N
N

N

MineSweeper:

HAL

open science

Where to Probe?

Marc Legendre, Kévin Hollard, Olivier Buffet, Alain Dutech

» To cite this version:

Marc Legendre, Kévin Hollard, Olivier Buffet, Alain Dutech. MineSweeper: Where to Probe?. [Re-

search Report] RR-8041, INRIA. 2012, pp.26.

hal-00723550

HAL Id: hal-00723550
https://inria.hal.science/hal-00723550
Submitted on 10 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/hal-00723550
https://hal.archives-ouvertes.fr

V4

: informatics , mathematics

MineSweeper: Where to
Probe?

Marc Legendre, Kévin Hollard, Olivier Buffet, Alain Dutech

ISRN INRIA/RR--8041--FR+ENG

RESEARCH
REPORT

N° 8041

July 2012

ISSN 0249-6399

Project-Team MAIA







V4

: in]nrmatics,mathemutics

MineSweeper: Where to Probe?

Marc Legendre, Kévin Hollard, Olivier Buffet, Alain Dutech
Project-Team MAIA

Research Report n° 8041 — July 2012 — 26 pages

Abstract: Most research about the game of Minesweeper has focussed on inferring which cells
may or may not contain a mine, discussing the complexity of this problem (and its variants) and
proposing efficient resolution techniques. While this inference task is indeed crucial to playing
Minesweeper, this paper comes back to the original game as a whole, modelling it as a sequential
decision-making problem —more precisely as a Partially Observable Markov Decision Process
(POMDP)— before proposing and studying various heuristics to solve the key problem of selecting
the next cell to play.
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Démineur: Ou sonder?

Résumé : La majeure partie de la recherche sur le jeu du démineur s’est concentrée sur le
probléme d’inférer quelles cellules peuvent ou ne peuvent pas contenir une mine, discutant de la
complexité de ce probléme (et de ses variantes) et proposant des techniques de résolution efficaces.
Si cette tache d’inférence est en effet cruciale pour jouer au démineur, ce document revient au
jeu original dans sa totalité, le modélisant comme un probléme de prise de décision séquentielle —
plus précisément comme un processus de décision markovien partiellement observable (POMDP)—
avant de proposer et d’étudier diverses heuristiques pour résoudre le probléme clef de la sélection
de la prochaine cellule & jouer.

Mots-clés : démineur, PDMPO, heuristiques
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4 Legendre, Hollard, Buffet, Dutech

1 Introduction

In the game of Minesweeper, a single player faces a grid representing a random minefield. When-
ever he picks (“clicks in”) a cell ¢, the game terminates if this cell contains a mine, or an area
is uncovered, starting from c¢, stopping at cells having at least one adjacent mine, and with the
number of adjacent mines marked on each uncovered cell. Figure 1 shows the result of selecting
the cell ¢ in the bottom-left corner of an 8 x 8 minefield. The process is repeated until the game
ends (i) successfully if only mined cells remain, or (ii) unsuccessfully if a mined cell is picked.

An important computational effort is typically put into figuring out which cells may or may
not contain a mine given the observed values (or even computing the probability to contain a
mine). One usually reasons about the cells for which observed values in the vicinity give some
information, i.e., cells marked with a ’?” in Fig. 1. Such a task amounts to solving a Constraint
Satisfaction Problem (CSP) and has drawn most of the attention, with a lot of research discussing
the complexity of solving such a CSP (or one of its many variants), and on proposing efficient
—possibly approximate— resolution techniques.

While this inference task is indeed crucial to playing Minesweeper, we come back to the orig-
inal game as a whole, modelling it as a sequential decision-making problem —more precisely as a
Partially Observable Markov Decision Process (POMDP)— and proposing an efficient heuristic
to solve the key problem of selecting the next cell to play.

This paper starts in its Background section by detailing the rules of the Minesweeper game
(Section 2.1), describing related work (Section 2.2), and explaining how this game translates into a
POMDP (Section 2.3). Because this problem cannot be solved with state-of-the-art algorithms,
we then look more closely at the game at hand to derive a specific approach, presented in
Section 3, which we evaluate through experiments in Section 4. A discussion concludes this
paper (Section 5).

2 Background

2.1 Game Rules

This section first details the —classical— game rules we consider in this work, before mentioning
some possible variants.

2.1.1 Chosen Rules

An initial game configuration for Minesweeper is defined by a tuple (W, H, M) where:

e W >0 and H > 0 are the integer width and height of the minefield (a grid of size W x H),
and

e a W x H matrix M of zeros and ones —called minefield— is generated so as to contain m
ones (=mines), meaning that the number of possible minefields is:

m

W-H
IMw s btt.m| = ( ) .

Let us also define:

e the adjacent cells a(c) of a cell ¢ = (w, h) as the set of (up to 8) cells ¢ = (w',h’) (# ¢)
such that |[w —w'| <1and |h— 1| <1;

Inria
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Figure 1: Example showing a cell’s ¢ neighborhood N (¢), its interior (empty cells + ’¢’), boundary

(numbered cells), fringe (’?’), and un-sensed cells (°.) in an 8 x 8 minefield.

e the neighborhood N(c) of a cell ¢ = (w, h) as the set containing

— the cell ¢ if M. =0, plus,
— if ZC,EQ(C) M. =0, ¢’s adjacent cells’ neighborhoods;

this recursive definition corresponds to an expansion through the minefield as long as cells
with no adjacent mines are encountered; note that, if ¢ contains a mine, then N(c) = 0);

e the interior N°(c) of a neighborhood N(c) as the set of cells ¢/ in N(c) which are not

adjacent to a mine (e.g., such that > . ., Me = 0);

e the boundary (or frontier) ON(c) of a neighborhood N(c) as the set of cells ¢’ in N(¢) which

are adjacent to at least one mine (e.g., such that Zc,ea(c) M. > 0);

e the fringe ¢(c) of a neighborhood N(c) as the set of cells which are adjacent to some cell
in N(c) but are not in N(c);

e the un-sensed cells U(c) as the set of cells not in one of the aforementioned sets.

Given a finite set of cells C' = {c1,---,¢|c|}, these notations naturally extend to define the
neighborhood N(C') (union of individual neighborhoods), the interior N°(C') (union of individual
interiors), the boundary ON(C') (union of individual boundaries), the fringe ¢(C) (neither union
nor intersection of individual fringes), or the un-sensed cells U(C) (intersection of individual sets
of un-sensed cells). Note that, for convenience, we abusively employ terminology from point-set
topology. Usual definitions or properties linked to these notions may not hold.

The player —who does not know the content of M— is initially provided with a W x H
knowledge matrix K (initially filled with —1s indicating no certain knowledge). The game then
consists in repeating the following steps:

e the player picks as its action an uncovered cell a; € {1..W} x{1..H}, i.e., a cell of (observed)
value K,, = —1;

o if M,, =1, then end the game with failure;

e otherwise, update the value of K,, with the number of mines surrounding this cell;!

INote that in “human minesweeper”, K is updated for all of ¢’s neighborhood. In practice, a very simple rule
easily compensates for this difference.

RR n° 8041



6 Legendre, Hollard, Buffet, Dutech

e if only m cells with value —1 remain in K, then end the game successfully.

Note that the knowledge matrix only reflects observations, not deductions. One may really
“know” (by deduction) that some cell ¢ is mined even though K. = —1.

The objective is to select a sequence of actions maximizing the probability to end the game
successfully. Possible secondary objectives —which we will consider only occasionally— are (i)
to minimize the number of actions, and (ii) to minimize the computation time (including pre-
computations) and/or memory usage.

Finally, because they will be used in the remainder of this paper, we also introduce the
following notations:

® pn(c) is the probability for a cell ¢ to host a mine: p,,(¢) = Pr(mine in cell ¢|K);
e a cell is safe iff p,,(c) = 0;

e a cell is mined iff p,,,(c) = 1.

2.1.2 Possible Variants

Note that possible variants exist. We here mention three important points that can distinguish
variants:

e First move: Official versions of Minesweeper —for human competitors— ensure that the
minefield M is generated after the first move, while making sure that the chosen cell is
empty. This prevents frustrating 1-click loses.

This assumption will be made in our experiments, which will allow to compare results with
previous automated solvers.

e Topology: The classical Minesweeper game takes place on a 2D rectangular grid, but other
graph topologies can be considered. The present work can be straightforwardly extended
to other graph topologies as long as the number of cells is finite.

¢ Distribution of mines: Instead of specifying a fixed number of mines m, one could
specify the probability p € (0,1) for any cell to contain a mine. To end the game, the
player should then indicate when he believes that all empty cells have been uncovered (i.e.,
only mined cells remain), what may not be known with certainty.

2.2 Related Work

In this section, we both discuss basic solution techniques and related work. Note that a good
source of bibliographical references is the website [MineSweeper].

Human or artificial players typically put a lot of effort into deducing information —where
mines can be— from observations —the knowledge matrix K—. After this inference step, one
can select the next cell to play depending on the acquired information. This decision step usually
relies on simple decision rules.

2.2.1 Building Blocks and Strategies

In the remainder of this paper, we will describe a number of “small” algorithms —typically
denoted with 2-3 letter abbreviations— that serve as building blocks for complete playing algo-
rithms (referred to as “strategies”) —typically denoted as the concatenation of 2-3 letter abbre-
viations (in order of priority/execution).

Note that we will distinguish three types of building blocks:

Inria



MineSweeper: Where to Probe? 7

e first-mowve building blocks that make decisions when facing a new minefield;

e non-decisive building blocks that may not pick a cell and let a (lower priority) building
block make a choice; and

e tie-breaking building blocks that necessarily pick a cell (and should therefore have the lowest
priority).

A strategy of course contains exactly one first-move building block and one tie-breaking building
block, while there may be any number of non-decisive building blocks.

2.2.2 Inference as a Constraint Satisfaction Problem

Two obvious decision rules are (i) do not pick a (necessarily) mined cell, and (ii) pick a safe cell if
one exists.? Thus, a first natural inference task is to determine which cells are mined and which
cells are safe.

Exact Inference For a given cell ¢, determining whether it is mined (respectively safe) can
be achieved by assuming it is not, and searching for a configuration of mines compatible with
the observation K, i.e., solving a specific Constraint Satisfaction Problem (CSP). If no solution
is found, then the cell is mined (respectively safe). Yet, rather than following this process
for each cell separately, one can —making no assumptions on mined or safe cells— enumerate
all configurations compatible with K, and then deduce for each cell ¢ whether it is safe (no
configuration where ¢ is mined) or mined (c is mined in all configurations). We are thus facing
a model counting problem . In addition, one can compute the probability for ¢ to be mined as
the ratio

#(cfgs where ¢ is mined)
#(all cfgs)

pm(c) =

Searching for a single configuration compatible with K can be formulated as a CSP as follows:

Ve = (i,7), zi; € {0,1} (x;,; is either mined or safe),
Ve=(1,7), (Kij; >0)= (z;; =0) (a cell ¢ with non-negative value is safe),
Ve = (i,7), (Kij > 0) = Yo any =Ky

c'=(i",j")€a(c)

(the non-negative value on a cell ¢ is the number of adjacent mined cells),

Z Tij=m (there are exactly m mined cells).

e=(i,5)

This is a hard problem as it has been proven to be NP-complete [Kaye, 2000].® This justifies
developing efficient resolution techniques, possibly exploiting the structure of the problem at
hand. Here are some key ideas:

2Picking a safe cell may not be the best move if (i) optimizing the secondary criterion “number of moves” and
(ii) picking this cell will provably not provide any new information.

3Thus, since the inference problem in Minesweeper is NP-complete, anyone finding a polynomial-time algorithm
to solve it would win a million Dollar [Stewart, 2000].

RR n° 8041



8 Legendre, Hollard, Buffet, Dutech

e some simple rules —considered as one building block algorithm and denoted Sim— allow
determining mined or safe cells quickly; for example, on Fig. 1: (3,4) necessarily contains
a mine (because it is the only fringe cell among adjacent cells of (2,5), and Ky5 = 1);
then, it follows that (3,3) and (4,4) are safe cells (because (2,4) and (3,5) already have
the number of adjacent mines they require); these simple deductions (plus some others)
are shown on Fig. 2;

e given the set C' of previously played cells, N(C) is the set of uncovered (—numbered) cells
in K; the interior N°(C) does not provide any information on where mines may be lying,
while the boundary ON(C') does;

e the values observed on the boundary ON(C) are related to mines in the fringe ¢(C); so,
we can restrict the reasoning about constraints induced by K to the fringe;

e the total number of mines #(mines) in the grid constrains the number of mines in the
fringe:

#(mines in ¢(C)) < #(mines),
> #(mines) — [U(C)|
(because all remaining mines should fit in ¢(C) U U(C));

e one can often split the problem —possibly thanks to acquired knowledge about safe or
mined cells— into independent CSPs, what may dramatically reduce the problem’s com-
plexity; in Fig. 2, having inferred the status of 6 fringe cells, we are left with two problems:
one about {(1,2),(2,2)}, the other about {(6,4), (6,5), (6,6), (6,7),(6,8)};

e also, for a given fringe cell ¢, the information carried by cells close to it (mainly adjacent
cells) may give a hint on ¢’s content; one should then reason first on cells with the highest
“certainty” to be either mined or safe as they should help quickly pruning the search;

e finally, given a possible configuration of mines in the fringe C’, the probability to have a
mine outside of the fringe is, for any cell ¢:
#(mines) — #(mines in C”
o) — lmines) — #( )
U(C)]

More details on how to efficiently solve this CSP can be found for example in [Collet, 2004]
and [Pedersen, 2004].

In the present paper, beside the Sim algorithm, we will use a simple tree traversal algorithm
—denoted Enu— to enumerate all configurations of mines in the fringe which are compatible
with values in the boundary. Note that, for each such configuration (/solution) in the fringe, the
number of possible mine configurations in the set of unsensed cells U is C(m/,|U|) (number of
combinations/choices of m' elements among |U|) where m’ is the number of mines in U. This
makes it possible to compute each cell’s probability to contain a mine.

Approximate Inference Because of the complexity of the inference problem, solving it ex-
actly may not be feasible in a reasonable amount of time. Various strategies are then possible.
First, one may interrupt the inference process as soon as a safe cell is identified. This can en-
courage searching for information regarding individual fringe cells, but possibly limiting the time
for a single search.

Inria
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Figure 2: The same example as in Fig. 1 where some simple deductions have been performed
indicating some fringe cells which are certainly mined (M) or safe (s).

With incomplete searches, one cannot be sure about the status of a cell. Yet, the number of
solutions where ¢ is mined or safe can give an approximation of py,(c):

#(cfgs where ¢ is mined) + 1
#(cfgs visited) + 2 ’

Dm (C) =

where we use a Laplace estimate to avoid assuming that a cell is mined or safe unless the search
was complete.

A particular approach is that of Castillo and Wrobel [2003], who base their inference phase
not on a search algorithm, but on rules learned to classify cells. The resulting rules turn out
to be competitive with John Ramsdell’s PGMS program. One could relate this approach to
CSP solvers learning pertinent rules on-line, or to learning control rules for CSP-based planning
[Huang et al., 2000].

2.2.3 Inference in a Graphical Model

Given that we ideally want to know each cell’s probability to contain a mine, and because of
the graphical structure of the minefield, a very natural idea is to turn to probabilistic inference
and more precisely to graphical models. This is what Vomlelova and Vomlel [2009] have done by
employing Bayesian Networks.

Yet, they implicitly make the assumption that there is no global constraint, i.e., that mines are
sampled independently in each cell (possibly with different distributions), or —more generally—
that a cell’s probability to contain a mine depends only on the presence of mines in adjacent
cells. In the contrary, usual rules assume that the total number of mines is given, which implies
that all cells are interdependent random variables.

2.2.4 Some Decision Rules

Let us first remind that our primary objective is to maximize the success probability, and that
we do not attempt to minimize the number of actions before succeeding. Thus, as already
mentioned, a first obvious decision rule is to pick any safe (uncovered) cell when one exists. This
guarantees acquiring more information without any risk. In absence of safe cells (noting that
new safe cells may appear after a move), other rules may be applied —depending on available
inferred information— such as:

RR n° 8041



10 Legendre, Hollard, Buffet, Dutech

e random: picking any “possibly empty” cell at random,;

e lowProb: picking a cell ¢ minimizing the probability p,,(c) (so as to maximize the prob-
ability to survive one more time step);

e corner: picking a possibly empty cell in a corner of the grid, because it has less chances
to have an adjacent mine (because it has less adjacent cells), and thus more chances to
contain a 0 and lead to an expansion to neighboring cells.

Of course, some rules can be combined: one may for example prefer cells in corners among low
mine-probability cells.

Castillo and Wrobel [2003] describe two programs that autonomously play Minesweeper: John
Ramsdell’s PGMS, and their own player, which performs an inference based not on a CSP solver,
but on rules learned to decide which cells are safe or are mines. Both algorithms exhibit very
similar behaviors, and obtain 60% of victories on 10000 games on 8 x 8 grids with 10 mines.

To our knowledge, little has been done to improve decisions. It is common to describe a game
playing algorithm essentially through its inference process without detailing the decision rules.
The purpose of this paper is thus precisely to explore this open area of automatic Minesweeper
playing.

Assistants Note that a number of “intelligent” programs just serve as assistants, providing
the result of their inference to a human player —visually indicating each cell’s probability to
contain a mine p,,(c)— but not proposing any decision. This is for example the case in [Collet,
2004, Bayer et al., 2006]. Such programs can only be evaluated based on their need for resources
(mostly their computation time) and on their accuracy (if not exact).

2.3 POMDP View

POMDPs are usually defined [Monahan, 1982, Cassandra, 1998] by a tuple (S, A4, O, T, O,r,by)
where, at any time step, the system being in some state s € S (the state space), the agent performs
an action a € A (the action space) that results in (1) a transition to a state s’ according to the
transition function T(s,a,s’) = Pr(s'|s,a), (2) an observation o € O (the observation space)
according to the observation function O(s',a,0) = Pr(ols’,a) and (3) a scalar reward r(s,a). by
is the initial probability distribution over states. Unless stated otherwise, the sets S, A and O
are finite.

In this setting, the problem is for the agent to find a decision policy m choosing, at each time
step, the best action based on its past observations and actions so as to maximize its future
gain (which can be measured for example through the total accumulated reward). Compared to
classical deterministic planning, the agent has to face the difficulty of accounting for a system
not only with uncertain dynamics but also whose current state is imperfectly known.

The agent typically reasons about the hidden state of the system using a belief state b € B =
II(S) (the set of probability distributions over S) using the following Bayesian update formula
when performing action a and observing o:

(s',a,0)
a,o E T
bre(s) = Pro\ab (5,0, 5)b(s),

where Pr(ola,b) = >, .1csO(s",a,0)T(s,a,s")b(s). Using belief states, a POMDP can be
rewritten as an MDP over the belief space, or belief MDP, (B, A, T, p), where the new transition
and reward functions are both defined over B x A x B. With this reformulation, a number of

Inria
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theoretical results about MDPs can be extended, such as the existence of a deterministic policy
that is optimal. An issue is that this belief MDP is defined over a continuous —and thus infinite—
belief space.

For a finite horizon® T' > 0 the objective is to find a policy verifying 7* = arg max,¢ 45 J™ (b)

with
T—1
S b] |
t=0

where by is the initial belief state, r; the reward obtained at time step ¢, and v € (0,1) a discount
factor. Bellman’s principle of optimality [Bellman, 1954] lets us compute this function recursively
through the value function

J"(bo) = E

Vo (b) = max lp(b7 a) + 7 Z o(b, a, b')Vn_l(b')] ,

acA
veB

where, for all b € B, Vi (b) =0, and J™(b) = V,,=r(b).

A number of algorithms exploit the fact that V() is a piecewise linear and convex function
(PWLC). This allows for direct computations or approximations where the target function is
the upper envelope of a set of hyperplanes. This led to algorithms performing exact updates
like Batch Enumeration [Monahan, 1982|, Witness or Incremental Pruning (IP) [Cassandra,
1998], but also approximate ones as in Point-Based Value Iteration (PBVI) [Pineau et al., 2006],
Heuristic Search Value Iteration (HSVI) [Smith and Simmons, 2004], PERSEUS [Spaan and
Vlassis, 2005] or SARSOP [Kurniawati et al., 2008].

If not relying on PWLC functions, one can also solve a POMDP as an MDP on a continuous
state space, for example with tree search algorithms —which allow for online planning [Ross
et al., 2008]— or with RTDP-bel, a variant of dynamic programming that continuously focuses
on relevant parts of the state space [Bonet and Geffner, 2009].

Let us also mention that some algorithms —such as Symbolic HSVI [Sim et al., 2008]—
can exploit the structure of a factored POMDP, i.e., a POMDP in which the state and/or the
observation is described through multiple variables.

2.3.1 POMDP Model
The game of Minesweeper can be naturally modeled as a POMDP (S, S,, A, T, R, O, , by) where:
e the set of states S is made of

— normal states, described by the possible minefields M € My« g and the updated
knowledge matrix K (indicating which cells have been uncovered), plus

— two special states: (i) “init” (sinis), which corresponds to the state before the first ac-
tion (prior to the minefield’s generation), and (ii) “failure” (Sfailure) Which is absorbing
(any action will leave us there);

e goal (/terminal) states (S,) are those where K has only m cells with value —1 (which are
“success” states), plus the failure state; as the failure state, all of them are absorbing;

e actions in A and the transition function T are as described in the previous section (plus a
“fake” action for use in absorbing state);

4In practice we consider an infinite horizon.

RR n° 8041



12 Legendre, Hollard, Buffet, Dutech

R(s,a,s’) = 0 in all transitions except when transiting from S\ S, to S, (what can happen
only once), where the R(s,a,s’) = 1;

observations in O correspond to the possible knowledge matrices K;

the observation function 2 updates the knowledge matrix K according to the last action;

by is a probability distribution putting all the weight on the init state: bg(Sinit) = 1.

One could consider a variant with a reward function defined to be 0 everywhere except
when transiting to the failure state, where R(s,a,s’) = —1. This would lead us to minimizing
the probability of failure instead of maximizing the probability of success, which are equivalent
objectives. In fact, the “success” reward can be any positive value, and the “failure” reward any
negative value, and at least one of them at least to be non-zero. What should not be done is
to assign any kind of reward to other transitions. Indeed, assigning unit costs to each action
would lead to making a compromise between maximizing the probability to reach the goal and
minimizing the expected plan length.

As can be observed, this POMDP has a number of particular features, some of them that
could be exploited:

1. it has terminal states (S,), which will be reached in finite time with probability 1 (the
horizon is then indefinite); algorithms such as RTDP-bel could be used with a formalization
with only negative rewards (when reaching the failure state);

2. as long as no terminal state is reached, one can only accumulate new information in K, and
thus in the belief state b; if we represent the possible evolutions of the belief state, we thus
get an AND-OR directed acyclic graph (where AND nodes correspond to decision of the
player, and OR nodes correspond to chance), the acyclicity being due to the accumulation
of information;

3. obviously, the (indefinite) time horizon is upper-bounded by W - H — m;

4. when a safe cell is found, one can constrain the solver to pick it; this will reduce the search
space;

5. except when such obvious choices are possible, the number of possible actions is typically
large;

6. part of the state (K) is fully observable, so that we are facing a mized observability Markov
decision process (MOMDP) [Ong et al., 2009, Araya-Lopez et al., 2010]; this allows for dra-
matic speed-ups by reducing the dimensionality of the belief space to consider, as observed
in MO-IP or MO-SARSOP.

These various observations show that various algorithms could be more efficient than a clas-
sical point-based approach: RTDP-bel because we are dealing with an shortest-path problem,
MO-SARSOP because of the mixed-observability, or maybe a Monte-Carlo Tree Search algo-
rithm with limited horizon. Note that each of these approaches relies on different features of the
problem. None of them exploits multiple features. Plus, in any case the size of the search space
remains too large and the transition function is too complex to compute.

Inria



MineSweeper: Where to Probe? 13

Table 1: Comparison of important features in 3 similar games

game Minesweeper Hangman Mastermind
hidden state minefield M word w pattern of colors p
actions try hidden cell ¢ try letter A try pattern of colors p’
observation || K updated in Nys(c) | occurrences of A in w | “compatibility” between p and p’
failure if ¢ mined if too many attempts never
objective max Pr(win) max Pr(win) min tyin

2.3.2 MDP Approaches

Nakov and Wei [2003] model MineSweeper as a —fully observable— Markov Decision Process.
They in fact by-pass the POMDP view to directly consider a bMDP. Yet, they do so without
referring to the notion of belief, considering instead the state to be the knowledge matrix K,
which is valid since K is equivalent to the belief (K is the union of past observations, which is
the only information needed to compute the belief).

Nakov and Wei [2003] solve this MDP using Value Iteration, and exploiting symmetries and
sure moves. Yet, they do not go beyond a 4 x 4 grid because of the combinatorial explosion of
the state space.

Sebag and Teytaud [2012] also address MineSweeper as an MDP, but address the scalability
issue by using a Monte-Carlo Tree Search which can exploit heuristic rules. This approach avoids
enumerating the complete state space, so that the authors can experiment with grids of size up
to 5 x 5 (which already is a significant improvement if you consider the combinatorial explosion
of the state space).

3 Approach: How to Safely Gain Information?

Considering how (PO)MDP approaches suffer from the combinatorial explosion of the state space,
we have decided to search for more specific —but heuristic— solutions by looking more closely
at the game of Minesweeper.

3.1 Looking back at the Game and its Objective

The primary objective of the Minesweeper player is to maximize the probability to be in a success
state when the game ends. Up to now, we have characterized success states as states in which all
safe cells are uncovered in K (only m cells marked with a —1 remain). Then, assuming that we
constrain our policies to pick any provably safe cell, any state in which we provably know where
all mines are can also be considered to be a success state.

Another important observation is that Minesweeper [wikipedia, 2011c| resembles Hangman
[wikipedia, 2011a] or Mastermind [wikipedia, 2011b] in that the objective is to discover a hidden
state by performing sensing actions. Many other games could be added to the list, but we hereby
focus on the three most popular ones. Table 1 outlines the similarities and differences between
those three games by comparing some key aspects. Minesweeper and Hangman are the most
similar games in the sense that both have failure states to avoid —hence the identical objective
of maximizing the success probability— while Mastermind is about minimizing the number of
guesses before finding the solution (which will necessarily be found at some point).

Mastermind seems to have been the most studied of these games [wikipedia, 2011b, Weisstein,
2011]. Various algorithms have been proposed (including optimal ones). As explained in [Kooi,
2005], in the absence of possible traps (failure states), one essentially wants to acquire information
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14 Legendre, Hollard, Buffet, Dutech

as quickly as possible, which depends on the possible outcomes of an action a. Indeed, given
the current set P of possible patterns (assumed equiprobable), an action a induces a partition
of P into one subset P(a,0) per possible next observation o. Thus, among possible immediate
actions, one can choose for example the action a:

e minimizing max, |P(a,0)| (the largest possible set of remaining candidate patterns); this
is the Worst-Case Strategy used by Knuth [1976-77]; or

e maximizing the expected entropy.

Similar ideas have been discussed to play Hangman as a codebreaker —or to trick the code-
breaker with hard-to-guess words— for example by McLoone [2010].

3.2 Heuristic Rules

As can be noted, none of the greedy algorithms —i.e., algorithms not relying on exploring possible
futures with a horizon greater than 1— developed for these games is provably optimal. In the
same vein, we here propose heuristics based on the idea of maximizing the gain of information.

In Minesweeper, estimating the expected gain of information following a given action a would
require reasoning about all possible outcomes, i.e., computing, for each possible observation, some
quantity depending on the possible minefield configurations. Another option is to consider that
actions with the largest expected uncovered area are among the actions providing the most
information. Of course, they may not be the safest ones.

A question is then how to identify such actions maximizing the expected uncovered area.
We are here facing a percolation problem: how does a fluid flow through our minefield? Yet,
percolation as studied in complex systems typically concerns infinite environments, such as the
infinite Minesweeper examined by Mossel [2002]. In our finite setting, two exact approaches
would be:

1. for each candidate cell ¢, compute the uncovered area for each possible minefield configu-
ration and then derive the expected uncovered surface for c;

2. take the opposite point of view and count, for each possible uncovered area (not accounting
for the numbers appearing in K'), how many minefield configurations are compatible with
it.

In both cases, one could exploit the fact that some regions are unreachable from c. But, in the
latter approach, the choice of an uncovered area leads us to a new inference problem requir-
ing again to reason mainly about fringe cells (cells adjacent to uncovered cells) and thus save
computation time.

Still, these two processes would require a lot of computational effort. We instead consider

three intuitions:

e cells close to the “frame” (the border of the grid) have less adjacent cells, and thus higher
chances to be zero-valued, so that these adjacent cells are in turn more likely to be uncov-
ered;

e cells far from both the boundary and the frame have higher chances to uncover a wide area
because all evolutions in all directions are possible;

e cells close to the boundary may not be likely to uncover a large area —because cells in the
fringe maybe mined— but are likely to bring more information about the suspicious cells
in the fringe.
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These intuitions may contradict each other, and it is possible that which intuition is right may
depend for example on the density of mines. We will thus experiment with all three, or more
precisely with the following cases where we prefer the cell ¢ minimizing:

[Aw] d(c, boundary): picking a cell as far from the boundary as possible;

[Awf] min(d(c, boundary),d(c, frame)): picking a cell as far from the boundary and the frame
as possible;

[C1] —d(c, boundary): picking a cell close to the boundary; and

[CIf] — min(d(c, boundary),d(c, frame)): picking a cell close either to the boundary or to the
frame.

For the boundary, we use the Manhattan distance to previously uncovered cells in K. Let
dmax be this distance. Computing this Manhattan distance for each covered cell can be done
using a breadth-first search, hence with a complexity O(|U(C)|) (see Algorithm 1).

Algorithm 1: Computing all covered cells’ Manhattan distance to uncovered cells.

/* Note: a’(c) is the set of c’s 4-adjacent cells. */
1 foreach c do d(c)  —1 /* Initialize all distances to —1. */
2 S« ¢(C) /* Source set initialized to boundary cells. */
3 foreach c € S do d(c) < 0 /* Boundary cells are at distance 0. */
4 repeat
5 D+ (Z) /* Destination set initially empty. */
6 foreach c € S do
7 foreach ¢ € &/(¢)NU(C) do
8 if d(¢/) = —1 then
9 D+ DuU{d}
10 L d(c) +d(e) +1
11 S« D
12 until S =10

As can be observed, one may want to act close to the boundary —where useful information
may be gained to complement what is already known about some cells— but not in the fringe if
the probability to find a mine is too high. We will thus combine each of the four aforementioned
“distance rules” with a “low mine probability” rule in one of two ways: (i) among the lowest mine
probability cells, pick one optimizing the distance rule, and (ii) among the cells optimizing the
distance rule, pick one with minimum mine probability.

First Move A particular question is which cell to probe first. This is essentially a particular
case of the general probing problem, where (i) no boundary or fringe exists, (ii) the cell to be
probed will be safe, and (iii) all other cells will have the same probability to be mined. The
heuristic rules discussed previously can then be reduced to two rules, to which we add a third
one for our experiments:

e probe randomly, e.g., (rand(1, W), rand(1, H));

e probe a corner, e.g., (1,1);

RR n° 8041
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e probe in the middle, e.g., (|W|, |H]).

Note that first clicks have been already looked at in the context of human Minesweeper.
Kostka [2006] has for example experimentally studied on windows minesweeper:

e the probability to open up a space (i.e., the probability for the first cell not to be adjacent
to a mine), showing that —as expected from the theory— the more adjacent cells, the
lower this probability (but with a bias in this particular implementation), and

e in case a space is opened, its expected surface increases when one moves towards the center
of the grid.

As can be noted, these two phenomena taken independently would lead to contradictory decision
rules.

4 Experiments

4.1 Implementation Details

The strategies that we have implemented and experimented with are based on the following
building block algorithms:

................................. [first-move building blocks] .............. .. ...
r/c/m picks the first cell randomly, in a corner, or in the middle;

................................ [non-decisive building blocks] ............... ...
Sim applies simple rules allowing quick identification of safe or mined cells:

1. flag obvious mines,
2. pick any uncovered cell around a 0-valued cell,

3. if a k-valued cell is surrounded by & flagged mines, other adjacent cells are safe;

Enu enumerates all solutions in the fringe (and computes each cell’s ¢ probability P,,(c)); this
algorithm allows to flag any provably mined cell or pick any provably safe cell; it is inter-
rupted if its execution lasts more than one second;

................................ [tie-breaking building blocks] .......... ..o
Ran picks a cell randomly;
Lo prefers cells ¢ minimizing Py, (¢);
Aw prefers cells ¢ away from the boundary;
Auf prefers cells ¢ away from the boundary and the fringe;
C1l prefers cells ¢ close to the boundary;

Clf prefers cells ¢ close the boundary or the fringe.

Thus, “cSimEnuRan” denotes a strategy that (i) for the first move, probes a corner, then —for
each subsequent move— uses (ii) the simple rules to identify safe or mined cells, before (iii)
enumerating valid fringe configurations, or (iv) acts randomly if no safe choice is possible. Lo
can be combined with Aw, Awf, C1 and C1f as described previously. In each case, one moves to
the next building block algorithm if the previous one failed to find a cell to play.
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Table 2: “Official” (and alternate) parameters for the three reference game levels
| Beginner  (alt.) | Intermediate (alt.) | Expert
Grid Size 9x9 (8 x8) 16 x 16 (13 x 15) | 16 x 30
# mines 10 (10) 40 (40) 99
Density 12.3%  (15.6%) 15.6% (20.5%) | 20.6%

Table 3: State of the art results (success rates)
H Beginner-alt ‘ Intermediate-alt ‘ Expert

Single Point ? ? ?
Equation 0.71 0.36 0.26
Mio 0.71 0.36 0.26

4.2 Benchmark Settings

We experiment with the three reference game levels described by their grid sizes and number
of mines in Table 2. The game difficulty increases with the mine density (percentage of mined
cells) or the grid-size. When running our own program, for each game level and each algorithm,
we randomly generate the same set of minefields to play with (using the same random seed).

All experiments are conducted on a single core of an i5 CPU at 2.53 GHz. But note that
timing information are essentially indicative as limited effort has been put into optimizing the
enumeration algorithm.

Our strategies can be compared with three reference approaches:

e Single Point uses simple rules to identify many mined and safe cells (no use of a complete
CSP solver), but otherwise acts randomly; using our naming scheme, it is denoted SimRan;

e Equation derives integer linear equations, starting from the ones required to describe the
inference problem, and combining some of them to derive new equations; it then repeatedly
applies rules based on these equations to identify safe or mined cells; when this process
stops, each cell’s probability to be mined is heuristically approximated by looking at the
values around it, and a cell with minimum mine probability is probed;

e Mio is similar to Fquation, but uses rules learned —under the form of clauses— through
experiments; the resulting rules are comparable to those from Equation, and similar exper-
imental results were obtained.

Table 3 shows success probabilities obtained by these approaches as reported in http://www.
ccs.neu.edu/home/ramsdell/pgms/games.html. For Single Point (SimRan), see next section.

4.3 Results

In this section, we (i) compare a set of various strategies on a “beginner” grid, then, using a
selection of three algorithms, we (ii) study the impact of the first move, and (iii) look at further
results at “intermediate” and “expert” levels.

4.3.1 Comparing Various Strategies

Table 4 lists the various strategies we experimented with (here with a random first probe), show-
ing the average success rate and the total running time for 10 000 random beginner minefields.
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Table 4: Preliminary results: for each algorithm are given the average success probability and
the total computation time (in milliseconds) for 10000 random beginner minefields, and with a
random first probe

P,;n | Total time

rSimRan 0.67 5747
rEnuRan 0.81 480041
rSimEnuRan 0.81 58032
rSimEnuLo || 0.85 30901
rSimEnuAwRan 0.84 10995
rSimEnuAwLo 0.87 15097
rSimEnuClLo 0.85 31088
rSimEnuAwLof || 0.82 282397
rSimEnuClLof || 0.85 30724
rSimEnuLoAw 0.87 14560
rSimEnuLoCl 0.85 9419
rSimEnuLoAwf || 0.83 237018
rSimEnuLoCIf || 0.87 8266

Table 5: Additional statistics: for each algorithm are given the average success probability, the
average probability of a timeout of the enumeration algorithm, plus statistics (minimum /median—
average/maximum) about the average duration of a game, and the number of CSPs that have

been solved

Py Py GameDuration nbSolvedCSPs totNbSolutions

SimRan-c9-19-m10-i(-1,-1) || 0.670 0.0000 (0.00/0.00— 0.43/ _ 25.00) (0.00/ 0.00— 0.00/ 0.00) (0.00/0.00— _ 0.00/

0.00)

EnuRan-c9-19-m10-i(-1,-1)
SimEnuRan-c9-19-m10-i(-1,-1)
SimEnuLo-¢9-19-m10-i(-1,-1)
SimEnuAwRan-c9-19-m10-i(-1,-1)
SimEnuAwLo-¢9-19-m10-i(-1,-1)
SimEnuClLo-¢9-19-m10-i(-1,-1)
SimEnuAwLof-¢9-19-m10-i(-1,-1)
SimEnuClLof-¢9-19-m10-i(-1,-1)
SimEnuLoAw-c9-19-m10-i(-1,-1)
SimEnuLoCl-¢9-19-m10-i(-1,-1)
SimEnuLoAwf-¢9-19-m10-i(-1,-1)
SimEnuLoClf-¢9-19-m10-i(-1,-1)

0.808 0.0000 (0.00/3.00-47.78/30653.00) (2.00/71.00-59.65/71.00) (1.00/5.30— 507.83/565612.31)

0.808 0.0003 (0.00/1.00— 5.64/
0.849 0.0000 (0.00/1.00— 2.94/
0.845 0.0000 (0.00/1.00— 0.94/
0.871 0.0001 (0.00/1.00— 1.35/
0.849 0.0000 (0.00/1.00— 2.95/
0.823 0.0066 (0.00/1.00-28.07/
0.849 0.0000 (0.00/1.00— 2.91/
0.873 0.0001 (0.00/1.00— 1.30/
0.847 0.0000 (0.00/1.00— 0.78/
0.830 0.0033 (0.00/1.00-23.54/
0.870 0.0000 (0.00/1.00— 0.67/

4425.00) (0.00/
1338.00) (0.00/
1094.00) (0.00/
4497.00) (0.00/
1341.00) (0.00/
6855.00) (0.00/
1344.00) (0.00/
4514.00) (0.00/

65.00) (0.00/
4871.00) (0.00/

32.00) (0.00/

1.00— 2.00,/20.00) (0.00/8.00-1021.38/636313.75)
1.00- 2.12/21.00) (0.00/8.00— 608.28/330588.34)
1.00- 1.81,/20.00) (0.00/8.00— 95.53/140537.00)
1.00— 1.81,/21.00) (0.00/7.50— 154.86/567223.44)
1.00— 2.12/21.00) (0.00/8.00— 608.28/330588.34)
1.00- 2.08/21.00) (0.00/8.00-6791.83/938017.81)
1.00- 2.12/21.00) (0.00/8.00— 608.28/330588.34)
1.00- 1.87,/22.00) (0.00/7.50— 132.21/539675.69)
1.00- 2.28/24.00) (0.00/7.83— 62.20/ 19763.80)
1.00— 2.13/25.00) (0.00/8.00-5789.86/856261.69)
1.00- 2.18/24.00) (0.00/6.00— 17.60/ 1690.50)

The first three lines show that the simple rules alone are quite efficient at this level of difficulty
(67% of success). Plus, they are fast and dramatically speed up the enumeration algorithm.
Probing safe cells or acting randomly in absence of safe cells allows attaining a score of 81%
(65% in the alternate beginner level, which is close to the state of the art).

The remaining lines show that our decision rules improve over the state of the art —with
82%—87% of successes. These results, and the total running times, tend to show that probing cells
“in the middle” is not very informative, leading to longer, more complex (harder enumeration
problems), and less successful games. Plus, it seems preferable to make a choice among low mine
probability cells.

Tables 5 and 6 provide more statistical results regarding these experiments, illustrating in
particular the following facts: (i) most problems are solved very quickly, (ii) picking cells in the
middle leads to problems with more variables (more cells in the fringe), and (iii) problems with
more variables are harder to solve. Also, preferring cells away from the fringe leads to the largest
maximum problem sizes, with a notably higher probability for the enumeration algorithm to
time out.

In the remainder of our experiments, we have focused on 5 strategies: Single Point (SimRan),
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Table 6: Additional statistics: for each algorithm are given statistics (minimum/median—
average/maximum) about the average number of cells in the fringe of a game’s CSPs, the maxi-
mum number of cells in the fringe of a game’s CSPs, and the number of uncovered cells at the

end of the game
“ nbCellsInFringe maxCellsInFringe nbUncoveredCells maxNbSolutions

SimRan-c9-19-m10-i(-1,-1) [|(0.00/ 0.00— 0.00/ 0.00) (0.00/ 0.00— 0.00/ 0.00) (1.00/71.00-55.94/71.00) (0.00/ 0.00— _ 0.00/ 0.00)
EnuRan-c9-19-m10-i(-1,-1) ||(1.50/12.68-12.79/31.31) (3.00/21.00-21.73/56.00) (1.00/71.00-59.46/71.00) (1.00/28.00— 4913.07/2617720.00)
SimEnuRan-c9-19-m10-i(-1,-1) [/(0.00/ 8.00- 7.85/38.17) (0.00/ 8.00-10.16/54.00) (1.00/71.00-59.46/71.00) (0.00/ 8.00— 4243.17,/2202200.00)
SimEnuLo-¢9-19-m10-i(-1,-1) [|(0.00/ 8.00- 7.54/31.50) (0.00/ 8.00— 9.57/48.00) (1.00/71.00-62.06/71.00) (0.00/ 8.00— 2533.38/1598464.00)
SimEnuAwRan-c9-19-m10-i(-1,-1) ||(0.00/ 8.00— 7.64/30.83) (0.00/ 8.00— 9.21/50.00) (1.00/71.00-62.69/71.00) (0.00/ 8.00— 452.53/1209600.00)
SimEnuAwLo-c9-19-m10-i(-1,-1) [|(0.00/ 8.00- 6.93/33.15) (0.00/ 8.00— 8.46/59.00) (1.00/71.00-63.63/71.00) (0.00/ 8.00— 743.60/2153663.00)
SimEnuClLo-c9-19-m10-i(-1,-1) [|(0.00/ 8.00- 7.54/31.50) (0.00/ 8.00— 9.57/48.00) (1.00/71.00-62.06/71.00) (0.00/ 8.00— 2533.38/1598464.00)
SimEnuAwLof-c9-19-m10-i(-1,-1) ||(0.00/ 8.00— 8.87/48.36) (0.00/ 8.00-12.17/72.00) (1.00/71.00-60.40/71.00) (0.00/ 8.00-27068.65/3231667.00)
SimEnuClLof-c9-19-m10-i(-1,-1) [|(0.00/ 8.00- 7.54/31.50) (0.00/ 8.00— 9.57/48.00) (1.00/71.00-62.06/71.00) (0.00/ 8.00— 2533.38/1598464.00)
SimEnuLoAw-c9-19-m10-i(-1,-1) ||(0.00/ 8.00— 6.96/33.15) (0.00/ 8.00— 8.47/59.00) (1.00/71.00-63.77/71.00) (0.00/ 8.00- 599.82/2056349.00)
SimEnuLoCl-¢9-19-m10-i(-1,-1) [|(0.00/ 8.00- 7.17/26.28) (0.00/ 8.00— 8.77/36.00) (1.00/71.00-61.93/71.00) (0.00/ 8.00— 167.05/ 59241.00)
SimEnuLoAwf-¢9-19-m10-i(-1,-1) ||(0.00/ 8.00— 8.62/35.30) (0.00/ 8.00-11.56/54.00) (1.00/71.00-60.87/71.00) (0.00/ 8.00-22896.46/2641341.00)
SimEnuLoCIf-¢9-19-m10-i(-1,-1) [|(0.00/ 8.00- 6.95/23.25) (0.00/ 8.00— 8.29/33.00) (1.00/71.00-63.49/71.00) (0.00/ 8.00- 33.46/  6384.00)

Table 7: Main Results: for each algorithm are given the average success probability and the total
computation time (in milliseconds) for 10000 games

Random Corner Middle
SimRan 0.67 (5686) | 0.70  (6090) | 0.66 (5692)
SimEnuAwLo || 0.87 (15150) | 0.91 (8563) | 0.85 (9497)
SimEnuLoAw || 0.87 (14820) | 0.91 (8515) | 0.85 (9395)
SimEnuLoCl || 0.85 (9450) | 0.90 (8437) | 0.82 (10443)
SimEnuLoCIf || 0.87 (8300) | 0.90 (8616) | 0.85 (8571)

and 4 strategies that have a success rate above 85% in these first experiments.

4.3.2 Impact of the First Move

The figures in Table 7 clearly demonstrate that —at the beginner level— one should prefer first
moves in the corner. This is consistent with previous results, where clicking “in the middle”
proved to be less efficient. Plus, again the total resolution time correlates with the success rate
(among SimEnu* strategies).

Tables 8 and 9 provide more detailed results confirming this analysis. Note that experiments
in the same conditions as in Section 4.3.1 —here, with a random first move— have been re-
executed, producing very similar, but not identical, results.

4.3.3 Results on More Complex Grids

A more important question is whether the 4 selected strategies —now with a first move in a
corner— scale well to more difficult games. They do indeed, as can be observed in Tables 10 and
11. Table 11 shows success rates notably above the state of the art for the 3 strategies putting
more importance on safety (low mine probability): 50% (vs. 36%) at the intermediate level, and
37-38% (vs. 26%) at the expert level. SimEnuAwLo is not as robust, but remains above the state
of the art.

Again, more detailed statistics can be found in Tables 12 and 13.

Figure 3 shows, for SimRan and SimEnulLoClf, which proportion of the probed cells come
from each building block algorithm. Note that these are only proportions within all moves of
each strategy. Higher values for one strategy do not mean that this strategy has performed an
action more often than another strategy.

RR n° 8041



20

Legendre, Hollard, Buffet,

Dutech

Table 8: Additional statistics: for each algorithm are given the average success probability, the
average probability of a timeout of the enumeration algorithm, plus statistics (minimum /median—
average/maximum) about the average duration of a game, and the number of CSPs that have

been solved

Py Py

GameDuration

SimRan-c9-19-m10-i(-1,-1)
SimRan-c9-19-m10-i(0,0)
SimRan-c9-19-m10-i(4,4)

SimEnuAwLo-c9-19-m10-i(-1,-1)
SimEnuAwLo-c9-19-m10-i(0,0)
SimEnuAwLo-¢9-19-m10-i(4,4)

SimEnuLoAw-c9-19-m10-i(-1,-1)
SimEnuLoAw-¢9-19-m10-i(0,0)
SimEnuLoAw-c9-19-m10-i(4,4)

SimEnuLoCl-¢9-19-m10-i(-1,-1)
SimEnuLoCl-¢9-19-m10-i(0,0)
SimEnuLoCl-¢9-19-m10-i(4,4)

SimEnuLoClf-¢9-19-m10-i(-1,-1)
SimEnuLoClf-¢9-19-m10-i(0,0)
SimEnuLoClf-¢9-19-m10-i(4,4)

Table 9: Additional statistics:

0.670 0.0000 (0.00/0.00—0.42/
0.702 0.0000 (0.00,/0.00-0.45/
0.663 0.0000 (0.00/0.00-0.41/

nbSolvedCSPs totNbSolutions
25.00) (0.00,/0.00-0.00/ 0.00) (0.00/0.00— 0.00/
23.00) (0.00/0.00-0.00/ 0.00) (0.00/0.00— 0.00/
20.00) (0.00/0.00-0.00/ 0.00) (0.00/0.00— 0.00/

0.00)
0.00)
0.00)

0.871 0.0001 (0.00/1.00-1.36/4473.00) (0.00/1.00-1.81/21.00) (0.00/7.50—157.70/595599.25)
0.911 0.0000 (0.00/1.00-0.70/ 328.00) (0.00/1.00-1.70/21.00) (0.00/2.00— 20.29/106824.00)
0.851 0.0000 (0.00/1.00-0.80/ 242.00) (0.00/1.00-1.84/21.00) (0.00/8.00— 64.84/ 75824.00)
0.873 0.0001 (0.00/1.00-1.33/4522.00) (0.00/1.00-1.87/22.00) (0.00/7.50-131.46/532189.25)

0.914 0.0000 (0.00/1.00-0.69/
0.853 0.0000 (0.00/1.00-0.79/
0.847 0.0000 (0.00/1.00-0.78/
0.902 0.0000 (0.00/1.00-0.68/
0.820 0.0000 (0.00/1.00-0.88/
0.870 0.0000 (0.00/1.00-0.67/
0.902 0.0000 (0.00/1.00-0.70/
0.853 0.0000 (0.00/1.00-0.69/

43.00) (0.00/1.00-1.82/21.00) (0.00/2.00— 8.22/
252.00) (0.00/1.00-1.92/21.00) (0.00/8.00— 54.74/
63.00) (0.00/1.00-2.28/24.00) (0.00/7.83— 62.20/
39.00) (0.00/1.00-2.29/28.00) (0.00/2.50— 3.91/
54.00) (0.00/1.00-2.36/23.00) (0.00/9.00— 94.07/
22.00) (0.00/1.00-2.18/24.00) (0.00/6.00— 17.60/
39.00) (0.00/1.00-2.29/28.00) (0.00/2.50— 3.92/
34.00) (0.00/1.00-2.18/23.00) (0.00/8.00— 22.80/

7406.38)
75824.00)
19763.80)

390.89)
10363.00)
1690.50)
401.00)
920.45)

for each algorithm are given statistics (minimum/median—

average/maximum) about the average number of cells in the fringe of a game’s CSPs, the maxi-
mum number of cells in the fringe of a game’s CSPs, and the number of uncovered cells at the

end of the game

“ nbCellsInFringe

maxCellsInFringe

SimRan-c9-19-m10-i(-1,-1)
SimRan-c9-19-m10-i(0,0)
SimRan-c9-19-m10-i(4,4)

SimEnuAwLo-c9-19-m10-i(-1,-1)
SimEnuAwLo-¢9-19-m10-i(0,0)
SimEnuAwLo-¢9-19-m10-i(4,4)

SimEnuLoAw-c9-19-m10-i(-1,-1)
SimEnuLoAw-c9-19-m10-i(0,0)
SimEnuLoAw-c9-19-m10-i(4,4)

SimEnuLoCl-¢9-19-m10-i(-1,-1)
SimEnuLoCl-¢9-19-m10-i(0,0)
SimEnuLoCl-¢9-19-m10-i(4,4)

SimEnuLoClf-¢9-19-m10-i(-1,-1)
SimEnuLoClf-¢9-19-m10-i(0,0)
SimEnuLoClf-c9-19-m10-i(4,4)

(0.00/0
(0.00/8
(0.00/4
(0.00/8
(0.00/8
(0.00/4
(0.00/8
(0.00/8

(0.00/0.00-0.00/ 0.00) (0.00/0.00— 0.00/ 0.00) (1.00/71.00-55.94/71.00) (0.00/
(0.00/0.00-0.00/ 0.00) (0.00/0.00— 0.00/ 0.00) (1.00/71.00-58.54/71.00) (0.00/
.00-0.00/ 0.00) (0.00,/0.00—
.00-6.93/33.15) (0.00/8.00—
.00-4.77/23.93) (0.00/4.00—
.00-7.46/26.00) (0.00/8.00—
.00-6.96/33.15) (0.00/8.00—
.00-4.82/21.23) (0.00/4.00—
.00-7.49/26.20) (0.00/8.00—
.00-7.17/26.28) (0.00/8.00—
(0.00/4.

50-4.95/20.46) (0.00/6.00—

8.46/59.00) (1.00/71.00-63.63/71.00) (0.00/
6.02/48.00) (1.00/71.00-66.47/71.00) (0.00/
8.92/41.00) (1.00/71.00-62.33/71.00) (0.00/
8.47/59.00) (1.00/71.00-63.77/71.00) (0.00/
6.02/38.00) (1.00/71.00-66.65/71.00) (0.00/
8.91/41.00) (1.00/71.00-62.44/71.00) (0.00/
8.77/36.00) (1.00/71.00-61.93/71.00) (0.00/
6.22/31.00) (1.00/71.00-65.82/71.00) (0.00/
(0.00/8.00-8.37/26.94) (0.00/8.00-10.34/41.00) (1.00/71.00-60.15/71.00) (0.00/19.00-244.19/
(0.00/8.00-6.95/23.25) (0.00/8.00— 8.29/33.00) (1.00/71.00-63.49/71.00) (0.00/ 8.00— 33.46/
(0.00/4.50-4.95/20.46) (0.00/6.00— 6.23/31.00) (1.00/71.00-65.82/71.00) (0.00/ 3.00—
(0.00/8.00-7.59/26.00) (0.00/8.00— 8.94/35.00) (1.00/71.00-62.47/71.00) (0.00/ 8.00— 43.08/

3.00—

7.23/

nbUncoveredCells maxNbSolutions

0.00— 0.00/

0.00- 0.00/

0.00/ 0.00) (1.00/71.00-55.53/71.00) (0.00/ 0.00- 0.00/

Table 10: Main Results: for each algorithm are given the average success probability and the
total computation time (in milliseconds) for 10000 games

Beginner | Intermediate | Expert
cSimEnuAwLo || 0.91 (8637) | 0.75 (276514) | 0.29 (4335034)
cSimEnuLoAw || 0.91 (8398) | 0.78 (121324) | 0.37 (1109291)
cSimEnuLoCl || 0.90 (8521) | 0.76  (58035) | 0.38  (361727)
cSimEnuLoCIf || 0.90 (8494) | 0.76  (56129) | 0.38  (378512)

Table 11: Same information as in Table 10, but for alternate grids (except in Expert mode, where
the differences between numbers is due to a new set of experiments)

Beginner Intermediate Expert
Equation 0.71 0.36 0.26
Mio 0.71 0.36 0.26
cSimRan 0.46  (4757) | 0.06 (10701) | 0.01 (33399)
cSimEnuAwLo || 0.80 (19363) | 0.42 (1682675) | 0.29 (4249418)
cSimEnuLoAw | 0.81 (17031) | 0.50  (358475) | 0.37 (1082953)
cSimEnuLoCl || 0.80  (7574) | 0.50 (45822) | 0.38  (374661)
cSimEnuLoClf || 0.80  (7645) | 0.50 (44974) | 0.38  (369989)

Inria
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Table 12: Additional statistics: for each algorithm are given the average success probability, the
average probability of a timeout of the enumeration algorithm, plus statistics (minimum /median—
average/maximum) about the average duration of a game, and the number of CSPs that have

been solved

Py, P GameDuration nbSolvedCSPs totNbSolutions
SimRan-c9-19-m10-i(0,0) || 0.702 0.0000 (0.00/ 0.00— 0.46/  26.00) (0.00/ 0.00— 0.00/ 0.00) (0.00/ 0.00— _ 0.00/ 0.00)
SimRan-c16-116-m40-i(0,0) || 0.387 0.0000 (0.00/ 4.00— 3.34/ 85.00) (0.00/ 0.00— 0.00/ 0.00) (0.00/ 0.00-  0.00/ 0.00)
SimRan-¢30-116-m99-i(0,0) || 0.009 0.0000 (0.00/ 0.00— 2.94/ 69.00) (0.00/ 0.00— 0.00/ 0.00) (0.00/ 0.00-  0.00/ 0.00)
SimEnuAwLo-c9-19-m10-i(0,0) || 0.911 0.0000 (0.00/ 1.00- 0.71/ 317.00) (0.00/ 1.00- 1.70/21.00) (0.00/ 2.00-  20.29/ 106824.00)
SimEnuAwLo-c16-116-m40-i(0,0) 0.753 0.0073 (0.00/ 6.00— 27.42/10624.00) (0.00/ 3.00— 3.58/33.00) (0.00/ 5.00— 3391.40/1086678.75)
SimEnuAwLo-¢30-116-m99-i(0,0) 0.291 0.0793 (0.00/21.00-433.25,/25462.00) (0.00/ 7.00— 8.92/51.00) (0.00/94.15-37144.42/1375893.38)
SimEnuLoAw-c9-19-m10-i(0,0) 0.914 0.0000 (0.00/ 1.00— 0.68/  42.00) (0.00/ 1.00- 1.82/21.00) (0.00/ 2.00— 8.22/  7406.38)
SimEnuLoAw-c16-116-m40-i(0,0) 0.775 0.0017 (0.00/ 6.00— 11.90/ 4872.00) (0.00/ 3.00- 3.91/33.00) (0.00/ 5.00— 1338.37,/1038388.00)
SimEnuLoAw-c30-116-m99-i(0,0) || 0.373 0.0126 (0.00/21.00-110.69/16705.00) (0.00/ 9.00-11.23/70.00) (0.00/63.45— 6340.33/1591202.50)
SimEnuLoCl-¢9-19-m10-i(0,0) || 0.902 0.0000 (0.00/ 1.00- 0.69/ 37.00) (0.00/ 1.00— 2.29/28.00) (0.00/ 2.50—  3.91/ 390.89)
SimEnuLoCl-c16-116-m40-i(0,0) || 0.756 0.0000 (0.00/ 6.00- 5.58/ 119.00) (0.00/ 3.00— 4.49/33.00) (0.00/ 4.50— 14.36/  2825.11)
SimEnuLoCl-¢30-116-m99-i(0,0) || 0.376 0.0013 (0.00/21.00— 35.93/11574.00) (0.00/10.00-12.07/77.00) (0.00/30.67— 947.77/ 621121.63)
SimEnuLoClf-¢9-19-m10-i(0,0) || 0.902 0.0000 (0.00/ 1.00— 0.69/  38.00) (0.00/ 1.00- 2.29/28.00) (0.00/ 2.50-  3.92/ 401.00)
SimEnuLoClf-c16-116-m40-i(0,0) 0.756 0.0000 (0.00/ 6.00— 5.39/ 122.00) (0.00/ 3.00— 4.49/33.00) (0.00/ 4.50- 14.22/  2543.00)
SimEnuLoClf-¢30-116-m99-i(0,0) 0.375 0.0013 (0.00/21.00— 37.62/ 9978.00) (0.00/10.00-12.07/77.00) (0.00/30.73— 930.32/ 604716.19)

Table 13: Additional statistics: for each algorithm are given statistics (minimum/median—
average/maximum) about the average number of cells in the fringe of a game’s CSPs, the maxi-
mum number of cells in the fringe of a game’s CSPs, and the number of uncovered cells at the

end of the game

| nbCellsInFringe

maxCellsInFringe

SimEnuAwLo-¢9-19-m10-i(0,0)

SimRan-c9-19-m10-i(0,0)
SimRan-c16-116-m40-i(0,0)
SimRan-c30-116-m99-i(0,0)

(0.00/ 0.00— 0.00/ 0.00) (0.00/ 0.00— 0.00/ 0.00) (1.
(0.00/ 0.00— 0.00/ 0.00) (0.00/ 0.00- 0.00/ 0.00) (1.
(0.00/ 0.00— 0.00/ 0.00) (0.00/ 0.00- 0.00/ 0.00) (1.
(0.00/ 4.00— 4.77/ 23.93) (0.00/ 4.00— 6.02/ 48.00) (1.

SimEnuAwLo-c16-116-m40-i1(0,0)
SimEnuAwLo-¢30-116-m99-i(0,0)
SimEnuLoAw-¢9-19-m10-i(0,0)
SimEnuLoAw-c16-116-m40-i(0,0)
SimEnuLoAw-c30-116-m99-i(0,0)
SimEnuLoCl-¢9-19-m10-i(0,0)
SimEnuLoCl-c16-116-m40-i(0,0)
SimEnuLoCl-c30-116-m99-i(0,0)
SimEnuLoClf-¢9-19-m10-i(0,0)
SimEnuLoClf-¢16-116-m40-i(0,0)
SimEnuLoClf-¢30-116-m99-i(0,0)
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(0.00/ 8.67— 9.38/ 52.10) (0.00/12.00-13.86/108.00) (1.
(0.00/17.50-18.00/101.48) (0.00/31.00-31.58,/170.00) (1.

(0.00/ 4.00— 4.82/
(0.00/ 8.75— 9.25/
(0.00/17.14-16.73/
(0.00/ 4.50— 4.95/
(0.00/ 8.33— 8.90/
(0.00/15.41-15.30/
(0.00/ 4.50— 4.95/
(0.00/ 8.33— 8.90/
(0.00/15.42-15.31/

21.23) (0.00/ 4.00- 6.02/
35.64) (0.00/12.00-13.27/
58.48) (0.00/30.00-27.92/
20.46) (0.00/ 6.00— 6.22/
35.64) (0.00/12.00-12.52/
58.48) (0.00/28.00-25.87/
20.46) (0.00/ 6.00— 6.23/
35.64) (0.00/12.00-12.52/
58.48) (0.00/28.00-25.87/

38.00) (1.
53.00) (1.

00/ 71.00- 66.47/ 71.00) (0.00/ 3.00—

nbUncoveredCells maxNbSolutions

00/ 71.00- 58.54/ 71.00) (0.00/ 0.00— 0.00/
00/207.00-139.26,/216.00) (0.00/ 0.00— 0.00/
00/ 19.00- 86.33/381.00) (0.00/ 0.00— 0.00/

120.85/ 840000.00)

00/216.00-181.96/216.00) (0.00/ 8.00— 18132.62/3428138.00)
00/322.00-214.68/381.00) (0.00/360.00-175373.06/3401008.00)
00/ 71.00- 66.65/ 71.00) (0.00/ 3.00—  29.20/ 56700.00)
00/216.00-185.93/216.00) (0.00/ 8.00— 6067.23/3432667.00)

81.00) (1.00/378.00-245.05/381.00) (0.00/228.00— 36097.33/3697149.00)
31.00) (1.00/ 71.00- 65.82/ 71.00) (0.00/ 3.00— 7.26/  1359.00)
47.00) (1.00/216.00-182.41/216.00) (0.00/ 6.00—  43.73/ 15312.00)
81.00) (1.00/378.00-246.37/381.00) (0.00/108.00~ 6900.93/3281169.00)
31.00) (1.00/ 71.00- 65.82/ 71.00) (0.00/ 3.00- 7.23/  1638.00)
47.00) (1.00/216.00-182.41/216.00) (0.00/ 6.00—  43.20/ 15312.00)
81.00) (1.00/378.00-246.36/381.00) (0.00/108.00— 6692.55/3117115.00)
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Figure 3: Usage distribution over the building block algorithms of 2 strategies in the 3 difficulty
levels

As expected, the simple rule makes most of the decisions, followed by the enumeration al-
gorithm (for SimEnuLoClf) and random choices (for SimRan). Only a minority of cases require
SimEnuLoClf to make a guess through LoCl1f.

One can also observe on alternate levels (Figure 4) that proportions are almost identical
for intermediate(-alt) and expert games, as for mine densities (20.5% and 20.6%). As could be
expected, higher mine densities lead to more difficult games requiring more guessing.

5 Discussion

5.1 Computer vs. Human Minesweeper

An interesting point is that playing Minesweeper is not the same thing for humans and for
computers. Human players are typically evaluated based on how fast they can solve games
rather than on how often they solve games. While speed and accuracy have to be compromised
—playing fast requires taking risks— this is thus usually done in different ways whether the
player is a human or a computer. Reasons for these different choices may be that (i) estimating
the average success rate requires too many games, and (ii) optimizing for success rate would lead
to taking a lot more time for solving each game.

The objective of minimizing best resolution times also has the drawback that speed depends
on the difficulty of a minefield. Some cases can be solved in very few clicks, thus essentially by
chance. This led to introduce the requirement that a score is valid only if it has been achieved
on a grid require a minimum number of clicks to be uncovered. This threshold depends on the
game difficulty (grid size and number of mines). From a different viewpoint, it is a challenge in
itself to solve grids with as few clicks as possible.

Additionally, while both types of players try to “think as well as possible”, humans have the
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Figure 4: Usage distribution over the building block algorithms of 2 strategies in the 3 alternate
difficulty levels

additional difficulty to also optimize their physical interactions, i.e., to control their mouse as
fast and accurately as possible.

On the side of computer minesweeper, time is also an issue that constrains to use approximate
solvers. At first sight, our experiments seem to show that good decision rules —rules to decide
which unsafe cell to probe— typically lead to easier inference problems to solve. This is misleading
since some strategies are limited by the maximum solution time for the enumeration algorithm.
It is expected that, if time were not a constraint, then the best strategies would in fact involve
harder inference problems.

5.2 Evaluation

An ideal situation would be to optimize for time only, being sure that contestants are success-
rate optimal. Yet, one cannot guarantee that a human player is success-rate optimal —because
humans make mistake— , and there are for now no provably success-rate optimal algorithms.
One cannot optimize for success rate only without caring about time: this could lead to very
long competitions if winning means making more accurate computations than competitors.

So, the problem is how to combine both criteria: success rate and time, possibly turning one
of them into a constraint. A first suggestion is to always put a time constraint: as suggested
above not setting a time limit could lead to some games taking too much time. One can then
optimize, for example:

e success rate alone,
e time alone, under a success rate constraint,

e success rate first, time second (to break ties).

RR n° 8041



24 Legendre, Hollard, Buffet, Dutech

5.3 Going Further
There are various directions of research regarding heuristic-based strategies:

e improve the enumeration algorithm (what could be easy for the version used in our exper-
iments, e.g., splitting the problem in independent problems whenever possible);

e study the percolation problem in more depth; and

e search for information-based heuristics —i.e., attempting to clarify the status of hidden
cells—, knowing that being greedy with respect to the information gained is often an
efficient strategy.

Another important direction would be to really try optimizing decisions over multiple time
steps, i.e., considering the problem as a sequential decision-making one. Monte-Carlo Tree Search
techniques could be good candidates for that, and could benefit from informative and fast heuris-
tic approaches. But then, good heuristics may have a lower probability of success, but run very
quickly.
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