Singular gradient flow of the distance function and homotopy equivalence

Abstract : It is a generally shared opinion that significant information about the topology of a bounded domain $\Omega $ of a riemannian manifold $M$ is encoded into the properties of the distance, $d_{\partial\Omega}$, %, $d:\Omega\rightarrow [0,\infty [$, from the boundary of $\Omega$. To confirm such an idea we propose an approach based on the invariance of the singular set of the distance function with respect to the generalized gradient flow of of $d_{\partial\Omega}$. As an application, we deduce that such a singular set has the same homotopy type as $\Omega$.
Liste complète des métadonnées

https://hal.inria.fr/hal-00724729
Contributeur : Estelle Bouzat <>
Soumis le : mercredi 22 août 2012 - 14:33:56
Dernière modification le : jeudi 14 juin 2018 - 10:54:02

Lien texte intégral

Identifiants

Collections

Citation

Paolo Albano, Piermarco Cannarsa, Khai Tien Nguyen, Carlo Sinestrari. Singular gradient flow of the distance function and homotopy equivalence. Mathematische Annalen, Springer Verlag, 2013, 356 (1), pp.23-43. 〈10.1007/s00208-012-0835-8〉. 〈hal-00724729〉

Partager

Métriques

Consultations de la notice

166