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Abstract
In this paper we introduce a new approach for realtime mul-

tiple pitch observation of musical instruments. The propo-

sed algorithm is quite different from others in the literature

both in its purpose and approach. It is destined not for conti-

nuous multiple f0 recognition but rather for projection of

the ongoing spectrum to learned pitch templates. The de-

composition algorithm on the other hand, does not compro-

mise signal processing models for pitches and consists of an

algorithm for efficient decomposition of a spectrum using

known pitch structures and based on sparse non-negative

constraints. After introducing the algorithm along with eva-

luations, a real-time implementation of the algorithm is pro-

vided for free download for the MaxMSP realtime program-

ming environment.

Keywords: Multiple-pitch observation, Non-negative Ma-

trix Factorization, Sparseness constraints, Machine Learning.

1. Introduction

The task of estimating multiple fundamental frequencies

of audio and speech signals has attained substantial effort

from the research community in the recent years. More in-

terestingly, proposed algorithms in the literature undergo a

wide variety of methods spanning from pure signal proces-

sing models to machine learning methods. For an excellent

overview of different methods for multiple-f0 estimation,

we refer the curious reader to [1].

In this paper, we present an algorithm for realtime obser-

vation of multiple pitches of polyphonic instruments. The

proposed method uses machine learning techniques in its

core for realtime decomposition of ongoing audio using known

pitch templates of an instrument. It is thus different from

many algorithms in the sense that it does not provide the user

with f0 computations but tells which of many (previously

learned) pitch templates are currently active for reconstruc-

tion of the ongoing audio. During (one-time) learning, the

system browses a library of instrumental sounds and learns

spectral structures of the pitches that can be produced by the

instrument. In this sense, one can say, the algorithm learns
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the instrument pitch model that will be used during realtime

observation.

The algorithm presented here is based on a modified Non-

negative Matrix Factorization (NMF) algorithm introduced

originally by Lee and Seung [2]. The first musical appli-

cations of NMF are reported in [3, 4] for polyphonic mu-

sic transcription and [5] for source separation. In all ap-

proaches, the algorithm learns parts representations of the

audio signal which correspond to music events. Despite their

significant results, the algorithms are heavy in computation

and non-realtime in nature. Recently, Sha and Saul have pro-

posed a real-time pitch determination algorithm using NMF

for speech signals [6]. Our approach is quite similar in ar-

chitecture to Sha and Saul but different by adding sparse-

ness constraints to a regular NMF (and thus changing the

algorithm used). Despite their success on speech databases,

their algorithm would be far from success for music signals

which undergo wider spectral characteristics than speech si-

gnals.

The paper is organized as follows. In Section 2 we present

the general architecture for training and realtime observa-

tions. This general architecture will be detailed in the fol-

lowing sections on learning and multiple-pitch observation

with the proposed NMF. Specifically in Section 4 we detail

our sparse NMF algorithm which is used during realtime

observation followed by results and discussions of the algo-

rithm.

2. General Architecture

The proposed method relies on unsupervised learning al-

gorithms that are used for knowledge representation and dis-

covery. During realtime observation, the algorithm tries to

reconstruct the ongoing audio using previously learned pitch

structures of an instrument, as a linear combination with

non-negative weights. This implies an offline learning of

pitch structures of all the pitches of an instrument which will

be used as templates during learning. We will give details of

this learning phase in Section 3.

This architecture is similar to the system proposed in

[6] with a crucial difference for music signals. Instead of

using a regular NMF algorithm for real-time determination

of pitch, we use a modified NMF algorithm with sparseness

constraints as outlined casually below and detailed in Sec-

tion 4. We compare results of the proposed algorithm with

that of [6] in section 5.



2.1. Non-negative Matrix Factorization

The learning algorithm used in both learning and realtime

observation is based on Non-negative Matrix Factorization

(NMF). Both algorithms will be presented mathematically

in Sections 3 and 4 but like any machine learning algorithm,

this choice will bring advantages and limitations which are

part of the general philosophy of the proposed method. Non-

negative matrix factorization is an unsupervised algorithm

for decomposition and learning for multivariate data [2].

Speaking generally, unsupervised learning algorithms such

as principal component analysis and vector quantization can

be understood as factorizing a data matrix subject to dif-

ferent constraints. NMF in this respect is another factoriza-

tion algorithm that uses nonnegativity constraint. Nonnega-

tivity in this sense, means that an original matrix V is com-

posed of the desired number of templates (stored as columns

in W ) which can reconstruct the original by being added li-

nearly with nonnegative weights (stored in H) or V ≈ WH .

The idea behind NMF algorithms is that the signal can be re-

constructed using its parts (W ) through addition of the parts

with different weights, and thus the parts are not necessarily

independent. This fact seems to be consistent with how we

hear and transcribe music chords through addition of single

pitches or identities we know a priori. However, this implies

careful considerations for signal representation and obser-

vation as discussed below.

In our formulation of the problem of multiple pitch ob-

servation, V would be the ongoing audio representation or

the result of the signal processing frontend of the system, W
would represent the pitch templates of an instrument, and H
would represent nonnegative weights corresponding to pre-

sence of pitch templates in V .

2.2. Signal Processing Frontend

The additive characteristic of NMF is an essential fac-

tor for any kind of representation used for V which, in the

case of multiple pitch observation, implies that the spectral

representation used for V should demonstrate a harmonic

stack of pitch templates added together for a given chord.

The signal processing front end used for this observation

is the result of a fixed point analysis of frequency to instan-

taneous frequency mapping of the ongoing audio spectrum

[7]. The short-time Fourier transform (STFT) is an efficient

tool for instantaneous frequency (IF) estimation [8]. Given

z(ω, t) as the analytical form of the STFT, the mapping

λ(ω, t) =
∂

∂t
arg[z(ω, t)] (1)

can be computed efficiently and in real-time using STFTs

[8] and the fixed points of this mapping can be extracted

using the following criteria [7, 6] :

λ(ω∗, t) = ω∗ and
∂λ

∂ω
|ω=ω∗ < 1 (2)
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FIG. 1. Fixed Point Instantaneous Frequency Representa-

tion of audio (bottom) corresponding to three chords (above)

played on a piano

As a result, vector V would be non-negative amplitudes of

the fixed-point instantaneous frequency representing harmo-

nic stacks at each analysis frame with the rest of the spec-

trum zeroed out. Figure 1 shows a snapshot of this represen-

tation on three given chords played on a real piano.

2.3. Sparsity of the solution

Despite perceptual advantages of an NMF approach over

ICA algorithms for multiple-pitch detection, since pitch tem-

plates are not mathematically independent, for a given spec-

trum (in V ) there may exist many possible solutions (H)

using templates in W . More specifically for our problem, a

given piano chord can be reconstructed by the templates of

its original pitches as well as octaves, dominant and other

pitches with harmonic relations to the original ones.

To overcome this problem, we use the strong assumption

that the correct solution for a given spectrum (in V ) uses a

minimum of templates in W , or in other words, the solu-

tion has the minimum number of non-zero elements in H .

This assumption is hard to be proofed for every music ins-

trument and highly depends on the template presentations

in W , but is easily imaginable as harmonic structure of a

music note can be minimally expressed (in the mean squa-

red sense) using the original note than a combination of its

octaves and dominant.

Fortunately, this assumption has been heavily studied in

the field of sparse coding. The concept of ‘sparse coding’ re-

fers to a representational scheme where only a few units out

of a large population are effectively used to represent typical



data vectors [9]. One of the useful properties of NMF is that

it usually produces a sparse representation of the data. Ho-

wever this sparseness is more of a side-effect than a goal and

one can not control the degree to which the representation is

sparse.

3. Learning Pitch Templates

As explained earlier, the system knows the pitch struc-

tures of all pitches of an instrument for use during real-

time observation. In Section 4 we introduce the decompo-

sition process or how to obtain H and here we show how

we learn different pitch templates for an instrument. As a re-

minder, W contains pitch structures of all pitches of a given

instrument. For example, for an acoustic piano, matrix W
would contain all 88 pitches as 88 different columns. To this

end, training is done using databases of instrumental sounds

[10, 11] and an off-line training learns different pitch struc-

tures of an instrument by browsing all sounds produced by

the given instrument in the database and stores them in ma-

trix W for future use.

For each audio file in the database, training is an itera-

tive NMF algorithm with a symmetric kullback-leibler di-

vergence for reconstruction error as shown in Equation 3,

where ⊗ is an element by element multiplication. In this

off-line training V would be the short-time fixed-point ins-

tantaneous frequency spectrum of the whole audio file as

described in Section 2.2 and the learning algorithm facto-

rizes V as V ≈ WH . In order to obtain precise and discri-

minative templates, we put some constraints on W vectors

learned during each NMF iteration. For each sound in the

database (or each pitch) we force the algorithm to decom-

pose V into two vectors (W has two columns) where we

only learn one vector and have the other fixed as white non-

negative noise, where only the first one would be stored for

the global W . This criteria helps the algorithm focus more

on the harmonic structure of V . Furthermore, we constrain

each iteration by an envelope (Env in equation 3). This en-

velope is constructed from the pitch information of the audio

file (usually taken from the name of the file in the database)

and emphasizes frequencies around the fundamental with a

decreasing envelope towards the end and close to zero for

frequencies less than the fundamental. While this assump-

tion does not hold for many instruments (such as violin and

piano), it enforces the most important characteristic of the

spectrum for pitch classification. This constraint improves

common octave and harmonic errors that can be introduced

in pitch determination during realtime observation.

Haµ ←− Env ⊗ Haµ

∑

i WiaViµ/(WH)iµ
∑

k Wka

Wia ←− Env ⊗ Wia

∑

i HaµViµ/(WH)iµ
∑

ν Haν

(3)

When the training reaches an acceptable stopping crite-

ria, the harmonic spectra in the local W will be saved in the

global W and the algorithm continues to the next audio file

in the database until it constructs W for all pitches of the

instrument.

4. NMF for Multiple-pitch Observation

As stated in Section 2.3, in order to decompose the spec-

trum using learned pitch templates, the solution needs to be

sparse. In this section, we introduce a modified sparse non-

negative decomposition algorithm useful for realtime pitch

observation.

Numerous sparseness measures have been proposed and

used in the literature. In general, these measures are map-

pings from R
n to R which quantify how much energy of a

vector is packed into a few components. As argued in [12],

the choice of sparseness measure is not a minor detail but

may have far reaching implications on the structure of a

solution. Very recently, Hoyer has proposed an NMF with

sparseness constraints by projecting results into ℓ1 and ℓ2
norm-spaces [13]. Due to real-time considerations and the

nature of sparseness in audio signals for pitch determina-

tion we propose a modified version of NMF with sparseness

constraint of that in [13].

The definition commonly given for sparseness is based

on the ℓ0 norm defined as the number of non-zero elements

‖X‖0 =
# {j, xj 6= 0}

N

where N is the dimension of vector X . It is characteristic for

the ℓ0 norm that the magnitude of non-zero elements is igno-

red. Moreover, this measure is only good for noiseless cases

and adding a very small measurement noise makes comple-

tely sparse data completely non-sparse. A common way to

take the noise into account is to use the ℓǫ norm defined as

follows :

‖X‖0,ǫ =
# {j, |xj | ≥ ǫ}

N

where parameter ǫ depends on the noise variance. In prac-

tice, there is no known way of determining this noise va-

riance which is independent of the variance in x. Another

problem of this norm is that it is non-differentiable and thus

can not be optimized with gradient methods. A solution is

to approximate the ℓǫ norm by tanh function,

g(x) = tanh(|ax|b)

where a and b are positive constants. In order to imitate ℓǫ

norm, the value of b must be greater than 1.

In addition to the tanh norm, we force an ℓ2 constraint

on the signal. This second constraint is crucial for the nor-

malization of the results and emphasis on significance of

factorization during note events in contrary to silent states.

In summary, the sparseness measure proposed is based

on the relationship between the ℓǫ norm and the ℓ2 norm as

demonstrated in Equation 4.



sparseness(x) =

√
N −

∑

tanh(|xi|2)/
√

∑

x2
i√

N − 1
(4)

For NMF with sparseness constraint, we use gradient des-

cent updates instead of the original NMF multiplicative up-

dates (Equation 3) and project each vector in real-time to be

non-negative and have desired ℓ2 and ℓǫ norms. This pro-

jected gradient descent, adapted from [13], is outlined be-

low. Once again this algorithm shows the factorization for

H when templates are known.

Given V and W , find the non-negative vector H with a given

ℓǫ norm and ℓ2 norm :

1. Initialize H to random positive matrices

2. Iterate

(a) Set H = H − µHWT (WH − V )
(b) Set si = hi + (ℓǫ −

∑

tanh(h2
i ))/N

and mi = ℓǫ/N
(c) Set s = m + α(s − m) where

α =
−(s−m)T m+

√
((s−m)T m)2−

∑
(s−m)2(

∑
m2

−ℓ2
2
)

∑
(s−m)2

(d) Set negative components of s to zero

and set H = s

Algorithm 1. Sparse Non-Negative Matrix Decomposition

Where (a) is a negative gradient descent and (b) through (d)

are the projection process on the ℓǫ and ℓ2 space. In (b) we

are projecting the vector to the ℓǫ hyperplane and (c) solves

a quadratic equation ensuring that the projection has the de-

sired ℓ2 norm.

For realtime pitch observation, the ℓ2 norm is provided

by the spectrum energy of the realtime signal and the ℓǫ

takes values between 0 and 1, is user-specified and can be

controlled dynamically. The higher the ℓǫ, the more sparse

is the solution in H . V would be a vector of size n where

here we use n = 512 for an FFT window of 93msec to cap-

ture harmonic structure up to about 6KHz. Equivalently,

W would be a matrix of n × m with m as the number of

templates and H would be a vector of size m.

5. Results and Evaluation

In this section we evaluate sparsity of the solution and

pitch observation of the proposed algorithm.

5.1. Sparsity

We start demonstrating the results by emphasizing on the

sparsity factor of the proposed algorithm. Figure 2 com-

pares two instances of NMF pitch observation on three piano

chords represented in Figure 2(a). Results on Figure 2(b)

purport to a regular NMF algorithm (learning only H with

known W or pitch templates) as proposed in [6] using regu-

lar NMF for speech signals and Figure 2(c) corresponds to

results obtained using the algorithm presented in the pre-

vious section. Both figures show time (or analysis frame

number) on the x-axis and the contributions of each pitch

template (indexed on y-axis by their names) are shown in

the figure by a colormap representing an interval between

0 and 1. The analysis is done by using a window size of

93msec, overlap of 12msec and fixed ℓǫ of 0.8.
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FIG. 2. Comparing sparse and non-sparse non-negative de-

composition for pitch observation

An important remark is the presence of an additional noise

template in W (bottom rows of Figure 2(b) and 2(c)). This

template is responsible for absorbing eventual noise, rever-

beration and non-harmonic structures such as transients that



can not be decomposed using pitch templates of the instru-

ment. As is seen in Figure 2(c), this noise template has im-

portant presence (specially during transitions) in the sparse

solution and assures generalization and robustness of the al-

gorithm.

Comparing Figures 2(b) and 2(c), the sparsity of the se-

cond is quite evident. The sparse NMF learns a solution

that emphasizes few templates where the regular NMF (Fi-

gure 2(b)) uses a large number of templates (typically tem-

plates of harmonic relationship to the original pitch depicted

in the score of Figure 2(a)) for the solution.

Finally, it is worthy to note that the example shown in

Figure 2 is the result of playing the score in Figure 2(a) on a

(real) Piano different than the one used for learning the pitch

templates. Moreover, the sustain pedal of the piano has been

pressed down during the whole performance of the score,

adding sustained resonance throughout the whole spectrum.

5.2. Evaluating the observation

A close examination of results in Figure 2(c) along with

the score in Figure 2(a) reveals that the corresponding tem-

plates of the notes in the score are along the most active

ones at the appropriate time. However, we prefer evaluating

the algorithm and its robustness on a larger corpus of mu-

sic. For this purpose, we run the algorithm on three classical

music pieces which are aligned to their MIDI scores using

an external application described in [14]. The audio is taken

from the RWC database [15] and the pieces and their speci-

fications are given in Table 1. Pieces 1 and 2 were performed

on a Piano and piece 3 is performed on a Harpsichord. Ac-

cordingly, pitch templates of appropriate instruments will

be used during evaluation. Note that by doing this, we are

evaluating the system in a transcription framework, even-

though the proposed system does no undertake transcription

because of lack of temporal smoothing. In previous state-

of-the-art evaluation, authors in [16] construct the reference

by aligning the MIDI score to their results using dynamic

programming. In our evaluation as mentioned, we use an

externally aligned score to the audio.

TAB. 1. Specification of Audio and Midi used for evaluation

# Piece Name Duration Events

1 Mozart’s Piano Sonata in A major,K.331 9 :55 4268

2 Chopin’s Nocturne no.2 in Eb major, opus 9 3 :57 1291

3 Bach’s Fugue no.2 in C minor BWV 847 1 :53 752

For this evaluation, we compare results of the proposed

algorithm on the audio with the aligned MIDI score. Specifi-

cally, for each note event in the aligned score, we look at the

corresponding frames of the sparse NMF observation and

check if the corresponding template has high activity and

if it is among the top N templates, where N specifies the

number of pitches active at the event frame time taken out

of the reference MIDI. This way, for each event in the score

we can have a precision percentage and the overall mean

of these can represent the algorithm’s precision (precision

1). Moreover, since we do not have any specific temporal

model (for note-offs for example) we can consider (subjec-

tively) positive detection during atleast 80% of a note life

to be acceptable and recalculate the precision (precision 2).

The results of this evaluation are shown in Table 2 for both

the sparse algorithm proposed in this paper and the regular

(non-sparse) NMF proposed in [6].

TAB. 2. Multiple-pitch observation evaluation results

Piece No. Precision 1 Precision 2

Sparse Non-sparse Sparse Non-Sparse

1 78.1% 49.6% 88.0% 68.1%
2 71.0% 32.7% 81.2% 51.2%
3 74.9% 43.1% 87.1% 59.4%

Besides the evident gain of the sparse over non-sparse

algorithm, there is a downward shift in the results for the

second piece in Table 2. This is mostly due to the fact that

for the performance of (Chopin’s Nocturne), pianists always

use the sustain pedal of the piano excessively, thus adding

more and more sustained resonance of previous pitches in

the spectrum. One reason for providing precision 2 is that in

a multiple-pitch situation (and specially in the presence of

the sustain pedal for piano) the duration of each note event

becomes intractable or inexact. It should be mentioned that

the references used are also erroneous especially with the ti-

ming of events and further evaluations need hand-correction

of these references to the audio.

Finally, note that the templates were trained on a different

piano than the one used for evaluation. The sounds used are

professional recordings and ofcourse, in a realtime situation,

the recording microphone would be placed in a closer loca-

tion to the piano. However, the obtained results reveal the

somehow surprisingly robust and generalized result of lear-

ning.

6. Realtime Implementation

The proposed algorithm has been developed and tested

for MaxMSP 1 realtime programming environment and using

the FTM library 2 and is available for free download at :

http://crca.ucsd.edu/arshia/ismir06/

Figure 3 shows a screenshot of this implementation.

7. Conclusion

In this paper, we proposed a realtime multiple pitch ob-

servation algorithm based on sparse non-negative constraints.

The algorithm is different from most algorithms in the sense

that it knows the pitch templates of the instrument in ad-

vance and through an unsupervised learning process as des-

cribed. Thanks to sparseness constraints it correctly observes

1 http://www.cycling74.com/
2 http://www.ircam.fr/ftm/



FIG. 3. Sparse Non-negative Multiple-Pitch Observation in ac-

tion, in MaxMSP environment and using FTM libraries

ongoing pitches. We evaluated the algorithm using (exter-

nally) aligned audio to score as reference. The evaluation re-

sults in Table 2 are close enough to state-of-the-art multiple

pitch algorithms with the huge difference that the proposed

algorithm in this paper is destined to work in realtime. We

are currently evaluating the algorithm on larger databases

and more complicated musical situations.

Perhaps a major drawback of the described model des-

cribed is the stationary pitch template model rather than a

moving spectrum with instrument envelopes. One should

note that by this outcome, we gain better generalization and

realtime capabilities. Finally, the proposed algorithm can be

used along in various applications as a multiple-pitch obser-

vation module. One instance of such application is reported

in [17] where the proposed algorithm is used in the context

of realtime polyphonic score following.
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