U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, 1998.
DOI : 10.1137/1.9781611971392

Y. Bourgault, Y. Coudì, and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Analysis: Real World Applications, vol.10, issue.1, pp.458-482, 2009.
DOI : 10.1016/j.nonrwa.2007.10.007

URL : https://hal.archives-ouvertes.fr/hal-00101458

A. Carusi, K. Burrage, and B. Rodríguez, Bridging experiments, models and simulations: an integrative approach to validation in computational cardiac electrophysiology, AJP: Heart and Circulatory Physiology, vol.303, issue.2, pp.144-155, 2012.
DOI : 10.1152/ajpheart.01151.2011

D. Chapelle and K. J. Bathe, The Finite Element Analysis of Shells -Fundamentals, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00839738

D. Chapelle, A. Ferent, and K. J. Bathe, 3D-SHELL ELEMENTS AND THEIR UNDERLYING MATHEMATICAL MODEL, Mathematical Models and Methods in Applied Sciences, vol.14, issue.01, pp.105-142, 2004.
DOI : 10.1142/S0218202504003179

URL : https://hal.archives-ouvertes.fr/hal-00839217

P. G. Ciarlet, Mathematical Elasticity -Volume III: Theory of Shells, 2000.

P. Colli-franzone, L. F. Pavarino, and B. Taccardi, Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models, Mathematical Biosciences, vol.197, issue.1, pp.35-66, 2005.
DOI : 10.1016/j.mbs.2005.04.003

M. C. Delfour, Intrinsic P (2, 1) Thin Shell Model and Naghdi???s Models without A Priori Assumption on the Stress Tensor, Optimal Control of Partial Differential Equations, pp.99-113, 1999.
DOI : 10.1007/978-3-0348-8691-8_9

S. Göktepe and E. Kuhl, Computational modeling of cardiac electrophysiology: A novel finite element approach, International Journal for Numerical Methods in Engineering, vol.27, issue.2, pp.156-178, 2009.
DOI : 10.1002/nme.2571

S. Y. Ho and D. Sanchez-quintana, The importance of atrial structure and fibers, Clinical Anatomy, vol.29, issue.1, pp.52-63, 2009.
DOI : 10.1002/ca.20634

A. Karma, Electrical alternans and spiral wave breakup in cardiac tissue, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.4, issue.3, pp.461-472, 1994.
DOI : 10.1063/1.166024

M. Krueger, V. Schmidt, C. Tobón, F. Weber, C. Lorenz et al., Modeling atrial fiber orientation in patient-specific geometries: a semi-automatic rule-based approach. Functional Imaging and Modeling of the Heart, pp.223-232, 2011.

C. C. Mitchell and D. G. Schaeffer, A two-current model for the dynamics of cardiac membrane, Bulletin of Mathematical Biology, vol.65, issue.5, pp.767-793, 2003.
DOI : 10.1016/S0092-8240(03)00041-7

C. Poignard, About the transmembrane voltage potential of a biological cell in timeharmonic regime, ESAIM: Proceedings, pp.162-179, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00352510

F. B. Sachse, Computational Cardiology: Modeling of Anatomy, Electrophysiology and Mechanics, 2004.
DOI : 10.1007/b96841

M. Sermesant, R. Chabiniok, P. Chinchapatnam, T. Mansi, F. Billet et al., Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: A preliminary clinical validation, Medical Image Analysis, vol.16, issue.1, pp.201-215, 2012.
DOI : 10.1016/j.media.2011.07.003

N. Smith, M. De-vecchi, D. Mccormick, O. Nordsletten, A. F. Camara et al., euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling, Interface Focus, vol.41, issue.10, pp.349-364, 2011.
DOI : 10.1016/j.jbiomech.2008.04.035

URL : https://hal.archives-ouvertes.fr/inria-00616189

J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K. A. Mardal et al., Computing the Electrical Activity in the Heart, of Monographs in Computational Science and Engineering, 2006.