. Angeli, A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks, Biology and Control Theory: Current Challenges, pp.181-216, 2007.
DOI : 10.1007/978-3-540-71988-5_9

. Calzone, BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge, Bioinformatics, vol.22, issue.14, pp.221805-1807, 2006.
DOI : 10.1093/bioinformatics/btl172

URL : https://hal.archives-ouvertes.fr/hal-01431364

. Chaouiya, Petri net modelling of biological regulatory networks, Journal of Discrete Algorithms, vol.6, issue.2, pp.165-177, 2008.
DOI : 10.1016/j.jda.2007.06.003

URL : http://doi.org/10.1016/j.jda.2007.06.003

D. Dittrich, . Fenizio, P. Dittrich, and P. Di-fenizio, Chemical Organisation Theory, Bulletin of Mathematical Biology, vol.96, issue.25, pp.1199-1231, 2007.
DOI : 10.1007/s11538-006-9130-8

. Eker, PATHWAY LOGIC: SYMBOLIC ANALYSIS OF BIOLOGICAL SIGNALING, Biocomputing 2002, pp.400-412, 2002.
DOI : 10.1142/9789812799623_0038

B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, 2002.
DOI : 10.1137/1.9780898718195

S. Fages, F. Fages, and S. Soliman, Formal Cell Biology in Biocham, 8th Int. School on Formal Methods for the Design of Computer, Communication and Software Systems: Computational Systems Biology SFM'08, pp.54-80, 2008.
DOI : 10.1007/978-3-540-68894-5_3

. Fages, . Soliman, F. Fages, and S. Soliman, From Reaction Models to Influence Graphs and Back: A Theorem, Proceedings of Formal Methods in Systems Biology FMSB'08, number 5054 in Lecture Notes in Computer Science, 2008.
DOI : 10.1007/978-3-540-68413-8_7

URL : https://hal.archives-ouvertes.fr/inria-00419921

. Fages, Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM, Journal of Biological Physics and Chemistry, vol.4, issue.2, pp.64-73, 2004.
DOI : 10.4024/2040402.jbpc.04.02

URL : https://hal.archives-ouvertes.fr/hal-01431345

. Gardner, A theory for controlling cell cycle dynamics using a reversibly binding inhibitor, Proceedings of the National Academy of Sciences of the United States of America, pp.9514190-14195, 1998.
DOI : 10.1073/pnas.95.24.14190

. Gay, A graphical method for reducing and relating models in systems biology, Bioinformatics, vol.26, issue.18, pp.575-581, 2010.
DOI : 10.1093/bioinformatics/btq388

URL : https://hal.archives-ouvertes.fr/hal-01431335

D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, The Journal of Physical Chemistry, vol.81, issue.25, pp.812340-2361, 1977.
DOI : 10.1021/j100540a008

A. Goldbeter, A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase., Proceedings of the National Academy of Sciences, vol.88, issue.20, pp.889107-9111, 1991.
DOI : 10.1073/pnas.88.20.9107

J. Gouzé, Positive and Negative Circuits in Dynamical Systems, Journal of Biological Systems, vol.06, issue.01, pp.11-15, 1998.
DOI : 10.1142/S0218339098000054

. Grafahrend-belau, Modularization of biochemical networks based on classification of Petri net t-invariants, BMC Bioinformatics, vol.9, issue.1, 2008.
DOI : 10.1186/1471-2105-9-90

T. Hárs, V. Hárs, and J. Tóth, On the inverse problem of reaction kinetics, pp.363-379, 1979.

. Hucka, The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, vol.19, issue.4, pp.524-531, 2003.
DOI : 10.1093/bioinformatics/btg015

. Kaleta, Using chemical organization theory for model checking, Bioinformatics, vol.25, issue.15, pp.251915-1922, 2009.
DOI : 10.1093/bioinformatics/btp332

. Kaufman, A new necessary condition on interaction graphs for multistationarity, Journal of Theoretical Biology, vol.248, issue.4, pp.675-685, 2007.
DOI : 10.1016/j.jtbi.2007.06.016

. Koh, A decompositional approach to parameter estimation in pathway modeling: a case study of the Akt and MAPK pathways and their crosstalk, Bioinformatics, vol.22, issue.14, pp.22-271, 2006.
DOI : 10.1093/bioinformatics/btl264

K. W. Kohn, Molecular Interaction Map of the Mammalian Cell Cycle Control and DNA Repair Systems, Molecular Biology of the Cell, vol.10, issue.8, pp.2703-2734, 1999.
DOI : 10.1091/mbc.10.8.2703

. Nabli, . Soliman, F. Nabli, and S. Soliman, Steady-state solution of biochemical systems, beyond S-systems via T-invariants, Proceedings of the 8th International Conference on Computational Methods in Systems Biology, CMSB '10, pp.14-22, 2010.
DOI : 10.1145/1839764.1839768

. Reddy, Petri net representations in metabolic pathways, Proceedings of the 1st International Conference on Intelligent Systems for Molecular Biology (ISMB), pp.328-336, 1993.

. Rohr, Snoopy--a unifying Petri net framework to investigate biomolecular networks, Bioinformatics, vol.26, issue.7, pp.26974-975, 2010.
DOI : 10.1093/bioinformatics/btq050

. Schuster, A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks, Nature Biotechnology, vol.18, issue.3, pp.326-332, 2002.
DOI : 10.1038/73786

. Shinar, . Feinberg, G. Shinar, and M. Feinberg, Structural Sources of Robustness in Biochemical Reaction Networks, Science, vol.327, issue.5971, pp.3271389-1391, 2010.
DOI : 10.1126/science.1183372

E. H. Snoussi, Necessary Conditions for Multistationarity and Stable Periodicity, Journal of Biological Systems, vol.06, issue.01, pp.3-9, 1998.
DOI : 10.1142/S0218339098000042

S. Soliman, Finding minimal P/T-invariants as a CSP, Proceedings of the fourth Workshop on Constraint Based Methods for Bioinformatics WCB'08, 2008.

H. Soliman, S. Soliman, and M. Heiner, A Unique Transformation from Ordinary Differential Equations to Reaction Networks, PLoS ONE, vol.482, issue.12, p.14284, 2010.
DOI : 10.1371/journal.pone.0014284.g007

URL : https://hal.archives-ouvertes.fr/hal-01431261

C. Soulé, Graphic Requirements for Multistationarity, Complexus, vol.1, issue.3, pp.123-133, 2003.
DOI : 10.1159/000076100

C. Soulé, Mathematical approaches to differentiation and gene regulation, Comptes Rendus Biologies, vol.329, issue.1, pp.13-20, 2006.
DOI : 10.1016/j.crvi.2005.10.002

. Szederkényi, Inference of complex biological networks: distinguishability issues and optimization-based solutions, BMC Systems Biology, vol.5, issue.1, p.177, 2011.
DOI : 10.1049/iet-syb:20060079

R. Thomas, On the Relation Between the Logical Structure of Systems and Their Ability to Generate Multiple Steady States or Sustained Oscillations, pp.180-193, 1981.
DOI : 10.1007/978-3-642-81703-8_24

. Thomas, A Complex Control Circuit. Regulation of Immunity in Temperate Bacteriophages, European Journal of Biochemistry, vol.54, issue.1, pp.211-227, 1976.
DOI : 10.1016/0022-5193(72)90062-8

J. J. Tyson, Modeling the cell division cycle: cdc2 and cyclin interactions., Proceedings of the National Academy of Sciences, pp.7328-7332, 1991.
DOI : 10.1073/pnas.88.16.7328

P. Varma, A. Varma, and B. Palsson, Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use, Bio/Technology, vol.43, issue.10, pp.994-998, 1994.
DOI : 10.1006/jtbi.1993.1203

I. Zevedei-oancea and S. Schuster, Topological analysis of metabolic networks based on petri net theory, In Silico Biology, vol.3, issue.29, 2003.