
HAL Id: hal-00723736
https://hal.inria.fr/hal-00723736

Submitted on 18 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A GPU-accelerated Branch-and-Bound Algorithm for
the Flow-Shop Scheduling Problem

Nouredine Melab, Imen Chakroun, Mohand Mezmaz, Daniel Tuyttens

To cite this version:
Nouredine Melab, Imen Chakroun, Mohand Mezmaz, Daniel Tuyttens. A GPU-accelerated Branch-
and-Bound Algorithm for the Flow-Shop Scheduling Problem. 14th IEEE International Conference
on Cluster Computing, Cluster’12, Sep 2012, Beijin, China. 2012. <hal-00723736>

https://hal.inria.fr/hal-00723736
https://hal.archives-ouvertes.fr

A GPU-accelerated Branch-and-Bound Algorithm

for the Flow-Shop Scheduling Problem

N. Melab∗ , I. Chakroun ∗, M. Mezmaz∗∗ and D.Tuyttens∗∗

∗ Université Lille 1, LIFL/UMR CNRS 8022

59655 - Villeneuve d’Ascq cedex - France

Email: {nouredine.melab, imen.chakroun}@lifl.fr

Mathematics and OR Department, University of Mons, Belgium

Email: {mohand.mezmaz,daniel.tuyttens}@umons.ac.be

Abstract—Branch-and-Bound (B&B) algorithms are time-
intensive tree-based exploration methods for solving to optimality
combinatorial optimization problems. In this paper, we inves-
tigate the use of GPU computing as a major complementary
way to speed up those methods. The focus is put on the
bounding mechanism of B&B algorithms, which is the most
time consuming part of their exploration process. We propose
a parallel B&B algorithm based on a GPU-accelerated bounding
model. The proposed approach concentrate on optimizing data
access management to further improve the performance of the
bounding mechanism which uses large and intermediate data
sets that do not completely fit in GPU memory. Extensive
experiments of the contribution have been carried out on well-
known FSP benchmarks using an Nvidia Tesla C2050 GPU card.
We compared the obtained performances to a single and a multi-
threaded CPU-based execution. Accelerations up to ×100 are
achieved for large problem instances.

Index Terms—Massively Parallel Computing, GPU Computing,
Branch-and-Bound Algorithms, Lower Bounding, Flow-Shop
Scheduling.

I. INTRODUCTION

Combinatorial optimization problems1 are NP-hard and

CPU-time intensive in practice. Branch-and-Bound (B&B)

algorithms are efficient methods for solving to optimality those

problems. Their execution consists in exploring a search space

by dynamically building a tree whose root node is the original

problem, the intermediate nodes are sub-problems, and the

leaves are potential solution(s). B&B proceeds in several itera-

tions during which the best solution found so far (upper bound)

is progressively improved. During the exploration, a bounding

mechanism, based on a lower bound function, is used to

eliminate all the sub-problems (i.e. cut their corresponding

sub-trees) that are not likely to lead to optimal solutions. Such

powerful mechanism allows one to reduce significantly the size

of the explored search space and thus its exploration time cost.

However, even if such mechanism is highly efficient it

is not sufficient to deal with large size problem instances.

Over the last decades, parallel computing has emerged as an

1An optimization problem consists in minimizing or maximizing a cost
function. Without loss of generality, in this paper the minimization case is
considered.

attractive way to deal with larger instances. The design and

implementation of parallel B&B is strongly influenced by the

computing platform. Many contributions have been proposed

for the design and implementation of parallel B&B methods

using Massively Parallel Processors (MPP) [8], Networks or

Clusters of Workstations (NOWs or COWs) [7] and Shared

Memory or SMP machines [9]. In this paper, we investigate

the design of B&B algorithms on Graphics Processing Units

(GPU). In combinatorial optimization, GPU computing is suc-

cessfuly used for meta-heuristics (near-optimal methods) [14]

but not yet for B&B exact methods.

Most of existing parallel B&B algorithms are based on the

parallel exploration of the search tree. Such parallel model is

not suited to GPUs because the explored search tree is highly

irregular. The best parallel model for B&B on GPU is the

parallel evaluation of the lower bound function (thread kernel)

on pools of sub-problems (parallel bounding). Such model

must be rethought at design as well as at implementation level

taking into account at the same time the characteristics of

GPU accelerators and those of the lower bound computation

function. On the one hand, a GPU is a many-core co-processor

device that provides a hierarchy of memories having different

sizes and access latencies making data placement and sharing

challenging. On the other hand, the lower bound computation

function is generally problem-dependent. In this paper, the

focus is on the Flow-Shop scheduling permutation Problem

(FSP) (see Section II-B). The lower bound function used in

this work for FSP is that proposed in [5] for two machines

and generalized in [3] to more than two machines. The imple-

mentation of such function makes use of six data structures of

different sizes and access frequencies making data placement

on GPU challenging.

Preliminary experiments we have carried out on some

Taillard’s FSP instances [6] have shown that the time spent

by B&B evaluating the lower bounds of the examined sub-

problems is on average around 98.5% of its total execution

time. Such result illustrates the potential benefit of paralleliz-

ing the bounding operation. The major contribution of this

paper consists in revisiting B&B to allow efficient solving

of large FSP instances on GPU. Having in mind the char-

acteristics of both the lower bound function and the GPU

device mentioned above, the challenge is to define a new

approach for optimal mapping of the data structures of the

lower bound function on the hierarchy of memories provided

in the GPU device. A careful analysis is required of both

the data structures (size and access frequency) and the GPU

memories (size and access latency).

The remainder of the paper is organized as follows: Sec-

tion II presents the B&B algorithm applied to the permutation

FSP, the associated lower bound used in this paper, and its

implementation and complexity analysis. In Section III, we

describe our GPU-based proposed approach for B&B applied

to FSP. Details are given on the parallel approach and memory

access optimization. In Section IV, we report experimen-

tal results demonstrating the efficiency of our approach. In

Section V we compare the performance of the proposed

approach to a multi-threaded CPU version of the B&B. Finally,

some conclusions and perspectives of this work are drawn in

Section VI.

II. B&B AND LOWER BOUND FOR THE PERMUTATION FSP

A. Parallel B&B algorithms

Branch-and-Bound (B&B) algorithms are based on an im-

plicit enumeration of the solutions composing the search space

associated to the problem to be tackled. The search space

is explored by dynamically building a tree whose root node

designates the original problem. The construction of the B&B

tree and its exploration are performed using four operators:

branching, bounding, selection and elimination. The algorithm

proceeds in several iterations during which the best solution

found so far (upper bound) is progressively improved. The

generated and not yet examined sub-problems are kept into a

list initialized to the original problem. At each iteration, a sub-

problem is selected from this list, according to some strategy

(depth-first, best-first, . . .), using the selection operator. The

branching operator performs its decomposition into other sub-

problems. The bounding operator calculates a lower bound

of each generated sub-problem. Each sub-problem having

a lower bound greater than the upper bound is eliminated

using the elimination operator, this means that it will not be

decomposed.

Existing parallel B&B algorithms are based on three parallel

models proposed in [1]: parallel application of the operators

on the generated sub-problems (Type 1), parallel building and

exploration of a B&B tree (Type 2), and parallel (cooperative

or independent) building and exploration of several B&B trees

(Type 3). We have later revisited these parallel approaches

for large-scale computational grids [13] using Type 2 parallel

model. Grid computing provides an impressive computing

power to solve challenging instances in combinatorial opti-

mization [11]. However, computational grids providing a huge

amount of resources are not easily available and accessible for

any user. Recently, Graphics Processing Units (GPU acceler-

ators) have emerged as a new popular support for massively

parallel computing. Such resources supply a great computing

power, are energy-efficient and unlike grids they are highly

available every where: laptops, desktops, clusters, etc. In the

No job scheduled
Initial Solution

Lower bounds

Initial seed UB =

J1 J2 J3

J3 J2J1J2

16 16

J2 J1J3

J2J1

J1 J2 J3 J3 J2 J1

J1J3J3J1 J3J2

17 < 20
21 > 2023 > 20

LB > UB

New SolutionsNew UB = 20
New UB = 17

20 <

20 < 18 > 17
16 < 17

8

8

8

New UB = 16Optimal Solution

Branches pruned

Fig. 1. The search tree generated and explored by a B&B algorithm for
solving an FSP with 3 jobs. Nodes with a lower bound (LB) greater (resp.
lower or equal) than the upper bound (UB) are pruned (resp. decomposed or
branched).

following, we revisit the Type 1 parallel model on GPU for

solving Flow-Shop problems.

B. B&B for the permutation FSP

The general FSP [3] consists in scheduling a pool of n
jobs on a set of m machines such that each of the jobs J1,

J2, . . . , Jn has to be processed on the machines M1, M2,

. . . , Mm in that order. Job Ji (i = 1, 2, . . . , n) consists

therefore of a sequence of m operations Oi1, Oi2, . . .Oim;

Oik being the processing of Ji on Mk during an uninterrupted

processing time pik . Mk (k = 1, 2, . . . , m) can handle at

most one job at a time. The objective is to find a processing

order on each Mk such that the time (makespan) required to

complete all jobs is minimized. If the problem is restricted

to the minimization over all permutation schedules, meaning

with the same processing order on each machine, the resulting

problem is called the permutation Flow-Shop problem, which

is the focus of this work. In the remainder of this paper, FSP

designates a permutation FSP.

For m = 2, an optimal schedule can be found in O(n.logn)
steps using Johnson’s algorithm [5]. For m ≥ 3, the problem

has been shown to be NP-hard [4]. Due to such complexity the

enumerative solution approach provided in B&B algorithms is

well-suited to solve the problem to optimality. As illustrated

(for n = 3) in Figure 1, the B&B enumeration scheme is

based on a search tree whose root node contains the original

problem (empty schedule).

The decomposition of this problem generates n sons, each of

them designates a sub-problem. The son number i represents

the sub-problem in which job Ji is scheduled first on all

machines. The recursive application of the decomposition

operator on the generated sub-problems allows to develop the

search tree. The number of potential schedules (permutations)

is n!, which is highly exorbitant for large problem instances

such as 200× 20 (200! schedules!) Taillard’s ones [6]. There

are two major powerful ways to speed up the exploration of

large search trees. The first way consists in using an efficient

bounding operator. Applied to a sub-problem, such operator

associates a value to its corresponding tree node using a lower

bound function. As illustrated in Figure 1, the sub-problem is

not decomposed (and its tree node is pruned) if its lower bound

value is greater than the cost of the best schedule found so far

(called the upper bound) during the exploration of the search

tree. The second way is to use massively parallel computing

based on the three parallelism types presented in Section II-A.

We recall that the focus of this paper is only on Type 1 i.e.

the parallel evaluation of the lower bound on a pool of sub-

problems.

C. Lower Bound for FSP

As quoted above, the objective (cost function) of FSP

considered in this paper is the makespan Cmax, which rep-

resents the completion time of the last scheduled job on

the last machine. Given a sub-problem (partial schedule)

π = π(1), π(2), . . . , π(l) indicating that Jπ(i) occupies the ith

position on each machine for i = 1, . . . , l. The sub-problem

consists to find the optimal schedule of the n−l remaining un-

scheduled jobs. Before solving such sub-problem, it is checked

either or not the optimal solution of the original problem could

be the optimal solution of this sub-problem. In other words, it

is checked either the optimal solution of the original problem

is probably in the sub-tree search space associated to that sub-

problem or not. This is the role of the bounding operator

which uses a lower bound function to prune nodes and the

sub-trees they are root of. Indeed, if the lower bound value of

the sub-problem is greater than the upper bound found so far

the sub-problem is not decomposed/branched because it is sure

that the optimal solution is not located in its sub-tree search

space. This allows to significantly reduce the exploration time

of the B&B tree. Therefore, the efficiency of a B&B algorithm

depends strongly on the quality of its lower bound function.

In this paper, we use the lower bound proposed by Lenstra et

al. [3] for FSP, based on the Johnson’s algorithm [5].

D. Complexity analysis and implementation

For an efficient implementation of the lower bound LB

algorithm, six data structures are required: the matrix PTM
of the processing times of the jobs, the matrix of lags

LM , the Johnson’s matrix JM , the matrix RM of the

earliest starting times of jobs, the matrix QM of their lowest

latency times and the matrix MM containing the couples

of machines. In the LB expression, the computation of the

term P ∗

Ja
(,Mk,Ml) requires the calculation of the lag of

each remaining job to be scheduled on the couple (Mk,Ml)
of machines using its processing times on these machines

(Johnson’s rule with lags). Such computation is repeated

for each couple (Mk,Ml) of machines with 1 ≤ k, l ≤ m
and k < l. To avoid the repetitive computation of the lags,

they are computed once at the beginning of the algorithm

and stored in the matrix LM . The dimension of LM is

n × m×(m−1)
2 , where n and m are respectively the number

of jobs to be scheduled and m the number of machines. LM
is accessed n′ × m×(m−1)

2 times, n′ being the number of

remaining jobs to be scheduled in the sub-problem for which

Matrix Size Number of accesses

PTM n×m n′
×m× (m − 1)

LM n×
m×(m−1)

2
n′

×
m×(m−1)

2

JM n×
m×(m−1)

2
n×

m×(m−1)
2

RM m m× (m− 1)

QM m
m×(m−1)

2
MM m× (m− 1) m× (m− 1)

TABLE I
THE DIFFERENT DATA STRUCTURES OF THE LB ALGORITHM AND THEIR

ASSOCIATED COMPLEXITIES IN MEMORY SIZE AND NUMBERS OF

ACCESSES. THE PARAMETERS n, m AND n′ DESIGNATE RESP. THE TOTAL

NUMBER OF JOBS, THE TOTAL NUMBER OF MACHINES AND THE NUMBER

OF REMAINING JOBS TO BE SCHEDULED FOR THE SUB-PROBLEMS THE

LOWER BOUND IS BEING COMPUTED.

(01) int computeLB(){

(02) LB=maxInteger;

(03) for (index=0;index<
m×(m−1)

2
;index++){

(04) M1=MM[index][0];

(05) M2=MM[index][1];

(06) timeOnM1= min
0≤j≤n

(RM[M1][j]);

(07) timeOnM2= min
0≤j≤n

(RM[M2][j]);2

(08) for (i=0;i<n;i++){

(09) job=JM[i][index];

(10) if (job not yet scheduled){

(11) timeOnM1=timeOnM1+PTM[job][M1];

(12) if (timeOnM2>timeOnM1+LM[job][index])(∗)

(13) timeOnM2+=PTM[job][M2];

(14) else

(15) timeOnM2=timeOnM1+LM[job][index]+

. PTM[job][M2];

(16) }

(17) }

(18) timeOnM2+= min
0≤j≤n

(QM[M2][j]);

(19) LB=max(timeOnM2,LB);

(20) }

(21) return LB;

(22)}

Fig. 2. Pseudo-code implementing the LB function

the lower bound is being calculated. The processing times

of all the jobs on all the machines are stored in the matrix

PTM . This matrix has a dimension of n×m and is accessed

n′ ×m× (m− 1) times.

Table I, is highly needed to understand the proposed data

placement approach. The columns of Table I represent re-

spectively the name of the data structure, its size and the

number of times it is accessed. Figure 2 shows the pseudo-

code implementing the LB lower bound function illustrating

the access to the six data structures.

III. GPU-BASED B&B FOR FSP - A NEW APPROACH

As said previously, the time complexity of the Johnson

algorithm for two machines is O(n.logn). Therefore, the

time complexity of the lower bound LB for m machines

is O(m2.n.logn). The computation of the lower bound is

consequently time intensive especially for problem instances

for which m is high. In order to evaluate experimentally

its CPU time cost, we have implemented this lower bound

and experimented it using the most time-consuming Taillard’s

instances [6] i.e. having m = 20. The results show that the

time spent by the B&B evaluating the lower bounds of the

examined sub-problems is on average around 98.5% of its total

execution time. Such result demonstrates that the bounding

must be parallelized i.e. the LB lower bound function must be

applied in parallel to each sub-problem composing the pool of

sub-problems currently examined. In the following, we present

a new GPU-based approach for the parallel evaluation of the

lower bound in B&B algorithms. We first present the parallel

GPU-based approach. Then, we show how our approach maps

the different data structures on the memory hierarchy of the

GPU device taking into account the characteristics of the data

structures presented in Table I and those of the different GPU

memories (size and access latency).

A. The GPU-based parallel evaluation of LB

The GPU-accelerated approach is based on the GPGPU

(CUDA or OpenCL) parallel paradigm according to which

the programmer writes a serial program that calls parallel

kernels (simple functions or full programs). A kernel executes

in parallel across a set of parallel threads. The programmer

organizes these threads into a hierarchy of grids of thread

blocks. A thread block is a set of concurrent threads that

can cooperate through barrier synchronization and shared

access to a memory space private to the block. A grid is a

set of thread blocks that may be executed independently in

parallel. When invoking a kernel, the programmer specifies

the execution configuration. Such configuration includes the

number of threads per block and the number of blocks making

up the grid.

In our proposed GPU-based approach, the generation of

the sub-problems (elimination, selection and branching oper-

ations) to be solved is performed on CPU and the evaluation

of their lower bounds (bounding operation) is executed on

the GPU device. As illustrated in Figure 3, the pool of sub-

problems generated on CPU (and selected according to the

well-know best-first strategy) is off-loaded to the GPU device

to be evaluated by a pool of threads partitioned into blocks.

Each thread applies the lower bound function (kernel) to one

sub-problem. Once the evaluation is completed, the lower

bound values of the different sub-problems are returned back

to the CPU to be used by the elimination operator to decide

either to be pruned or to be decomposed. The process is

iterated until the exploration is completed and the optimal

solution is found.

B. Data access optimization

During their execution, threads may access data from multi-

ple memory spaces having different sizes and access latencies.

At the thread-level, each thread has its own allocated registers

1 2 4 5

3 6

1 2 4 5

3 6

pool to evaluate using

Exploration

GPU

1 6

LB LB

Node . . . Node

61

Elimination

root node

inner nodes

pending (unnexplored) nodes

CPU

predefined selection strategy

T
0

T
m

T
1

H
ie

ra
rc

hi
ca

l M
em

or
y

L
B

 C
om

pu
tin

g
Fu

nc
tio

n

Fig. 3. GPU evaluation of sub-problems: generation on CPU and evaluation
on GPU.

and a private local memory. CUDA [17] uses this local mem-

ory for thread-private variables that do not fit in the threads

registers, as well as for stack frames and register spilling.

At the thread block-level, each thread block has a shared

memory visible to all its associated threads. At the grid-level,

all threads have access to the same global memory. Texture and

constant cached memories are two other memories accessible

by all threads. The data access optimization challenge is to

find the best mapping of the data structures of the application

at hand (different sizes and access frequencies) and the GPU

hierarchy of memories (different sizes and access latencies).

For instance, the global memory is large in size but has a high

access latency. On the contrary, shared memory is smaller in

size but has a lower access latency.

For B&B applied to FSP, threads of the same block perform

concurrent accesses to the six data structures of the problem

when they execute the LB lower bound function. To optimize

the performance of such application, the best mapping of the

data structures is to copy them on the shared memory of the

GPU device. However, for large problem instances all of the

data structures do not fit into the shared memory which size

is limited and depends on the GPU hardware configuration.

The challenge is therefore to decide which data structure must

be put in the shared memory to get the best performance.

The answer is given in the next section according to the

complexity analysis presented in Table I and the underlying

GPU configuration of our experiments.

IV. EXPERIMENTS

To evaluate the performance of our GPU-based B&B al-

gorithm and parallel bounding approach, we have considered

the largest Taillard’s FSP benchmarks proposed in [6], except

those with 500 jobs because they do not fit in the memory of

the CPU. The different instances are designated by n × m,

where n and m represent respectively the number of jobs

(between 20 and 200) to be scheduled and the number of

machines (20) target of the scheduling. The GPU-based B&B

has been implemented using C-CUDA 4.0, and compiled using

nvcc. The experiments have been carried out on an Intel

Xeon E5520 paired with a GPU device. E5520 is 64-bit and

composed of two quad-core chips, and has a clock speed of

2.27GHz. The GPU device is an Nvidia Tesla C2050 with 448
CUDA cores (14 multiprocessors with 32 cores each), a clock

speed of 1.15GHz, a 2.8GB global memory, a configurable

shared memory (16 KB or 48 KB) and a warp size of 32.

In the following, an experimental study is presented with

the objective to evaluate the performance impact of the GPU-

based parallel evaluation of the lower bound, and the data

access optimization. For each, we present the objectives of the

experiments and report the obtained results. Two parameters

are considered: the problem instances (n × m) (as rows in

the tables and x-axis in the graphics) and the size of the

pool of sub-problems to be evaluated (as columns in the

tables and x-axis in the graphics). The first parameter gives

information on the granularity of the thread computations.

As the complexity of the computation of the lower bound is

O(m2.n.logn), for large problem instances (i.e. large values

of n and m) the grain size of the kernel executed by each

thread is much higher. Moreover, the first parameter gives

information on the size of the data structures to be mapped

on the GPU memories. This is highly important for the

study of the data access optimization approach. The second

parameter is designated in the different experimental results

by pool size (block size × number of threads/block).
This parameter is useful to get information on the time cost

of the data transfer between CPU and GPU and on the total

number of threads to be triggered on GPU.

For each pair of values associated to the two parameters,

each table/graphics reports the corresponding parallel effi-

ciency. Since the used instances are very hard to solve (optimal

solutions for many of these instances are still not known),

we used the approach defined in [11] to run experiments.

Employing this method allows to obtain a random list L of

subproblems such as the resolution of L lasts Tcpu minutes

with a sequential B&B. To ensure that the subproblems

explored by the GPU and CPU B&B versions are exactly the

same, we initialize the pool of our GPU-based B&B with the

same list L of subproblems used in the sequential version. If

we suppose the resolution of the GPU-based B&B last Tgpu
minutes, the parallel efficiency would be the ratio Tcpu/Tgpu:

the execution time of the serial B&B on a single CPU core

(without GPU) over the execution time of our GPU-based

B&B on a CPU core coupled with a GPU device.

A. Performance impact of GPU-based parallelism

First, the objective of the experimental study presented in

this section is to demonstrate that our GPU-based B&B allows

one to significantly accelerate the resolution process whatever

is the FSP instance. However, the best achieved acceleration

depends strongly on the problem instance being solved and

the size of the pool of sub-problems considered at execution.

The second objective is therefore to exhibit the behavior of the

GPU acceleration according to the tackled problem instance

and the considered pool size. More exactly, the goal is to

find for each problem instance the best pool size required to

maximize the benefit taken from the use of the GPU device.

The results reported in Table II are obtained without any

data access optimization. The six matrices are generated on

CPU and then copied to the GPU global memory. The size

of the thread blocks is experimentally fixed to 256 threads.

Average accelerations of ×44, 52 to ×60, 64 and picked at

×77, 46 are achieved. In addition, the improvement of the

parallel efficiency from a pool size of 4096 (16 × 256) to

8192 (32× 256) is significant. The reason is that the number

of blocks (16) for the first pool size is not sufficient to get

a better acceleration. Indeed, it is known that the number of

blocks must be fixed at least to the double (14× 2 = 28 for

the C2050 GPU card) of the number of multi-processors of

the target GPU device. Furthermore, for 50× 20 and 20× 20
problem instances the best parallel efficiency is achieved for

a pool size of 8192. For larger instances i.e. 100 × 20 and

200×20, it is obtained with a pool size of 262144. These two

pool size values correspond exactly to the two sizes of the

pool for which the best ratio between lower bound evaluation

time on CPU of the pool and its total communication time

from CPU to GPU and from GPU to CPU.

B. Data access optimization

The objective is here to find the best mapping of the six

data structures of the lower bound LB kernel on the memories

of the GPU device. As quoted in Section III-B, such mapping

depends on the sizes and access latencies/frequencies of these

data structures and the GPU memories. The focus is put on

the shared memory which is a key enabler for many high-

performance CUDA applications. We also take care of ade-

quately using the global memory by judiciously configuring

the L1 cache that greatly enables improving performance over

direct access to global memory. Indeed, the GPU device we

are using in our experiments is a C2050 Tesla (see IV) which

a device based on the NVIDIA Fermi architecture. In the

Fermi architecture, each multiprocessor of the GPU device is

provided with a 64 KB local storage that can be configurable

into shared memory and L1 cache. For this reason and in

order to achieve further performances, we divided the 64 KB

memory according to the scenario we are experimenting. For

the scenario were the data structures are put on the shared

memory the 64 KB of available storage are split on 48 KB

for shared memory and 16 KB for L1 cache. For the scenario

where the data sets are put on global memory we used 16 KB

for shared memory and 48 KB for L1 cache.

As far as the data structures of the lower bound function

are concerned, their complexities in terms of size and access

frequency are reported in Table I (see Section II-D). According

to Table I, RM , QM and MM have a small size, so their

storage in the shared memory allows a very poor performance

improvement. Therefore, whatever is the memory to which

they are off-loaded, the performance impact is not significant.

However, for large FSP instances (with n = 200), the total

Problem instance 4096 8192 16384 32768 65536 131072 262144
16×256 32×256 64×256 128×256 256×256 512×256 1024×256

200×20 46,63 60,88 63,80 67,51 73,47 75,94 77,46

100×20 45,35 58,49 60,15 62,75 66,49 66,64 67,01

50×20 44,39 58,30 57,72 57,68 57,37 57,01 56,42

20×20 41,71 50,28 49,19 45,90 42,03 41,80 41,65

Average Speedup 44,52 56,99 57,72 58,46 59,84 60,35 60,64

TABLE II
PARALLEL EFFICIENCY FOR DIFFERENT PROBLEM INSTANCES AND POOL SIZES. ALL THE MATRICES JM , PTM , LM , RM , QM AND MM ARE

LOCATED IN THE GPU GLOBAL MEMORY.

amount of memory required to store the other data structures

i.e. JM and LM (38KB each) and PTM (4KB) is 80KB,

which is greater than the available shared memory space

(48KB). Therefore, only two of them can be put in the shared

memory. LM has a double memory size than JM , and its

access frequency is much lower, so it is better to map JM
on the shared memory. Furthermore, PTM has the same

access frequency than JM but requires less memory space.

Consequently, the focus is put on the study of the performance

impact of the placement of JM and PTM on the shared

memory. PTM and JM are stored in shared memory and all

others are placed on global memory.

Table III reports the behavior of the parallel efficiency aver-

aged on the different problem instances (sizes) as a function of

the pool size. The table shows that the parallel efficiency grows

on average with the growing of the pool size in the same way

as in Table II. For instance, for the largest problem instance

and pool size, the parallel efficiency grows up to from ×77, 46
(PTM and JM in global memory) to ×100, 48 (PTM and

JM in shared memory) (23%).

Figure 4 depicts the behavior of the parallel efficiency for

the different problem instances (sizes). The pool size is fixed

to 262144 (1024× 256). According to the graphics, first, the

efficiency is improved for all instances and the improvement

is more significant for large problem instances. Second, the

behavior of the efficiency improvement is not the same if

shared memory is used or not. Indeed, according to the CUDA

GPU occupancy calculator the size of the shared memory

occupied by the data structures limits the number of active

thread warps to 32 for 20×20 and 50×20 problem instances,

and to 16 for 100×20 and 200×20 problem instances. When

only global memory is used, the improvement is linear and the

slop remains the same as the number of active thread warps

remains the same (32) whatever is the problem instance. The

only limiting factor of the active thread warps is the number

of registers which is 26 in our case. In this case, the size of

the occupied shared memory is lower and is not a limiting

factor for the occupancy or number of active threads. On the

other hand, when shared memory is used the slope of the

efficiency improvement is much higher from 20×20 to 50×20
(small data structures) than from 100× 20 to 200× 20 (large

data structures). The reason is that according to CUDA GPU

occupancy calculator in addition to the number of registers the

size of the occupied shared memory is also a limiting factor

 0

 20

 40

 60

 80

 100

20*20 50*20 100*20 200*20

S
pe

ed
 u

p

Problem instance

All Matrices on Global Memory
PTM and JM on Shared Memory

Fig. 4. Average parallel efficiency for different problem instances: PTM

and JM are put together in the shared memory, the pool size is fixed to
1024 × 256.

of thread occupancy and thus parallel efficiency.

V. PERFORMANCES COMPARISON WITH A

MULTI-THREADED PARALLEL B&B ALGORITHMS

With the advent of multi-core processors and their promised

enhancement in software development performances, the use

of multi-core processors for designing parallel algorithms

become highly widespread. Unlike distributed computing sys-

tems, one of the advantages of multi-core systems is the

possibility to parallelize the algorithm using threads instead of

processes. Indded, while processes in the same machine have

their own virtual memory, threads of a process share the same

virtual memory which significantly impact the performances.

Several implementation of a multi-threaded B&B have been

proposed in previous research works [10], [9], [15], [16].

These multi-threaded B&B algorithms can be classified into

two categories: low and high-level. In a low-level multi-

threaded B&B, a low-level thread model such as POSIX

Threads is used [12], [9] while in a high-level multi-threaded

B&B a high-level thread model such as OpenMP [2] is used.

In order to further evaluate the performances of the proposed

GPU-based B&B algorithm, we compare it to a low-level

multi-threaded B&B [9] designed on top of a multi-core

system, using the POSIX Threads library.

Problem instance 4096 8192 16384 32768 65536 131072 262144
16×256 32×256 64×256 128×256 256×256 512×256 1024×256

200×20 66,13 87,34 88,861 95,23 98,83 99,89 100,48

100×20 65,85 86,33 87,60 89,18 91,41 92,02 92,39

50×20 64,91 81,50 78,02 74,16 73,83 73,25 72,71

20×20 53,64 61,47 59,55 51,39 47,40 46,53 46,37

Average Speedup 62,63 79,16 78,51 77,49 77,87 77,92 77,99

TABLE III
PARALLEL EFFICIENCY FOR DIFFERENT FSP INSTANCES AND POOL SIZES OBTAINED WITH DATA ACCESS OPTIMIZATION.PTM AND JM ARE PLACED

TOGETHER IN SHARED MEMORY AND ALL OTHERS ARE PLACED IN GLOBAL MEMORY.

In order to perform a fair comparison with the obtained

results of our GPU-based approach, the used multi core system

must have the same computational power in term of theoretical

peak of floating-point operations per second. The floating-

point operations per second (FLOPS) is a common measure

of a computer’s performance, especially in fields of scientific

calculations. Indeed, FLOPS is a good indicator to measure

performance on digital signal processing, scientific simula-

tions, etc. It is particularly used in supercomputer ratings, like

TOP500 [22].

As quoted in IV, the experiments have been carried out

on an Nvidia Tesla C2050. According to its constructor

NVIDIA [18], the theoretical double precision floating-point

performance peak of this GPU device is about 515 GFLOPS.

For the multi-threaded version of the B&B we have carried

out experimentation on an Intel Core i7-970 Processor which

is 64-bit and composed of six physical cores and 12 threads

[21] having each a theoretical double precision floating-point

performance peak of 76.8 GFLOPS [20].

Table IV reports the speedup of the parallel multi-threaded

B&B averaged on the different problem instances (sizes). The

columns correspond to the number of parallel running B&B

process and the corresponding theoretical peak of GFLOPS.

The rows correspond to the problem instances defined by

(Number of jobs × Number of machines). The same exper-

imental protocol as the for GPU computation is used (see

section IV). The reported speedups are calculated relatively

to a serial B&B on a single CPU core. Results shows that the

parallel efficiency grows on average with the growing of the

number of computing core used. However, the improvement

is not linear and the slop decrease as long as the number of

the used computing core raises. This behavior might be due

to the operating system which handles additional page faults

and context switches when the number of threads increases.

Figure 5 shows the comparison between the obtained

speedups with our GPU-based B&B and the multithreaded-

based B&B. The speedups are calculated relatively to the same

sequentiel version of the B&B algorithm. For a same compu-

tational power, our approach for designing B&B algorithms

on top of GPU accelerators is much more efficient than the

multi-threaded B&B whatever the instance is. Indeed, for a

computational power around 500 GFLOPS, the acceleration

calculated when using the GPU-based B&B for the instances

20 jobs over 20 machines is ×61,47. For the same category

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

20*20 50*20 100*20 200*20

S
pe

ed
 U

p

Problem instance

GPU-based Branch and Bound
Multithreaded-based Branch and Bound

Fig. 5. Comparison between the average parallel efficiency for different
problem instances obtained with a GPU and a multithreaded-based B&B for
a same computational power (500 GFLOPs).

of instances (20 jobs over 20 machines) and a same com-

putational power of 500 GFLOPS which corresponds to 7

CPU computing cores for the Intel Core i7-970 Processor,

the speedup over a sequential version of the multi-threaded

based B&B is ×9,22. Results show also that parallel efficiency

for the GPU-based approach increases with the size of the

problem being tackled while it is almost the same for the multi-

threaded based algorithm. This is due to the complexity of

the computation of the lower bound which is O(m2.n.logn).
When the size of the problem instance (i.e. large values of

n and m) increases, the grain size of the kernel executed

by each thread becomes higher which significantly increases

the GPU throughput. For instance, for the problems of the

category 200 jobs over 20 machines, the reported speedup of

our approach is about ×100,48 while the speedup calculated

for the multithreaded version is ×8,76 which corresponds

to an improvement of ×11,47. Over all the experimented

instance categories, the GPU-based B&B run faster than the

multithreaded-based B&B.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have revisited the parallel B&B algo-

rithm for solving permutation-based combinatorial optimiza-

tion problems such as FSP on GPU accelerators. The contri-

butions consist in proposing: (1) a GPU-based parallel design

Number of B&B Threads 3 5 7 9 11

Theoretical Peak of GFLOPS 230.4 384 537.6 691.2 844.8

200×20 4,03 6,98 8,76 9,04 9,32

100×20 4,27 7,08 8,82 9,39 9,85

50×20 4,38 7,27 9,06 9,64 10,17

20×20 4,43 7,35 9,22 10,04 10,85

TABLE IV
PARALLEL EFFICIENCY FOR DIFFERENT PROBLEM INSTANCES USING THE MULTI-THREADED BASED B&B.

and implementation of the parallel bounding model ; (2) a data

access optimization approach to take into account the memory

constraints of the GPU device. The Flow-Shop scheduling

problem has been considered as a case study together with the

Johnson’s lower bound [5], extended in [3] to more than two

machines. The proposed approaches have been experimented

using a Tesla C2050 GPU card on 4 different classes of FSP

instances.

In our proposed GPU-based approach, the decomposition

and pruning of the sub-problems is performed on CPU and

the evaluation of their lower bounds (bounding operation) is

executed on GPU. Pools of sub-problems are off-loaded from

CPU to GPU to be evaluated by blocks of threads. After

evaluation, the lower bounds are returned back to the CPU.

The experimental results show that accelerations up to ×77
can be obtained especially for large problem instances and

large pools of sub-problems. As shown in the reported results

the pool size that enables to achieve the best acceleration of

the bounding mechanism depends strongly on the size of the

problem instance being solved. Therefore, this parameter has

to be determined at runtime by testing different pool sizes.

The proposed data access optimization is based on a pre-

liminary analysis of the lower bound function. Such analysis

allowed us to identify six data structures for which we have

proposed a complexity analysis in terms of memory size

and access frequency. Due to the limited size of the shared

memory the matrices do not fit in all together. According to the

complexity study, the recommendation is to put in the shared

memory the Johnson’s and the processing time matrices (JM
and PTM) if they fit in together. The other data structures

are mapped to the global memory combined with the L1 cache

(see IV-B). Such recommendation has been confirmed through

extensive experiments using the Taillard’s benchmarks of the

Flow-Shop problem and a recent C2050 Tesla GPU card. The

optimizations obtained with the proposed approaches allowed

us to achieve accelerations up to ×100 compared to a single

CPU-based B&B and up to ×11 compared to a multi-threaded

CPU-based execution.

We are currently investigating the combination of the GPU-

based bounding model with the multi-core parallel search tree

exploration for the design and implementation of a GPU-

accelerated multi-core B&B algorithm. In the near future,

we plan to extend this work to a cluster of GPU-accelerated

multi-core processors. From application point of view, the

objective is to solve to optimality challenging difficult and

unsolved Flow-Shop instances as we did it for one 50 × 20
problem instance using grid computing [11]. Finally, we plan

to investigate other lower bound functions to deal with other

combinatorial optimization problems.

REFERENCES

[1] B. Gendron and T.G. Crainic. Parallel Branch-and-Bound Algorithms: Survey and

Synthesis. Operations Research, 42(06):1042–1066, 1994.

[2] B. Chapman, G. Jost, and R. Van Der Pas. Using OpenMP: portable shared memory

parallel programming. Volume 10. The MIT Press, 2007.

[3] B. J. Lageweg, J. K. Lenstra and A. H. G. Rinnooy Kan. A general bounding

scheme for the permutation flow-shop problem. Operations Research, 26(1):53–67,

1978.

[4] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Commpleteness. W. H. Freeman & Co., New York, NY, 1979.

[5] S.M. Johnson. Optimal two and three-stage production schedules with setup times

included. Naval Research Logistis Quarterly, 1:61-68. 1954.

[6] E. Taillard. Taillard’s FSP benchmarks. http://mistic.heig-

vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html.

[7] S. Tschoke, R. Lubling and B. Monien. Solving the traveling salesman problem

with a distributed branch-and-bound algorithm on a 1024 processor network. In

Proc. of 9th Intl. Parallel Processing Symposium (IPPS), pp. 182 - 189, 1995.

[8] R. Allen, L. Cinque, S. Tanimoto, L. Shapiro and D. Yasuda. A parallel algorithm

for graph matching and its MasPar implementation. IEEE Transactions on Parallel

and Distributed Systems, Vol. 8, No. 5, 1997.

[9] L.G. Casadoa, J.A. Martneza, I. Garcaa and E.M.T. Hendrixb. Branch-and-Bound

interval global optimization on shared memory multiprocessors. Optimization

Methods and Software, Vol. 23, No.5, pp. 689-701, 2008.

[10] L. Barreto and M. Bauer. Parallel Branch and Bound Algorithm-A comparison

between serial, OpenMP and MPI implementations. Journal of Physics: Conference

Series, Vol. 256, No.5, pp. 012018, 2010.

[11] M. Mezmaz, N. Melab and E-G. Talbi. A Grid-enabled Branch and Bound

Algorithm for Solving Challenging Combinatorial Optimization Problems. In Proc.

of 21th IEEE Intl. Parallel and Distributed Processing Symp. (IPDPS), Long Beach,

California, March 26th-30th, 2007.

[12] B. Nichols, D. Buttlar, and J.P. Farrell. Pthreads programming. O’Reilly Media,

1996.

[13] M. Djamai, B. Derbel and N. Melab. Distributed B&B: A Pure Peer-to-Peer

Approach. In Proc. of IEEE IPDPS’2011, Woks. on Large-Scale Parallel Processing

(LSPP), May 16-20, Anchorage (Alaska), 2011.

[14] T-V. Luong, N. Melab and E-G. Talbi. GPU Computing for Parallel

Local Search Metaheuristic Algorithms. IEEE Transactions on Computers,

http://doi.ieeecomputersociety.org/10.1109/TC.2011.206, 2012.

[15] R.Paulavičius and J. Žilinskas. Parallel branch and bound algorithm with combina-

tion of Lipschitz bounds over multidimensional simplices for multicore computers.

Parallel Scientific Computing and Optimization, Springer, pages 93–102,2009.

[16] JF. Sanjuan-Estrada, LG. Casado and I. Garcı́a. Adaptive parallel interval branch

and bound algorithms based on their performance for multicore architectures, The

Journal of Supercomputing, Springer, pages 1–9,2011.

[17] NVIDIA CUDA C Programming Best Practices Guide.

http://developer.download.nvidia.com/compute/cuda/2 3/toolkit/docs/

NVIDIA CUDA BestPracticesGuide 2.3.pdf.

[18] http://www.nvidia.com/docs/IO/43395/NV DS Tesla C2050 C2070 jul10 lores.pdf

[19] http://en.wikipedia.org/wiki/Comparison of Nvidia graphics processing units

[20] http://download.intel.com/support/processors/corei7/sb/core i7-900 d.pdf

[21] http://ark.intel.com/products/47933/Intel-Core-i7-970-Processor-%2812M-Cache-

3 20-GHz-4 80-GTs-Intel-QPI%29

[22] http://www.top500.org/

