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Computational electrophysiology is a very active �eld with tremendous potential in medi-
cal applications, albeit it leads to highly intensive simulations. We here propose a surface-
based electrophysiology formulation, motivated by the modeling of thin structures such
as cardiac atria, which greatly reduces the size of the computational models. Moreover,
our model is speci�cally devised to retain the key features associated with the anisotropy
in the di�usion e�ects induced by the �ber architecture, with rapid variations across the
thickness that cannot be adequately represented by naive averaging strategies. Our pro-
posed model relies on a detailed asymptotic analysis in which we identify a limit model
and establish strong convergence results. We also provide detailed numerical assessments
that con�rm an excellent accuracy of the surface-based model { compared with the ref-
erence 3D model { including in the representation of a complex phenomenon, namely,
spiral waves.

Keywords: Computational electrophysiology; Asymptotic analysis; Thin domains; Car-
diac modeling.

AMS Subject Classi�cation: 22E46, 53C35, 57S20

1. Introduction

Cardiac electrophysiology purports to describe and model chemical and electrical
phenomena taking place in the cardiac tissue, and which are responsible for activat-
ing the mechanical contraction in the myocytes, namely, the cardiac muscle cells,
see e.g. Refs. 16, 15, 19, 3 and references therein. Given the frequent occurrence of
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pathologies { such as atrial �brillation and ventricular tachycardia { directly a�ect-
ing electrophysiology, hence impairing cardiac function, the detailed understanding
of the associated underlying mechanisms is particularly important. In this context,
there is a tremendous potential for modeling, in particular with models adequately
\personalized" to given patients, in order to guide medical decision in selecting the
best-adapted therapeutic strategy.18;17 For instance, personalized models may be
used to optimize the procedure called radio-frequency ablation that aims at treating
cardiac arrythmias { e.g., atrial �brillation { by blocking some abnormal conduction
pathways.

Computational electrophysiology modeling { when aiming at representing the
behavior of the global heart or whole subparts thereof, which of course is crucial
when considering conduction phenomena and their incidence on cardiac function
{ is known to give rise to highly intensive simulations.7;9 This is due, in particular,
to the substantial re�nements required in the meshes in order to accurately capture
the conduction waves. As personalized modeling generally involves the solution of
inverse problems in order to estimate anatomical and biophysical parameters char-
acterizing a given patient-speci�c model { in order to enable predictive modeling
{ based on clinical data, this may lead to prohibitive computational times, indeed.
The same di�culty holds as regards optimization loops needed to adapt the thera-
peutic strategy.

Nevertheless, when considering the thin-ness of cardiac structures such as the
atria, there is clearly a case for modeling simpli�cations based on considering
surface-based descriptions { hence, in essence two-dimensional (2D) { instead of
3D models, very much in the spirit of structural models { such as shells { in me-
chanics. Such mechanical models have been extensively analyzed and provide ex-
tremely computationally-e�ective formulations, with very limited loss of accuracy
when the structure is thin. As regards electrophysiology modeling, this path has
been scarcely explored. A frequently-argued explanation for that lies in the com-
plexity of the 3D anatomical details that appear to be needed to accurately capture
the relevant phenomena. In particular, the �ber architecture of the muscle gives rise
to strong anisotropy in the di�usion phenomena, and the �ber directions are known
to be very rapidly varying across the thickness of the cardiac walls, including in
the atria.10 This makes naive surface reductions of the models based on isotropy or
\average anisotropy" assumptions very inaccurate, and in fact altogether unable to
represent some complex conduction patterns.12

The objective in this paper is to propose a surface-based electrophysiology model
relying on a detailed asymptotic analysis. This type of derivation { also available
for shell structures in mechanics, see e.g. Refs. 6, 4, 5 { provides a \mathemati-
cally justi�ed" surface model designed for thin structures. In our case, in order to
incorporate the above-mentioned key anatomical details, we include the rapid vari-
ations of the �ber direction within our asymptotic analysis assumptions. We point
out that some asymptotic derivations have also been performed in earlier works,14

albeit without taking into account the anisotropy and variations thereof.
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An outline of the paper is as follows. In Sections 2 and 3 we recall some relevant
elements of cardiac electrophysiology modeling, and di�erential geometry, respec-
tively. Next, in Section 4 we formulate an asymptotic framework for an anisotropic
di�usion model with anisotropy directions rapidly varying across the thickness, and
we establish strong convergence results to a limit model. This allows us to pro-
pose a surface-based electrophysiology model in Section 5, with detailed numerical
assessments.

2. Elements of cardiac electrophysiology

The electric wave propagating in the cardiac tissue can be represented by a nonlin-
ear reaction-di�usion partial di�erential equation (PDE), coupled with an ordinary
di�erential equation (ODE) representing cellular activity. Considering in particular
the bidomain model { see for example Refs. 16, 15, 19, 2 { equations can be written
in terms of the extracellular potential ue, the transmembrane potential Vm = ui�ue,
with ui the intracellular potential, and the ionic variable w, as

8
>>>>><

>>>>>:

Am
�
Cm

@Vm
@t

+ Iion(Vm; w)
�
� div

�~~�i � ~rVm
�

= div
�~~�i � ~rue

�
+AmIapp; in B � (0; T );

div
��~~�i + ~~�e

�
� ~rue

�
= �div

�~~�i � ~rVm
�
; in B � (0; T );

@tw + g(Vm; w) = 0; in B � (0; T );

(2.1)

where B denotes the 3D domain of interest, and with appropriate boundary condi-
tions

( �~~�i � ~rue
�
� ~n = �

�~~�i � ~rVm
�
� ~n; in @B � (0; T );�~~�e � ~rue

�
� ~n = 0; in @B � (0; T );

(2.2)

where Am is a positive constant denoting the ratio of membrane area per unit
volume, Cm the membrane capacitance per unit surface, Iion(Vm; w) a reaction
term representing the ionic current across the membrane, and Iapp a given applied
stimulus current.

The current Iion can be described by a phenomenological model. In this study,
the model proposed by Mitchell and Schae�er in Ref. 13 is considered. The functions
g and Iion are then given by

Iion(Vm; w) = �
w(Vm � Vmin)2(Vmax � Vm)

�in(Vmax � Vmin)
+

Vm � Vmin
�out(Vmax � Vmin)

;

g(Vm; w) =

8
><

>:

w
�open

�
1

�open(Vmax � Vmin)2 if Vm < Vgate;

w
�close

if Vm � Vgate;

where �in; �out; �open; �close are given parameters and Vmin, Vmax, Vmin < Vgate <
Vmax auxiliary constants.
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Cardiac muscle has a �ber architecture. The electrical conductivity is higher
along than across the �ber direction. The intracellular and extracellular media are
therefore anisotropic. This anisotropy is included in our model de�ning the conduc-
tivity tensors ~~�i and ~~�e by

~~�i;e = �ti;e ~~g + (�li;e � �
t
i;e)~� 
 ~� ;

where ~~g denotes the 3D metric tensor { the components of which are given by the
identity matrix in an orthonormal coordinate system, see e.g. Ref. 4 { the vector
~� is of unit length and parallel to the local �ber direction, and �li and �ti are the
conductivity coe�cients in the intra-cellular medium measured along and across
{ respectively { the �ber direction, and likewise for �le and �te in the extra-cellular
medium.

The bidomain model can be rewritten in weak form as follows. For all t > 0,
�nd Vm(�; t) 2 H1, ue(�; t) 2 H1 and w(�; t) 2 L1 with

R
B ue = 0, such that

8
>>>>>>><

>>>>>>>:

Am
Z

B

�
Cm

@Vm
@t

+ Iion(Vm; w)
�
�+

Z

B

h
~~�i �

�~rVm + ~rue
�i
� ~r�

= Am
Z

B
Iapp(Vm; w)�;

Z

B

h
(~~�i + ~~�e) � ~rue

i
� ~r +

Z

B

h
~~�i � ~rVm

i
� ~r = 0;

@tw + g(Vm; w) = 0; in B;

for all �;  2 H1 such that
R
B  = 0.

With our motivation of deriving a 2D model valid for thin cardiac structures {
the atrial walls, in particular { and de�ned over the midsurface of the thin region, we
observe that the main di�culty in representing the anisotropy resulting from the
preferred conduction direction along the muscle �bers { which may rapidly vary
across the thickness { arises from the di�usion term in the equations. Hence, in our
mathematical analysis we will focus on this term, with the primary concern of taking
into account both major features, namely, anisotropic behavior and heterogeneous
distribution across the thickness.

3. Geometric preliminaries

The midsurface S of the body is described by a mapping ~� de�ned over !, with !
a domain of R2, and with values in the three-dimensional Euclidean space E , see
Figure 1. We assume that ~� is as regular as needed. For the sake of simplicity in
our asymptotic analysis we suppose that the thickness of the body, denoted by d, is
constant over S. We introduce L = diam(S) and " = d

L a dimensionless thickness
parameter. Note that this parameter is de�ned to be geometrically intrinsic, namely,
it is invariant with respect to changes in the geometric mapping ~� (hence, in the
coordinate system and its domain !) that preserve the surface.

Denoting by (�1; �2) the coordinates used in R2 (hence in !), we de�ne

~a�(�1; �2) = @�~�(�1; �2); � = 1; 2:
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We suppose that ~� is such that the vectors (~a�)�=1;2 form a basis { called the
covariant basis { for the tangential plane to the midsurface S at any point with
coordinates in !. We also introduce the contravariant basis (~a1;~a2) such that

~a�(�1; �2) � ~a�(�1; �2) = ���; �; � = 1; 2; 8(�1; �2) 2 !;

and we denote by

a�� = ~a� � ~a� ;

the covariant components of the surface-attached metric tensor, see e.g. Ref. 4.

Remark 3.1. Introducing the 2 � 2 matrix A = (a��)�;�=1;2, we have A�1 =
(a��)�;�=1;2 = (~a� � ~a�)�;�=1;2.

We denote by a the quantity a = k~a1�~a2k2, and the unit vector normal to the
tangential plane at any point with coordinates in ! is given by

~a3 =
~a1 � ~a2p

a
:

De�ning now 
 = !�
i
�
d
2
;+

d
2

h
, the 3D geometry is described by the mapping

~� :

(

 �! E

(�1; �2; �3) 7�! ~�(�1; �2) + �3~a3(�1; �2)

and the 3D geometric domain of interest is given by B = ~�
�


�
, see Figure 1. We

also introduce the 3D covariant basis

~g i(�1; �2; �3) = @i~�(�1; �2; �3); i = 1; 2; 3; 8(�1; �2; �3) 2 
;

and the corresponding contravariant basis (~g 1; ~g 2; ~g 3)

~g i(�1; �2; �3) � ~g j(�1; �2; �3) = �ji ; i; j = 1; 2; 3; 8(�1; �2; �3) 2 
:

S

B

!a1!a2

!a3!!

! 1

! 2

! 3

!

!

Fig. 1. Geometric domain and midsurface S descriptions
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The components of the 3D metric tensor ~~g in covariant form are then given by

gij = ~g i � ~g j :

Remark 3.2. Introducing the 3 � 3 matrix G = (gij)i;j=1;2;3, we have G�1 =
(gij)i;j=1;2;3 = (~g i � ~g j)i;j=1;2;3.

For a di�erentiable scalar �eld de�ned over the surface the 2D gradient is given
by

ru = @1u~a1 + @2u~a2;

whereas for a volume-de�ned quantity we have the 3D gradient
~ru = @1u~g 1 + @2u~g 2 + @3u~g 3:

We need a number of preliminary results that relate 3D quantities to surface
quantities. For the proofs of the three following propositions, see e.g. Ref. 4.

Proposition 3.1. Introducing the second and third fundamental forms respectively
de�ned for all �; � = 1; 2 by

b�� = ~a3 � @�~a�; c�� =
X

�;�=1;2

a��b��b�� ;

we have

g�� = a�� � 2�3b�� + (�3)2c�� ; (3.1)

and, moreover,

g�3 = 0; g33 = 1: (3.2)

Proposition 3.2. For the volume measure given by dV = pg d�1d�2d�3, with g =
(det(~g 1; ~g 2; ~g 3))2 = det(G), we have

g = a
�
1� 2H�3 +K(�3)2�2;

denoting by H and K the mean and Gaussian curvatures of the surface S, respec-
tively. Assuming that 1 � 2H�3 + K(�3)2 is strictly positive over �B, we then infer
pg =

p
a
�
1� 2H�3 +K(�3)2� and 9
 > 0;pg > 


p
a.

Proposition 3.3. There exist two strictly positive constants c1, c2 such that,
8(�1; �2; �3) 2 
, 8(x1; x2) 2 R2,

c1
2X

�;�=1

a��(�1; �2)x�x� �
2X

�;�=1

g��(�1; �2; �3)x�x� � c2
2X

�;�=1

a��(�1; �2)x�x� :

We can then show the following identity.

Lemma 3.1. 8�; � = 1; 2, there exist d�� and e��, two functions of (�1; �2) in
L1(!), such that

g�� =
1

�
1� 2H�3 +K(�3)2

�2
�
a�� � 2�3d�� + (�3)2e��

�
:



April 24, 2013 10:6 WSPC/INSTRUCTION FILE asymptoticAnaly-
sis_m3as

A surface-based electrophysiology model relying on asymptotic analysis 7

Proof. According to Remarks 3.1 and 3.2, we have

A�1 =
�
a11 a12

a12 a22

�
=

1
a

�
a22 �a12

�a12 a11

�
; G�1 =

0

@
g11 g12 0
g12 g22 0
0 0 1

1

A =
1
g

0

@
g22 �g12 0
�g12 g11 0

0 0 1

1

A :

Using Propositions 3.1 and 3.2, we can then conclude.

Finally, this directly implies the following result.

Proposition 3.4. 8�; � = 1; 2, g�� = a��+�3�g��, where �g�� is a function bounded
over B.

4. Limit model derivation by asymptotic analysis

4.1. Anisotropic di�usion model

We introduce the space H1(B) de�ned by

H1(B) =
�
u : 
! R measurable;

Z



u2 dV;

Z




~ru � ~ru dV < +1
�
;

with the natural norm

kukH1(B) =
�Z



u2 dV +

Z




~ru � ~ru dV
� 1

2

:

We need to introduce boundary conditions associated with the di�usion term
that we want to study. We suppose @! = 
1 [ 
2 with 
1 of non-zero measure, and
we de�ne �i = 
i�

i
�d2 ;+

d
2

h
; for i = 1; 2. We denote �3 = @
 n

�
�1 [�2

�
, namely,

the top and bottom surfaces. We consider the following problem
8
>>><

>>>:

�div
�~~� � ~ru

�
= f; in 
;

u = 0; in �1;�~~� � ~ru
�
� ~n = 0; in �2;�~~� � ~ru
�
� ~n = 0; in �3;

(4.1)

where f 2 L2(B).
De�ning V3D = H1(B)\(BC), where (BC) corresponds to the Dirichlet boundary

condition on �1, the problem (4.1) can be rewritten in weak form as seeking u 2 V3D

such that

A3D(u; v) = F 3D(v); 8v 2 V3D; (4.2)

where

A3D(u; v) =
Z




�~~� � ~ru
�
� ~rv dV; F 3D(v) =

Z



fv dV; 8u; v 2 V3D:

Remark 4.1. The variational problem is here written in an intrinsic form, namely,
independently of any speci�c coordinate system, but of course it is very straightfor-
ward to obtain the corresponding expressions using the tensor components, which
we will consider soon with the coordinates introduced in the previous section.
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Assumption 4.1. We suppose that the di�usion tensor ~~�(�) is:

� L1 on 
;
� symmetric positive de�nite for almost all � in 
;
� such that for almost all � 2 
, for any ~� 2 E ,

c1k~� k2 �
�~~�(�) � ~�

�
� ~�;

for some strictly positive constant c1.

Remark 4.2. Due to the L1 character of ~~�(�) we also have
�~~�(�) � ~�

�
� ~� � c2k~� k2;

for some strictly positive c2, for any ~� 2 E and for almost all � 2 
.

A simple application of the Lax-Milgram theorem with the Poincar�e inequality
then provides the following result.

Theorem 4.1. If Assumption 4.1 holds, there exists a unique u 2 V3D solution of
(4.2).

4.2. Asymptotic problem formulation

Denoting dS =
p
a(�1; �2) d�1d�2 the surface measure, we introduce the spaces

L2(S) and H1(S) by

L2(S) =
�
u : ! ! R measurable;

Z

!
u2 dS < +1

�
;

H1(S) =
�
u : ! ! R measurable;

Z

!
u2 dS;

Z

!
ru � ru dS < +1

�
;

with the natural norms

kukL2(S) =
�Z

!
u2 dS

� 1
2

; kukH1(S) =
�Z

!
u2 dS +

Z

!
ru � ru dS

� 1
2

:

We assume that the source term f is smooth enough to provide

f(�1; �2; �3) = f0(�1; �2) + �3 �f(�1; �2; �3);

where f0 2 L2(S) and �f 2 L1(B). Regarding the modeling of the anisotropic
conductivity, we make the following assumption on the di�usion tensor ~~�.

Assumption 4.2. We suppose that ~~� = �t ~~g+ (�l��t)~� 
~� , where �t and �l are
two strictly positive constants such that �t � �l. The vector ~� is given by

~�(�1; �2; �3) = �0(�1; �2) cos
�

2�(�1; �2)�3

d

�
+ �?0 (�1; �2) sin

�
2�(�1; �2)�3

d

�
; (4.3)

where �0 and �?0 are unit vectors and
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� �0 belongs to the tangential plane to the midsurface S, at each point in !,
� �?0 = ~a3 � �0 i.e �?0 is orthogonal to �0 and belongs to the tangential plane.

Remark 4.3. The assumptions on ~~� translate the anisotropic behavior and het-
erogeneous distribution across the thickness of the body, see Figure 2. Note that

� �l = �t gives the homogeneous case, namely, without any privileged direction;
� �t < �l implies

(a) if � = 0, then ~� is independent of �3, i.e. the �ber orientation is constant across
the thickness, de�ned by the vector �0;

(b) if � 6= 0, the �bers rotate across the thickness by a total angle 2�.

Remark 4.4. We commit a slight abuse of notation in (4.3), since we have a 3D
vector in the left-hand side and surface-attached 2D vectors in the right-hand side.
We could have instead used a 3D notation for �0 and �?0 , but we made this choice
to emphasize that they lie in the tangential plane.

Remark 4.5. Assumption 4.2 implies Assumption 4.1.

An asymptotic analysis then consists in studying the behavior of the above dif-
fusion model when varying the thickness parameter " while keeping the midsurface
S and the parameter �eld � �xed. The complete asymptotic analysis of this 3D
anisotropic di�usion problem is out of the scope of our preliminary analysis, which
primarily aims at guiding the formulation of a relevant surface-based model. Hence,
following similar strategies used in shell mechanical modeling, we will instead con-
sider a Galerkin reduction of the problem (4.2) posed in a subspace of V3D given by
polynomial variations of the quantity of interest in the thickness variable { in our

� 0

d

��

+�

Fig. 2. Fibers rotation across the thickness
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case quadratic polynomials { which can be seen as truncated Taylor expansions.
We thus de�ne V = (H1(S) \ (BC0))3, where (BC0) corresponds to homogeneous
Dirichlet boundary conditions prescribed on 
1, and we seek (u"0; u"1; u"2) 2 V such
that

A3D�u"0 + �3u"1 + (�3)2u"2 ; v0 + �3v1 + (�3)2v2
�

= F 3D�v0 + �3v1 + (�3)2v2
�
;

8(v0; v1; v2) 2 V; (4.4)

where we point out that the de�nitions of A3D and F 3D include a dependence on
the varying thickness parameter " { via the dependence of the reference domain 

itself { even though this is not re
ected in the notation for compactness purposes.

Remark 4.6. A 3D asymptotic analysis { namely, of a sequence of solutions of
(4.2) associated with decreasing thickness parameter for the geometric domain {
would require di�erent tools, starting with a scaling of the domain in the transverse
direction in order to work on a �xed domain, see e.g. Ref. 6. Here, we adopt a
somewhat simpler strategy with a Galerkin projection of the 3D model onto a sub-
space of functions that feature quadratic variations in the transverse direction. Note
that this is also a classical asymptotic approach in structural mechanics and asso-
ciated mathematical analysis, where it is known to provide important insight into
the limit asymptotic behavior.8;4 As a matter of fact, in shell models such Galerkin
projections have been established to be asymptotically consistent with 3D elastic-
ity, namely, the respective asymptotic analyses provide the same limit models.5 In
addition, limit models obtained with polynomial assumptions are also interesting
in relation to Galerkin discretizations of the variational problem, e.g. with �nite
elements used with a single element { of possibly high polynomial order { across
the thickness.

If Assumption 4.2 holds, we can use Theorem 4.1 to show the existence and
uniqueness of a solution of (4.4) because fu0 + �3u1 + (�3)2u2; (u0; u1; u2) 2 Vg is
a closed subspace of V3D.

Theorem 4.2. For any " = d
L > 0, there exists a unique (u"0; u"1; u"2) 2 V solution

of (4.4).

We will now denote u" = u"0 + �3u"1 + (�3)2u"2 2 V3D and study the behavior of
this sequence when the parameter " tends to zero.

4.3. Asymptotic analysis

In this section, we want to:

� identify a limit problem;
� show the existence and uniqueness of a solution to the limit problem;
� prove a preliminary weak convergence result;
� establish the strong convergence.
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4.3.1. Limit problem

We start by considering the left-hand side of (4.4), i.e.
Z




�~~� � ~ru
�
� ~rv dV = �t

Z




�~~g � ~ru
�
� ~rv dV + (�l � �t)

Z




�
~� 
 ~� � ~ru

�
� ~rv dV;

= �t
Z




~ru � ~rv dV + (�l � �t)
Z




�
~� � ~ru

��
~� � ~rv

�
dV; (4.5)

where we denote u = u0 + �3u1 + (�3)2u2 and v = v0 + �3v1 + (�3)2v2, and we will
analyze the two integrals separately.

According to Proposition 3.4, we have

�t~ru� ~rv = �t
"

2X

�;�=1

@�u(a��+�3�g��)@�v+u1v1 +2�3�u1v2 +u2v1
�
+4
�
�3�2u2v2

#

:

We can integrate all the polynomial terms in �3 between �d2 and +d
2 , and after

integration the �rst term in the asymptotic expansion is given by

d �t
Z

!

�
ru0 � rv0 + u1v1

�
dS:

We can then denote by Al the bilinear form

Al
�
(u0; u1); (v0; v1)

�
= �t

Z

!

�
ru0 � rv0 + u1v1

�
dS;

8(u0; u1); (v0; v1) 2 H1(S)� L2(S):

Concerning next the second term in (4.5) we have

�
~� � ~ru

��
~� � ~rv

�
=

3X

i;j=1

(~� � ~g i)(~� � ~g j)@iu@jv

=
2X

�;�=1

(~� � ~g�)(~� � ~g�)@�u@�v;

according to Assumption 4.2. Using the geometric de�nitions, we have that
~g�(�1; �2; �3) = ~a�(�1; �2) + �3 ~H�(�1; �2; �3) with ~H� 2 L1(B), so that we can
decompose (~� � ~g�)(~� � ~g�) into

(~� � ~g�)(~� � ~g�) =
h
(�0 � ~a

�)(�0 � ~a
�) + �3Jk(�1; �2; �3)

i
cos2

�
2��3

d

�

+
h
(�?0 � ~a

�)(�?0 � ~a
�) + �3J?(�1; �2; �3)

i
sin2

�
2��3

d

�

+
h
(�0 � ~a

�)(�?0 � ~a
�) + (�?0 � ~a

�)(�0 � ~a
�)

+�3Ja(�1; �2; �3)
i

sin
�

2��3

d

�
cos
�

2��3

d

�
;



April 24, 2013 10:6 WSPC/INSTRUCTION FILE asymptoticAnaly-
sis_m3as

12 D. Chapelle, A. Collin and J.-F. Gerbeau

where Jk; J? et Ja are all L1(B). When integrating over �3, the following integrals
appear

In(�) =
1

dn+1

Z d
2

� d
2

(�3)n cos2
�

2��3

d

�
d�3 =

1
2n+1

Z 1

�1
tn cos2(t�)dt;

Jn(�) =
1

dn+1

Z d
2

� d
2

(�3)n sin2
�

2��3

d

�
d�3 =

1
2n+1

Z 1

�1
tn sin2(t�)dt;

Ln(�) =
1

dn+1

Z d
2

� d
2

(�3)n cos
�

2��3

d

�
sin
�

2��3

d

�
d�3 =

1
2n+1

Z 1

�1
tn cos(t�) sin(t�)dt:

We can now as before identify the �rst term of the asymptotic expansion, which
gives dAfl with

Afl (u0; v0) = (�l � �t)
Z

!

��
I0(�) �0 
 �0 + J0(�) �?0 
 �

?
0
�
�ru0

�
� rv0 dS;

where I0(�) =
1
2

+
1
4�

sin(2�) and J0(�) =
1
2
�

1
4�

sin(2�) = 1 � I0(�). Note that
these functions can be extended by continuity in 0, with values 1 and 0, respectively.

Remark 4.7.

� I0(�) > 0; J0(�) � 0; 8� 2 R,
� J0(�) = 0 (and I0(�) = 1) if and only if � = 0. In this case ~�(�1; �2; �3) =
�0(�1; �2), i.e. the �ber direction is independent of the thickness.

Using similar manipulations, the �rst term in the asymptotic expansion of the
right-hand side of (4.4) is given by dF0, with

F0(v0) =
Z

!
f0v0 dS; 8v0 2 H1(S):

De�ning Vlim =
�
H1(S) \ (BC0)

�
� L2(S), our candidate limit problem �nally

consists in seeking (ul0; ul1) 2 Vlim such that

Al
�
(ul0; u

l
1); (v0; v1)

�
+Afl (ul0; v0) = F0(v0); 8(v0; v1) 2 Vlim: (4.6)

Theorem 4.3. There exists a unique (ul0; ul1) 2 Vlim solution of (4.6).

Proof. It is straightforward to see that the bilinear form in the left-hand side of
(4.6) is continuous and coercive on Vlim, and symmetric, hence we can directly
apply the Lax-Milgram theorem.
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Note that, choosing v0 = 0 in (4.6), we can show that ul1 = 0, and ul0 2 H1(S)\
(BC0) satis�es, 8v0 2 H1(S) \ (BC0),

�t
Z

!
rul0 � rv0 dS + (�l � �t)

Z

!

��
I0(�) �0 
 �0 + J0(�) �?0 
 �

?
0
�
�rul0

�
� rv0 dS

=
Z

!
f0v0 dS: (4.7)

4.3.2. Weak convergence

Theorem 4.4. We have the following convergences:

� (u"0; u"1) converges weakly to (ul0; 0) in Vlim when " tends to 0,
� "u"1 and "2u"2 converge weakly to 0 in H1(S) when " tends to 0.

The proof of Theorem 4.4 is divided into two steps:

(i) The �rst step consists in proving that a subsequence of (u"0; u"1)" converges
weakly to a limit denoted by (um0 ; um1 ) 2 Vlim when " tends to 0.

(ii) In the second step, we show that um0 = ul0; um1 = 0 and we can infer the theorem.

(i) Weak convergence of a subsequence

Lemma 4.1. There exists one strictly positive constant C independent of " such
that 8(v0; v1; v2) 2 V;

A3D(v; v) � C
h
"
�
krv0kL2(S) + kv1kL2(S)

�2 + "3�krv1kL2(S) + kv2kL2(S)
�2

+ "5krv2k2L2(S)

i
:

Lemma 4.2. There exists one strictly positive constant C 0 independent of " such
that 8(v0; v1; v2) 2 V;

F 3D(v) � C 0
h
"
�
krv0kL2(S) + kv1kL2(S)

�
+ "2�krv1kL2(S) + kv2kL2(S)

�

+ "3krv2kL2(S)

i
:

We directly have Lemma 4.2. We must prove Lemma 4.1.



April 24, 2013 10:6 WSPC/INSTRUCTION FILE asymptoticAnaly-
sis_m3as

14 D. Chapelle, A. Collin and J.-F. Gerbeau

Proof. Using Propositions 3.2 and 3.3, we have 8(v0; v1; v2) 2 V;

A3D(v; v) = �t
Z




~rv � ~rv dV + (�l � �t)
Z




�
~� 
 ~� � ~rv

�
� ~rv dV

� �t
Z




~rv � ~rv dV

� 
 �t
Z




~rv � ~rv
p
a d�

� 
 �t
Z




� X

��=1;2

g��@�v@�v + v2
1 + 4�3v1v2 + 4

�
�3�2v2

2

�p
a d�

� c
Z




� X

��=1;2

a��@�v@�v + v2
1 + 4�3v1v2 + 4

�
�3�2v2

2

�p
a d�

� c
Z




�
rv � rv + v2

1 + 4�3v1v2 + 4
�
�3�2v2

2
�p
a d�;

with 
 dependent on ". We use the decomposition of v and we integrate over �3

A3D(v; v) � c
Z

!

�
"(rv0 � rv0 + v2

1) +
"3

12
(rv1 � rv1 + 4v2

2) +
"3

6
rv0 � rv2

+
"5

80
rv2 � rv2

�
dS:

Using the Young inequality on the cross term, we have for almost all (�1; �2) 2 !;
and for all r > 0,

2rv0(�1; �2) �rv2(�1; �2) � �
1
r
rv0(�1; �2) �rv0(�1; �2)� rrv2(�1; �2) �rv2(�1; �2):

With r = 1
10"

2, we obtain 8(v0; v1; v2) 2 V,

A3D(v; v) � c
Z

!

�"
6
rv0 � rv0 + "v2

1 +
"3

12
(rv1 � rv1 + 4v2

2) +
"5

240
rv2 � rv2

�
dS

� C
h
"
�
krv0kL2(S) + kv1kL2(S)

�2 + "3�krv1kL2(S) + kv2kL2(S)
�2

+"5krv2k2L2(S)

i
:

These two lemmas directly allow to show the following result.

Lemma 4.3. There exists a strictly positive constant C independent of " such that
�
kru"0kL2(S) + ku"1kL2(S)

�
+ "
�
kru"1kL2(S) + ku"2kL2(S)

�
+ "2kru"2kL2(S) � C:

Using Lemma 4.3, we can quickly �nish the �rst step. According to the Poincar�e
inequality (�1 of non-zero measure) and Lemma 4.3, u"0; "u"1 et "2u"2 are uniformly
bounded in the H1(S)-norm and u"1 and "u"2 are uniformly bounded in the L2(S)-
norm. We can then extract a subsequence (also denoted by ") such that there
exists (um0 ; um1 ; ~um1 ; um2 ; ~um2 ) 2 H1(S)� L2(S)�H1(S)� L2(S)�H1(S) such that
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(u"0; u"1; "u"1; "u"2; "2u"2) converges weakly to (um0 ; um1 ; ~um1 ; um2 ; ~um2 ) in H1(S)�L2(S)�
H1(S)� L2(S)�H1(S).

Remark 4.8. We can show that ~um1 = 0, since by compact injection "u"1
L2(S)
! ~um1 .

Likewise, ~um2 = 0.

(ii) Convergence to the solution of the limit problem

Lemma 4.4. 8(v0; v1; v2) 2 V,

�
1
d
A3D(u"; v) = Al

�
(u"0; u

"
1); (v0; v1)

�
+Afl (u"0; v0) +O("),

�
1
d
F 3D(v) = F0(v0) +O(").

With Lemma 4.4 we can quickly conclude. According to Theorem 4.2, indeed,
we have 8v 2 V; A3D(u"; v) = F 3D(v) and Lemma 4.4 gives

Al
�
(u"0; u

"
1); (v0; v1)

�
+Afl (u"0; v0) = F0(v0) +O("); 8(v0; v1) 2 Vlim: (4.8)

Making " tend to 0 in (4.8) and according to the �rst step, we have

Al
�
(um0 ; u

m
1 ); (v0; v1)

�
+Afl (um0 ; v0) = F0(v0); 8(v0; v1) 2 Vlim:

Using Theorem 4.3, we obtain that (um0 ; um1 ) = (ul0; 0) where ul0 veri�es Problem
(4.7). The limits (um0 ; um1 ; ~um1 ; ~um2 ) = (ul0; 0; 0; 0) are independent of the subsequence
so that we can infer the theorem. To complete the proof of Theorem 4.4, we must
now show Lemma 4.4.

Proof.

A3D(u"; v) = �t
Z




~ru" �~rv dV +(�l��t)
Z




�
~�
~� �~ru"

�
�~rv dV; 8(v0; v1; v2) 2 V;

with 
 dependent on ". We start by studying the �rst term of A3D(u"; v), i.e.

�t
Z




~ru" � ~rv dV = �t
Z




~ru" � ~rv
p
a d� + �t

Z



�3~ru" � ~rv

p
a(�2H +K�3)d�:

If we can show that �t
Z




~ru" � ~rv
p
a d� converges when " tends to 0, then

�t
Z



�3~ru" � ~rv

p
a(�2H + K�3)d� converges to 0 when " tends to 0, so that
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we just need to study the �rst term.

�t
Z




~ru" � ~rv
p
a d�

= �t
Z




� X

��=1;2

g��@�u"@�v + u"1v1 + 2�3�u"v2 + u"2v1
�

+ 4
�
�3�2u"2v2

�p
a d�

= �t
Z




� X

��=1;2

a��@�u"@�v + u"1v1 + 2�3�u"1v2 + u"2v1
�

+ 4
�
�3�2u"2v2

�p
a d�

+�t
Z




X

��=1;2

�3�g��@�u"@�v
p
a d�:

For the same reason, we just need to show that �t
Z




�
ru" �rv+u"1v1 +2�3�u"1v2 +

u"2v1
�

+ 4
�
�3�2u"2v2

�p
a d� converges when " tends to 0.

We can apply the same method with the second term of A3D(u"; v) and we infer

that we only need to show that (�l��t)
Z




�
~� 
~� � ru"

�
� rv
p
a d� converges when

" tends to 0. We de�ne A3D
0 by 8(u0; u1; u2); (v0; v1; v2) 2 V;

A3D
0 (u; v) = �t

Z




�
ru � rv + u1v1 + 2�3�u1v2 + u2v1

�
+ 4
�
�3�2u2v2

�p
a d�

+ (�l � �t)
Z




�
~� 
 ~� � ru

�
� rv
p
a d�3;

and we want to show that

1
d
A3D

0 (u"; v) = Al((u"0; u
"
1); (v0; v1)) +Afl (u"0; v0) +O("); 8(v0; v1; v2) 2 V:

We decompose A3D
0 (u"; v) as A3D

0 (u"; v) =
P4
n=0 In(u"; v) with

1
"
I0(u"; v) = L

�
Al
�
(u"0; u

"
1); (v0; v1)

�
+Afl (u"0; v0)

�
;

1
"
I1(u"; v) = "L2(�l � �t)

Z

!
L1(�)

��
�?0 
 �0 � ru

"
0
�
� rv1

+
�
�0 
 �

?
0 � ru

"
0
�
� rv1

�
dS

+ "L2(�l � �t)
Z

!
L1(�)

��
�?0 
 �0 � ru

"
1
�
� rv0 +

�
�0 
 �

?
0 � ru

"
1
�
� rv0

�
dS;
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1
"
I2(u"; v) =

1
12
"2L3�t

Z

!
ru"0 � rv2 +ru"2 � rv0 +ru"1 � rv1 + 4u"2v2 dS

+ "2L3(�l � �t)
Z

!
I2(�)

�
�0 
 �0 � ru

"
0
�
� rv2 + J2(�)

�
�?0 
 �

?
0 � ru

"
0
�
� rv2 dS

+ "2L3(�l � �t)
Z

!
I2(�)

�
�0 
 �0 � ru

"
2
�
� rv0 + J2(�)

�
�?0 
 �

?
0 � ru

"
2
�
� rv0 dS

+ "2L3(�l � �t)
Z

!
I2(�)

�
�0 
 �0 � ru

"
1
�
� rv1 + J2(�)

�
�?0 
 �

?
0 � ru

"
1
�
� rv1 dS;

1
"
I3(u"; v) = "3L4(�l � �t)

Z

!
L3(�)

��
�?0 
 �0 � ru

"
1
�
� rv2

+
�
�0 
 �

?
0 � ru

"
1
�
� rv2

�
dS

+ "3L4(�l � �t)
Z

!
L3(�)

��
�?0 
 �0 � ru

"
2
�
� rv1 +

�
�0 
 �

?
0 � ru

"
2
�
� rv1

�
dS;

1
"
I4(u"; v) =

1
80
"4L5(�l � �t)

Z

!
ru"2 � rv2 dS

+ "4L5(�l � �t)
Z

!
I4(�)

�
�0 
 �0 � ru

"
2
�
� rv2 + J4(�)

�
�?0 
 �

?
0 � ru

"
2
�
� rv2 dS:

We have that

� "
Z

!
L1(�)

��
�?0 
 �0 � ru

"
0
�
� rv1 +

�
�0 
 �?0 � ru

"
0
�
� rv1

�
dS !

"!0
0, because

ku"0kH1(S) is bounded,

� "
Z

!
L1(�)

��
�?0 
�0 �ru

"
1
�
�rv0+

�
�0
�

?
0 �ru

"
1
�
�rv0

�
dS !

"!0
0, because ~um1 = 0.

We infer that
1
"
I1(u"; v) !

"!0
0; 8(v0; v1; v2) 2 V. With similar arguments, we can

show that
1
"
I2(u"; v);

1
"
I3(u"; v) and

1
"
I4(u"; v) all converge to 0 when " tends to 0,

for all (v0; v1; v2) 2 V. We clearly have
1
"
F 3D(v) !

"!0
F0(v0);8(v0; v1; v2) 2 V, and

this concludes the proof of the theorem.

4.3.3. Strong convergence

We will complete our asymptotic analysis by proving that the convergences estab-
lished in the previous section also hold { in fact { in the strong sense. De�ning the
two bilinear forms

~Afl (�; �) = (�l � �t)
Z

!
I0(�)

�
�0 
 �0 � �

�
� �dS;

�Afl (�; �) = (�l � �t)
Z

!
J0(�)

�
�?0 
 �

?
0 � �

�
� �dS;
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and the rotation operator

� :
�

Vect(~a1;~a2) �! Vect(~a1;~a2)
� 7�! ~a3 � �

we will show that the following sum of perfect squares

D" = Al
�
u"0 +

1
12
d2u"2 � u

l
0; u

"
1
�2 + ~Afl

�
r
�
u"0 +

I2
I0
d2u"2

�
�
L1

I0
d�
�
ru"1

�
�rul0

�2

+ �Afl
�
r
�
u"0 +

I2
J0
d2u"2

�
+
L1

J0
d�
�
ru"1

�
�rul0

�2
;

tends to zero with ", where we denote Al(u; v)2 = Al
�
(u; v); (u; v)

�
, and similarly

for ~Afl and �Afl . In fact, D" is constructed so that the expression

D0" = Al
�
u"0 +

1
12
d2u"2; u

"
1
�2 + ~Afl

�
r
�
u"0 +

I2
I0
d2u"2

�
�
L1

I0
d�
�
ru"1

��2

+ �Afl
�
r
�
u"0 +

I2
J0
d2u"2

�
+
L1

J0
d�
�
ru"1

��2
;

appearing when developing D", gathers the main lower-order terms in the expan-
sion A3D(u"; u") as expressed in the following lemma, shown like in the proof of
Lemma 4.4.

Lemma 4.5.

A3D(u"; u") = d�t
�Z

!
ru"0 � ru

"
0 + (u"1)2 dS

+
d2

12

Z

!
2ru"0 � ru

"
2 +ru"1 � ru

"
1 + (u"2)2 dS +

d4

80

Z

!
ru"2 � ru

"
2 dS

�

+ d(�l � �t)
Z

!
I0(�)

�
�0 
 �0 � ru

"
0
�
� ru"0 + J0(�)

�
�?0 
 �

?
0 � ru

"
0
�
� ru"0 dS

+ d(�l � �t)
�
d
Z

!
2L1(�)

�
�0 
 �

?
0 � ru

"
0
�
� ru"1 + 2L1(�)

�
�?0 
 �0 � ru

"
0
�
� ru"1 dS

�

+ d(�l � �t)
�
d2
Z

!
2I2(�)

�
�0 
 �0 � ru

"
0
�
� ru"2 + 2J2(�)

�
�?0 
 �

?
0 � ru

"
0
�
� ru"2 dS

�

+ d(�l � �t)
�
d2
Z

!
I2(�)

�
�0 
 �0 � ru

"
1
�
� ru"1 + J2(�)

�
�?0 
 �

?
0 � ru

"
1
�
� ru"1 dS

�

+ d(�l��t)L
�
d3
Z

!
2L3(�)

�
�0
 �

?
0 �ru

"
1
�
�ru"2 + 2L3(�)

�
�?0 
 �0 �ru

"
1
�
�ru"2 dS

�

+ d(�l � �t)L
�
d4
Z

!
I4(�)

�
�0 
 �0 � ru

"
2
�
� ru"2 + J4(�)

�
�?0 
 �

?
0 � ru

"
2
�
� ru"2 dS

�

+R(u");

where the degree of �3 in the terms of
1
d
R(u") =

1
L"
R(u") is high enough to have

the convergence to 0 when " tends to 0.
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We can now state and prove our �nal convergence result.

Theorem 4.5. We have the following convergences:

� (u"0; u"1) converges strongly to (ul0; 0) in Vlim when " tends to 0,
� "u"1 and "2u"2 converge strongly to 0 in H1(S) when " tends to 0.

In addition, "u"2 converges strongly to 0 in L2(S) when " tends to 0.

Proof. De�ning

~D" =
1
12
d2�t

Z

!
ru"1 � ru

"
1 + (u"2)2 dS +

1
180

d4�t
Z

!
ru"2 � ru

"
2 dS

+ d2(�l � �t)
�Z

!

�
I2 �

L2
1
J0

��
�0 
 �0 � ru

"
1
�
� ru"1 dS

+
Z

!

�
J2 �

L2
1
I0

��
�?0 
 �

?
0 � ru

"
1
�
� ru"1 dS

�

+ 2d3(�l � �t)
�Z

!

�
L3 � L1

I2
I0

��
�0 
 �

?
0 � ru

"
1
�
� ru"2 dS

+
Z

!

�
L3 � L1

J2

J0

��
�?0 
 �0 � ru

"
1
�
� ru"2 dS

�

+ d4(�l � �t)
�Z

!

�
I4 �

I2
2
I0

��
�0 
 �0 � ru

"
2
�
� ru"2 dS

+
Z

!

�
J4 �

J2
2
J0

��
�?0 
 �

?
0 � ru

"
2
�
� ru"2 dS

�
;

we will decompose the proof into two steps:

� in the �rst step, we show that D" + ~D" !
"!0

0,

� in the second step, we show that ~D" � �
�
k"u"1k2H1(S) +k"u"2k2L2(S) +k"2u"2k2H1(S)

�
,

with � > 0.

The conclusion is then at hand, because it implies that D" !
"!0

0 and ~D" !
"!0

0, and
in particular we have the following convergences

Al
�
u"0 +

1
3
d2u"2 � u

l
0; u

"
1
�2 !

"!0
0;

k"u"1kH1(S) !"!0
0; k"u"2kL2(S) !"!0

0; k"2u"2kH1(S) !"!0
0:

We infer

u"0
H1(S)
�!
"!0

ul0; u"1
L2(S)
�!
"!0

0; "u"1
H1(S)
�!
"!0

0; "u"2
L2(S)
�!
"!0

0; "2u"2
H1(S)
�!
"!0

0:
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First step We can develop D" as

D" = D0" � 2Al
��
u"0 +

1
12
d2u"2; 0

�
; (ul0; 0)

�

� 2 ~Afl
�
r
�
u"0 +

I2
I0
d2u"2

�
�
L1

I0
d�
�
ru"1

�
;rul0

�

� 2 �Afl
�
r
�
u"0 +

I2
J0
d2u"2

�
+
L1

J0
d�
�
ru"1

�
;rul0

�

+Al
�
(ul0; 0); (ul0; 0)

�
+ ~Afl

�
rul0;ru

l
0
�

+ �Afl
�
rul0;ru

l
0
�
;

We remark that ~Afl
�
rul0;rul0

�
+ �Afl

�
rul0;rul0

�
= Afl

�
ul0; ul0

�
, and according to

Theorem 4.3, we have Al
�
(ul0; 0); (ul0; 0)

�
+ Afl

�
ul0; ul0

�
= F0(ul0). Furthermore, ac-

cording to Theorem 4.4, we have

Al
��
u"0 +

1
3
d2u"2; 0

�
; (ul0; 0)

�
+ ~Afl

�
r
�
u"0 +

I2
I0
d2u"2

�
�
L1

I0
d�
�
ru"1

�
;rul0

�

+ �Afl
�
r
�
u"0 +

I2
J0
d2u"2

�
+
L1

J0
d�
�
ru"1

�
;rul0

�

!
"!0

Al
�
ul0; u

l
0
�

+Afl
�
ul0; u

l
0
�

= F0(ul0):

We infer

D" = D0" � F0(ul0) +O("): (4.9)

Developing D0" and using Lemma 4.5, we have

D0" =
1
d
A3D(u"; u")�

1
d
R(u")

�
1
12
d2�t

Z

!
ru"1 � ru

"
1 + (u"2)2 dS �

1
180

d4�t
Z

!
ru"2 � ru

"
2 dS

�d2(�l � �t)
�Z

!

�
I2 �

L2
1
J0

�
�0 
 �0 � ru

"
1 � ru

"
1 dS

+
Z

!

�
J2 �

L2
1
I0

�
�?0 
 �

?
0 � ru

"
1 � ru

"
1 dS

�

�2d3(�l � �t)
�Z

!

�
L3 � L1

I2
I0

�
�0 
 �

?
0 � ru

"
1 � ru

"
2 dS

+
Z

!

�
L3 � L1

J2

J0

�
�?0 
 �0 � ru

"
1 � ru

"
2 dS

�

�d4(�l � �t)
�Z

!

�
I4 �

I2
2
I0

�
�0 
 �0 � ru

"
2 � ru

"
2 dS

+
Z

!

�
J4 �

J2
2
J0

�
�?0 
 �

?
0 � ru

"
2 � ru

"
2 dS

�

=
1
d
F 3D(u")�

1
d
R(u")� ~D"

= F0(ul0)� ~D" +O("):

The equation (4.9) then becomes D" + ~D" = O("), which concludes the �rst step.
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Second step We want to show that ~D" � �
�
k"u"1k2H1(S) + k"u"2k2L2(S) +

k"2u"2k2H1(S)

�
.

~D" =
1
12
d2�t

Z

!

�
ru"1 � ru

"
1 + (u"2)2� dS +

1
180

d4�t
Z

!
ru"2 � ru

"
2 dS

+d2(�l � �t)
�Z

!

�
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1
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�
�0 
 �0 � ru

"
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"
1 dS

+
Z

!

�
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1
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�
�?0 
 �

?
0 � ru

"
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"
1 dS

�

+2d3(�l � �t)
�Z

!

�
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I0

�
�0 
 �

?
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"
1 � ru

"
2 dS

+
Z

!

�
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J0

�
�?0 
 �0 � ru

"
1 � ru

"
2 dS

�

+d4(�l � �t)
�Z

!

�
I4 �

I2
2
I0

�
�0 
 �0 � ru

"
2 � ru

"
2 dS

+
Z

!

�
J4 �

J2
2
J0

�
�?0 
 �

?
0 � ru

"
2 � ru

"
2 dS

�
:

We have

1
3
d2�t

Z

!

�
ru"1 � ru

"
1 + (u"2)2� dS +

4
45
d4�t

Z

!
ru"2 � ru

"
2 dS

� �
�
k"u"1k

2
H1(S) + k"u"2k

2
L2(S) + k"2u"2k

2
H1(S)

�
;

so that the result holds if we can show the positiveness of ~~D" de�ned by

~~D" = (�l � �t)
�
d2
Z

!

�
I2 �

L2
1
J0

�
�0 
 �0 � ru

"
1 � ru

"
1 dS

+2d3
Z

!

�
L3 � L1

J2

J0

�
�?0 
 �0 � ru

"
1 � ru

"
2 dS

�

+(�l � �t)d4
Z

!

�
J4 �
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2
J0

�
�?0 
 �

?
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"
2 � ru

"
2 dS

+(�l � �t)
�
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Z

!

�
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L2
1
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�
�?0 
 �

?
0 � ru

"
1 � ru

"
1 dS

+2d3
Z

!

�
L3 � L1

I2
I0

�
�0 
 �

?
0 � ru

"
1 � ru

"
2 dS

�

+(�l � �t)d4
Z

!

�
I4 �

I2
2
I0

�
�0 
 �0 � ru

"
2 � ru

"
2 dS:

We can decompose ~~D" into two sums of the form au2 + 2cuv + bv2. We then use
the property that au2 + 2cuv + bv2 is positive for all (u; v) if and only if a; b � 0
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and c2 � ab. Therefore, ~~D" is positive if and only if

I2 �
L2

1
J0
� 0; J4 �

J2
2
J0
� 0;

�
L3 � L1

J2

J0

�2 �
�
I2 �

L2
1
J0

�
:
�
J4 �

J2
2
J0

�
;

J2 �
L2

1
I0
� 0; I4 �

I2
2
I0
� 0;

�
L3 � L1

I2
I0

�2 �
�
J2 �

L2
1
I0

�
:
�
I4 �

I2
2
I0

�
:

The inequalities in the left and center columns are simple consequences of the
Cauchy-Schwarz inequality, while those in the right column can easily be checked
analytically using, e.g., symbolic computation software.

Remark 4.9. Various possible extensions can be considered for the asymptotic
setting assumptions:

� There is no particular di�culty in considering non-homogeneous Neumann
boundary conditions on the lateral surface �2 in the asymptotic analysis, with
similar assumptions as for f regarding �3-regularity.
� We conjecture that polynomial assumptions of higher degree could be handled

in a similar manner and would provide similar convergence results to the same
limits.
� We could also consider more general forms of the angular variations of the �bers

across the thickness of the type

~�(�1; �2; �3) = �0(�1; �2) cos �
�
�1; �2; 2�3=d

�
+ �?0 (�1; �2) sin �

�
�1; �2; 2�3=d

�
;

which would lead to extended de�nitions of the geometric coe�cients Ii, Ji and
Li. The convergence proofs could then be performed verbatim up to the �nal
chains of inequalities to be satis�ed by these coe�cients, which would have to
be checked on a case-by-case basis, except for those directly following from the
Cauchy-Schwarz inequality. Other types of scaling of the transverse coordinate
could also be investigated in the de�nition of the �ber direction, e.g. with d�

substituted for d, but our objective here was to obtain a �nite variation of the
angle across the thickness in view of the applications considered.

5. Surface-based bidomain model and numerical assessments

Following our above detailed asymptotic analysis, we directly adapt the result to
propose the surface-based bidomain model, for all t > 0, �nd Vm(�; t) 2 H1(S),
ue(�; t) 2 H1(S) and w(�; t) 2 L1(S) with

R
! ue dS = 0, such that

8
>>>>>>><

>>>>>>>:

Am
Z

!

�
Cm

@Vm
@t

+ Iion(Vm; w)
�
�dS +

Z

!

�
� i �

�
rVm +rue

��
� r�dS

= Am
Z

!
Iapp(Vm; w)�dS;

Z

!

�
(� i + � e) � rue

�
� r dS +

Z

!

�
� i � rVm

�
� r dS = 0;

@tw + g(Vm; w) = 0; in ! � (0; T ):

(5.1)
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for all �;  2 H1(S) such that
R
!  dS = 0 and with � i;e = �ti;e a + (�li;e �

�ti;e)(I0(�)�0
 �0 +J0(�)�?0 
 �?0 ), where a denotes the surface-based metric tensor
{ namely, the restriction of the 3D metric tensor to vectors lying in the tangential
plane { and recalling that �0 is a unit vector parallel to the local �ber direction on
the midsurface, 2� is the angle between the �ber directions on the lower and upper
boundary surfaces { referred to as the endocardium and epicardium, respectively,
in the heart { and I0(�) = 1

2 + 1
4� sin(2�), J0(�) = 1

2 �
1
4� sin(2�).

We will now perform a numerical assessment of our proposed model by com-
paring the results given by the 3D model (2.1) and the surface model (5.1) for
two di�erent geometries. For these comparisons, we limit ourselves to the Mitchell-
Schae�er model to avoid undue technicalities in the ionic model calibration and so-
lution, although of course other ionic models could be considered, e.g. more adapted
to the atria cells. The values of the parameters used in the simulations are given in
Table 1. The tests are performed with the �nite element library FELiScE, developed
at Inria. We use P1-Lagrange �nite elements, and as time discretization scheme a
standard Backward Di�erentiation Formula (BDF) of order two, see e.g. Ref. 1.
Although we primarily aim at a numerical assessment of the reduced model, we
will use realistic values characteristic of atrial electrophysiology for all dimensions
and parameters.

Table 1. Cell membrane parameters

Am Cm �in �out �open �close Vgate Vmin Vmax
(cm�1) (mF:cm�2) (cm2:mA�1) (cm2:mA�1) (ms) (ms) (mV) (mV) (mV)

200:0 10�3 4:0 90:0 100:0 100:0 �67:0 �80:0 20:0

5.1. Planar test case

In this �rst test case, the 3D domain is a rectangular cuboid with dimensions 10�
10 � 0:2 (all dimensions given in cm), hence the midsurface is a 10 � 10 square,
which we discretize into 200 elements in each direction, namely, 40,401 vertices and
80,000 triangular elements. The 3D mesh is obtained by extrusion of the 2D mesh
using 4 elements across the thickness, which gives 202,005 vertices and 960,000
tetrahedral elements. The conductivities are �ti = 4:0 10�4, �te = 2:2 10�3, �li =
4:0 10�3, �le = 4:0 10�3, (all in S.cm�1). The �ber directions in the 3D mesh vary
across the thickness only, and by an angle �

4 between

0

@
cos
��

8

�

sin
��

8

�

0

1

A and

0

@
cos
� 3�

8

�

sin
� 3�

8

�

0

1

A :
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Therefore, on the midsurface the �ber direction is aligned with the vector

�0 =
p

2
2

0

@
1
1
0

1

A ;

and we have � = �
8 .

The model is initialized at t = 0 with Vm = �80 mV, ue = 0 mV, and we trigger
the wave by applying a current Iapp = 0:5 mA:cm�2 in a circle (or cylindrical region
in 3D) centered at (0 ; 5) and of radius r = 0:55 during 1 ms.

In Figure 3, we compare the transmembrane potential given by the asymptotic
surface model, the 3D model and a naive 2D model obtained by taking the value of
the 3D conductivity tensor on the midsurface, namely, with � i;e = �ti;e a + (�li;e �
�ti;e)�0 
 �0. We observe an excellent agreement between the asymptotic surface
model and the 3D model, whereas the naive model exhibits a slower front wave in
the direction perpendicular to the midsurface �ber. In addition, we plot in Figure 4
the di�erence juref;3D � u2Dj on the midsurface. We notice that the di�erences
between these two models are very limited and are narrowly concentrated near the
wave front.

�h�B�K�2 �430.0�K�b �h�B�K�2 �450.0�K�b �h�B�K�2 �460.0�K�b

�h�B�K�2 �470.0�K�b �h�B�K�2 �4100.0�K�b �h�B�K�2 �4120.0�K�b

�h�B�K�2 �4140.0�K�b �h�B�K�2 �4170.0�K�b

�h�`���M�b�K�2�K�#�`���M�2
�S�Q�i�2�M�i�B���H

�U�K�o�V

! 56.25

! 80.00

! 32.50

! 8.75
15.00

Fig. 3. Planar test case { Comparison of asymptotic surface model (left) 3D model (center) and
2D naive model (right) on the midsurface at 8 consecutive times

0.00

30.00

7.50

15.00

22.50

�h�B�K�2 �430.0�K�b �h�B�K�2 �450.0�K�b �h�B�K�2 �460.0�K�b �h�B�K�2 �470.0�K�b �h�B�K�2 �4100.0�K�b �h�B�K�2 �4140.0�K�b

�h�`���M�b�K�2�K�#�`���M�2
�S�Q�i�2�M�i�B���H �U�K�o�V

Fig. 4. Planar test case { Point-wise di�erence between the 3D model and the asymptotic surface
model on the midsurface (to be compared with the typical variation range of the transmembrane
potential, i.e. about 100 mV)
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Table 2. Planar test case { Error norms between the 3D and asymptotic surface models, on
the midsurface

T(ms) 30 50 60 70 100 140

j � j1 1:081 10�1 1:582 10�1 1:792 10�1 2:364 10�1 3:172 10�1 3:687 10�1

j � jl2 6:764 10�3 1:179 10�2 1:442 10�2 1:624 10�2 1:933 10�2 1:934 10�2

Table 3. Planar test case { Error norms between the 3D and naive 2D models, on the
midsurface

T(ms) 30 50 60 70 100 140

j � j1 4:772 10�1 7:447 10�1 8:339 10�1 9:281 10�1 1:000 1:000
j � jl2 4:020 10�2 8:218 10�2 1:035 10�1 1:151 10�1 1:530 10�1 1:757 10�1

We also report in Table 2 the normalized l1 and l2 di�erences be-
tween the asymptotic surface and the 3D models, i.e. supnodesjuref;3D�u2Dj

Vmax�Vmin
and

1
Vmax�Vmin

� 1
]Nodes

P
nodes ju

ref;3D � u2Dj2
� 1

2 , respectively. Note that Vmax � Vmin
is a typical normalizing constant, very similar to the L1-norm of uref;3D and also
meaningful from a modeling standpoint since it appears in the ionic model. The
relative l1 errors appear to be quite high, but when closely studying Figures 3 and
4 we see that this corresponds to very small shifts in the front location, which due
to the dramatic steepness of the front induces signi�cant { albeit very localized
{ errors. This is con�rmed by the l2 error values that are much smaller, indeed. We
also point out that these errors are quite stable over time. Table 3 shows the same
quantities when the asymptotic surface model is substituted by the naive 2D model.
These results quantitatively con�rm the superiority of the asymptotic model with
respect to the naive model, and the excellent accuracy of the asymptotic model
shows the relevance of the asymptotic analysis carried out in the previous sections
when the �ber orientation rapidly varies across the thickness.

5.2. Spiral wave re-entry on a cylinder

This test case is motivated by so-called spiral waves, a fascinating phenomenon in
cardiac electrophysiology, also very important in that it is often argued to be re-
sponsible for atrial or ventricular �brillation, see e.g. Ref. 11. This complex behavior
provides a challenging test case for our proposed model, and we will also consider
a non-planar geometry, indeed.

The domain is a 3D half-cylinder, with internal radius rmin = 4:9, external ra-
dius rmax = 5:1 and height h = 10 (all dimensions again given in cm). Thus, the
midsurface is a half-cylinder of radius 5:0 and height 10. The 3D mesh contains
105,080 vertices and 499,080 tetrahedral elements with 4 elements across the thick-
ness, and the 2D mesh has 21,016 vertices and 41,590 triangular elements. The �ber
directions in the 3D geometry vary across the thickness by an angle �

2 around the
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midsurface direction given by the vector

�0 =
1
5

0

@
�y
x
0

1

A ;

so that the �ber directions in the 2D mesh are characterized by this �0 and � = �
4 .

For this experiment, the conductivities are �ti = 4:0 10�4, �te = 2:2 10�3, �li =
4:0 10�3, �le = 4:0 10�3 (in S.cm�1).

In order to initiate a spiral wave, we follow the procedure used in Ref. 9. The
model is initialized at t = 0 with Vm = �80 mV, ue = 0 mV, and we �rst gener-
ate a wave in the horizontal direction. Once the wave front has formed, it starts
traveling along the cylinder (see Figure 5 at t = 80:0 ms). Just after the end of the
repolarization (see Figure 5 at t = 300:0 ms), we depolarize a second region at time
t = 375:0 ms. The new depolarization front revolves around the region that has just
started repolarizing, which triggers a spiral wave.

We display in Figure 5 the results obtained with the 3D and surface models
at successive times, and in Figure 6 the point-wise di�erence juref;3D � u2Dj is

! 56.25

! 80.00

! 32.50

! 8.75
15.00

�h�`���M�b�K�2�K�#�`���M�2
�S�Q�i�2�M�i�B���H

�U�K�o�V

�h�B�K�2 �480.0�K�b �h�B�K�2 �4300.0�K�b �h�B�K�2 �4390.0�K�b

�h�B�K�2 �4500.0�K�b �h�B�K�2 �4600.0�K�b �h�B�K�2 �4700.0�K�b

�h�B�K�2 �4800.0�K�b �h�B�K�2 �4900.0�K�b

Fig. 5. Spiral wave on cylinder { Comparison of asymptotic surface model (left), 3D model (center)
and naive 2D model (right) on the midsurface at 8 consecutive times

�h�B�K�2 �480.0�K�b �h�B�K�2 �4300.0�K�b �h�B�K�2 �4390.0�K�b �h�B�K�2 �4700.0�K�b �h�B�K�2 �4800.0�K�b �h�B�K�2 �4900.0�K�b

�h�`���M�b�K�2�K�#�`���M�2
�S�Q�i�2�M�i�B���H �U�K�o�V

11.50

0.00

23.00

34.50

46.00

Fig. 6. Spiral wave on cylinder { Point-wise di�erence between the 3D model and the asymp-
totic surface model on the midsurface (to be compared with the typical variation range of the
transmembrane potential, i.e. about 100 mV)
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Table 4. Spiral wave on cylinder { Error norms between the 3D and asymptotic surface
models, on the midsurface

T(ms) 80 300 390 700 800 900

j � j1 2:351 10�1 1:467 10�2 3:747 10�2 1:525 10�1 4:913 10�1 4:229 10�1

j � jl2 8:375 10�3 2:315 10�3 2:797 10�3 2:019 10�2 3:744 10�2 3:228 10�2

Table 5. Spiral wave on cylinder { Error norms between the 3D and naive 2D models, on
the midsurface

T(ms) 80 300 390 700 800 900

j � j1 9:110 10�1 1:026 10�1 2:338 10�1 9:548 10�1 9:525 10�1 8:788 10�1

j � jl2 1:419 10�1 4:645 10�2 4:026 10�2 4:169 10�1 4:542 10�1 4:318 10�1

plotted on the midsurface. As in the planar test case experiment, the di�erences
between the 3D and asymptotic surface models are quite limited and very narrowly
concentrated along the wave front. By contrast, the naive 2D model appears to be
of poor accuracy, and in fact altogether destroys the spiral wave after 40 ms. This
is fully con�rmed by Tables 4 and 5 showing the normalized di�erences in norms
l1 and l2 (less than 4% in l2-norm, here, for the asymptotic model). These results
substantiate the validity of our proposed surface-based electrophysiology model to
accurately represent such complex behaviors, and including over long time spans.
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