise Service Buses [15] or by proposing a domain-specific language
to describe the translation logic and automatically generate the correspond-
ing gateways [3]. However, these solutions require the developer to specify the
translation to be made and hence to know both protocols in advance whereas
in our approach, each protocol is independently specified and the translation is
produced automatically. The Web Service Execution Environment (WSMX) per-
forms the necessary translation on the basis of pre-defined mediation patterns.

21 http://www.doc.ic.ac.uk/ltsa/bpel4ws/

Achieving Interoperability through Semantic-based Technologies 15

However, the composition of these patterns is not considered, and there is no
guarantee that it will not lead to a deadlock. Vacuĺın et al. [21] devise a media-
tion approach for OWL-S processes. They first generate all requester paths, then
find the appropriate mapping for each path by simulating the provider process.
This approach deals only with client/server Web service interactions. It is not
able to deal with the heterogeneity of instant messaging applications for exam-
ple. Calvert and Lam [4] propose an approach to reason about the existence of a
mediator by projecting both systems into a common sub-protocol. However, this
common sub-protocol needs to be specified using an intuitive understanding of
the protocols. In their seminal paper, Yellin and Strom [24] propose an algorithm
for the automated synthesis of mediators based on predefined correspondences
between messages. By considering the semantics of actions, we are able to infer
the correspondences between messages automatically. Finally, Cavallaro et al.
[5] also consider the semantics of data and relies on model checking to identify
mapping scripts between interaction protocols automatically. However, they do
not take into account the actual semantics of the operations. Moreover, they
propose to perform the interface mapping beforehand so as to align the vocab-
ulary of the processes, but many mappings may exist and should be considered
during the generation of the mediator. Hence, even though there exists a signifi-
cant amount of work to achieve interoperability, none of the existing approaches
proposes to generate automatically mediators that are able to deal with both
data and protocol mismatches.

8 Conclusion

Achieving interoperability between heterogeneous distributed applications with-
out actually modifying their interfaces or behaviour is desirable and often nec-
essary in today’s pervasive systems. Mediators promote the seamless intercon-
nection of distributed applications by performing the necessary translations be-
tween their messages and coordinating their behaviour. In this paper, we have
presented a principled approach to the automated synthesis of mediators at run-
time. We first infer mappings between application interfaces by reasoning about
the semantics of their data and operations annotated using a domain-specific
ontology. We then use these mappings to automatically synthesise a correct-
by-construction mediator. This principled approach to generating mediators re-
moves the need to develop ad hoc bridging solutions and fosters future-proof
interoperability. We evaluated the approach using a case study involving het-
erogeneous instant messaging applications and showed that it can successfully
ensure their interoperation.

Work in progress involves the definition of many-to-many operation mappings
to manage a broader set of heterogeneous systems. Our work further integrates
with complementary work ongoing within the Connect European project so as
to develop a framework to support the interoperability lifecycle by using semantic
technologies to synthesise mediators dynamically and ensure their evolution to
respond efficiently to changes in the individual systems or in the ontology. A
further direction is to consider improved modelling capabilities that take into

16 Bennaceur et al.

account the probabilistic nature of systems and the uncertainties in the ontology.
This would facilitate the construction of mediators where we have only partial
knowledge about the system.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.:
The Description Logic Handbook. Cambridge University Press (2003)

2. Blair, G., Bennaceur, A., Georgantas, N., Grace, P., Issarny, V., Nundloll, V.,
Paolucci, M.: The Role of Ontologies in Emergent Middleware: Supporting Inter-
operability in Complex Distributed Systems. In: Proc. Middleware (2011)

3. Bromberg, Y.D., Grace, P., Réveillère, L.: Starlink: Runtime interoperability be-
tween heterogeneous middleware protocols. In: Proc. ICDCS (2011)

4. Calvert, K.L., Lam, S.S.: Formal methods for protocol conversion. IEEE Journal
on Selected Areas in Comm. (1990)

5. Cavallaro, L., Nitto, E.D., Pradella, M.: An automatic approach to enable replace-
ment of conversational services. In: Proc. ICSOC/ServiceWave (2009)

6. Cimpian, E., Mocan, A.: WSMX process mediation based on choreographies. In:
BPM Workshop (2005)

7. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. (1994)

8. Franz, T., Staab, S.: SAM: Semantics aware instant messaging for the networked
semantic desktop. In: Proc. International Sem. Web Conf. Workshops (2005)

9. Grace, P., Blair, G.S., Samuel, S.: ReMMoC: A reflective middleware to support
mobile client interoperability. In: Proc. CoopIS/DOA/ODBASE (2003)

10. Heiler, S.: Semantic interoperability. ACM Surv. (1995)
11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
12. Issarny, V., Bennaceur, A., Bromberg, Y.D.: Middleware-layer connector synthesis:

Beyond state of the art in middleware interoperability. In: SFM-11 (2011)
13. Magee, J., Kramer, J.: Concurrency : State models and Java programs. Hoboken

(N.J.) : Wiley (2006)
14. Maier, M.W.: Integrated modeling: A unified approach to system engineering. Jour-

nal of Syst. and Softw. (1996)
15. Menge, F.: Enterprise Service Bus. In: Proc. Free and open source soft. conf. (2007)
16. Mokhtar, S.B., Kaul, A., Georgantas, N., Issarny, V.: Efficient semantic service

discovery in pervasive computing environments. In: Proc. Middleware (2006)
17. Motoyama, M.A., Varghese, G.: CrossTalk: scalably interconnecting instant mes-

saging networks. In: Proc. ACM Workshop on Online Social Networks (2009)
18. Nielsen: Games Dominate America’s Growing Appetite for Mobile Apps (2010)
19. Spalazzese, R., Inverardi, P., Issarny, V.: Towards a formalization of mediating

connectors for on the fly interoperability. In: WICSA/ECSA (2009)
20. The Radicati Group: Instant Messaging Market 10-14 (2010)
21. Vacuĺın, R., Neruda, R., Sycara, K.P.: The process mediation framework for se-

mantic web services. Journal of Agent-Oriented Softw. Eng. (2009)
22. Vassilakis, C., Kareliotis, C.: A framework for adaptation in secure web services.

In: Medi. Conf. on Info. Syst. (2009)
23. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE

Computer (1992)
24. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM

Trans. Prog. Lang. Syst. (1997)

