Local Higher-Order Statistics (LHS) for Texture Categorization and Facial Analysis

Gaurav Sharma 1, 2 Sibt Ul Hussain 2 Frédéric Jurie 1, 3
1 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
3 Equipe Image - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
Abstract : This paper proposes a new image representation for texture categorization and facial analysis, relying on the use of higher-order local di fferential statistics as features. In contrast with models based on the global structure of textures and faces, it has been shown recently that small local pixel pattern distributions can be highly discriminative. Motivated by such works, the proposed model employs higher-order statistics of local non-binarized pixel patterns for the image description. Hence, in addition to being remarkably simple, it requires neither any user specfi ed quantization of the space (of pixel patterns) nor any heuristics for discarding low occupancy volumes of the space. This leads to a more expressive representation which, when combined with discriminative SVM classi er, consistently achieves state-of-the-art performance on challenging texture and facial analysis datasets outperforming contemporary methods (with similar powerful classi ers).
Type de document :
Communication dans un congrès
Andrew Fitzgibbon and Svetlana Lazebnik and Pietro Perona and Yoichi Sato and Cordelia Schmid. ECCV 2012 - European Conference on Computer Vision, Oct 2012, Florence, Italy. Springer, 7578, pp.1-12, 2012, Lecture Notes in Computer Science. 〈10.1007/978-3-642-33786-4_1〉
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00722819
Contributeur : Thoth Team <>
Soumis le : samedi 4 août 2012 - 14:41:25
Dernière modification le : mardi 5 juin 2018 - 18:00:02
Document(s) archivé(s) le : vendredi 16 décembre 2016 - 05:01:58

Fichier

lhs_eccv12.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Gaurav Sharma, Sibt Ul Hussain, Frédéric Jurie. Local Higher-Order Statistics (LHS) for Texture Categorization and Facial Analysis. Andrew Fitzgibbon and Svetlana Lazebnik and Pietro Perona and Yoichi Sato and Cordelia Schmid. ECCV 2012 - European Conference on Computer Vision, Oct 2012, Florence, Italy. Springer, 7578, pp.1-12, 2012, Lecture Notes in Computer Science. 〈10.1007/978-3-642-33786-4_1〉. 〈hal-00722819〉

Partager

Métriques

Consultations de la notice

710

Téléchargements de fichiers

1060