Joint T1 and Brain Fiber Log-Demons Registration Using Currents to Model Geometry

Abstract : We present an extension of the diffeomorphic Geometric Demons algorithm which combines the iconic registration with geometric constraints. Our algorithm works in the log-domain space, so that one can efficiently compute the deformation field of the geometry. We represent the shape of objects of interest in the space of currents which is sensitive to both location and geometric structure of objects. Currents provides a distance between geometric structures that can be defined without specifying explicit point-to-point correspondences. We demonstrate this framework by registering simultaneously T1 images and 65 fiber bundles consistently extracted in 12 subjects and compare it against non-linear T1, tensor, and multi-modal T1+ Fractional Anisotropy (FA) registration algorithms. Results show the superiority of the Log-domain Geometric Demons over their purely iconic counterparts.
Type de document :
Communication dans un congrès
MICCAI, Oct 2012, Nice, France, France. 2012
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00723367
Contributeur : Viviana Siless <>
Soumis le : jeudi 9 août 2012 - 13:02:42
Dernière modification le : vendredi 24 novembre 2017 - 16:16:01
Document(s) archivé(s) le : samedi 10 novembre 2012 - 02:22:36

Fichier

75110057.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00723367, version 1

Collections

Citation

Viviana Siless, Joan Glaunès, Pamela Guevara, Jean-François Mangin, Cyril Poupon, et al.. Joint T1 and Brain Fiber Log-Demons Registration Using Currents to Model Geometry. MICCAI, Oct 2012, Nice, France, France. 2012. 〈hal-00723367〉

Partager

Métriques

Consultations de la notice

441

Téléchargements de fichiers

233