Learning discriminative spatial representation for image classification

Gaurav Sharma 1, 2 Frédéric Jurie 1, 3
1 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
3 Equipe Image - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
Abstract : Spatial Pyramid Representation (SPR) [7] introduces spatial layout information to the orderless bag-of-features (BoF) representation. SPR has become the standard and has been shown to perform competitively against more complex methods for incorporating spatial layout. In SPR the image is divided into regular grids. However, the grids are taken as uniform spatial partitions without any theoretical motivation. In this paper, we address this issue and propose to learn the spatial partitioning with the BoF representation. We define a space of grids where each grid is obtained by a series of recursive axis aligned splits of cells. We cast the classification problem in a maximum margin formulation with the optimization being over the weight vector and the spatial grid. In addition to experiments on two challenging public datasets (Scene-15 and Pascal VOC 2007) showing that the learnt grids consistently perform better than the SPR while being much smaller in vector length, we also introduce a new dataset of human attributes and show that the current method is well suited to the recognition of spatially localized human attributes.
Type de document :
Communication dans un congrès
Jesse Hoey and Stephen J. McKenna and Emanuele Trucco. BMVC 2011 - British Machine Vision Conference, Aug 2011, Dundee, United Kingdom. BMVA Press, pp.1-11, 2011, 〈10.5244/C.25.6〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/hal-00722820
Contributeur : Thoth Team <>
Soumis le : samedi 4 août 2012 - 14:58:40
Dernière modification le : mardi 5 juin 2018 - 18:00:02
Document(s) archivé(s) le : vendredi 16 décembre 2016 - 05:09:07

Fichiers

bmvc_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Gaurav Sharma, Frédéric Jurie. Learning discriminative spatial representation for image classification. Jesse Hoey and Stephen J. McKenna and Emanuele Trucco. BMVC 2011 - British Machine Vision Conference, Aug 2011, Dundee, United Kingdom. BMVA Press, pp.1-11, 2011, 〈10.5244/C.25.6〉. 〈hal-00722820〉

Partager

Métriques

Consultations de la notice

868

Téléchargements de fichiers

843