Joint T1 and Brain Fiber Log-Demons Registration Using Currents to Model Geometry

Abstract : We present an extension of the diffeomorphic Geometric Demons algorithm which combines the iconic registration with geometric constraints. Our algorithm works in the log-domain space, so that one can efficiently compute the deformation field of the geometry. We represent the shape of objects of interest in the space of currents which is sensitive to both location and geometric structure of objects. Currents provides a distance between geometric structures that can be defined without specifying explicit point-to-point correspondences. We demonstrate this framework by registering simultaneously T1 images and 65 fiber bundles consistently extracted in 12 subjects and compare it against non-linear T1, tensor, and multi-modal T1+ Fractional Anisotropy (FA) registration algorithms. Results show the superiority of the Log-domain Geometric Demons over their purely iconic counterparts.
Type de document :
Communication dans un congrès
MICCAI, Oct 2012, Nice, France, France. 2012
Liste complète des métadonnées
Contributeur : Viviana Siless <>
Soumis le : jeudi 9 août 2012 - 13:02:42
Dernière modification le : jeudi 9 février 2017 - 15:47:11
Document(s) archivé(s) le : samedi 10 novembre 2012 - 02:22:36


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00723367, version 1



Viviana Siless, Joan Glaunès, Pamela Guevara, Jean-François Mangin, Cyril Poupon, et al.. Joint T1 and Brain Fiber Log-Demons Registration Using Currents to Model Geometry. MICCAI, Oct 2012, Nice, France, France. 2012. <hal-00723367>



Consultations de
la notice


Téléchargements du document