Singular gradient flow of the distance function and homotopy equivalence

Abstract : It is a generally shared opinion that significant information about the topology of a bounded domain $\Omega $ of a riemannian manifold $M$ is encoded into the properties of the distance, $d_{\partial\Omega}$, %, $d:\Omega\rightarrow [0,\infty [$, from the boundary of $\Omega$. To confirm such an idea we propose an approach based on the invariance of the singular set of the distance function with respect to the generalized gradient flow of of $d_{\partial\Omega}$. As an application, we deduce that such a singular set has the same homotopy type as $\Omega$.
Liste complète des métadonnées

https://hal.inria.fr/hal-00724729
Contributeur : Estelle Bouzat <>
Soumis le : mercredi 22 août 2012 - 14:33:56
Dernière modification le : mercredi 27 juillet 2016 - 14:48:48

Identifiants

Collections

Citation

Paolo Albano, Piermarco Cannarsa, Khai Tien Nguyen, Carlo Sinestrari. Singular gradient flow of the distance function and homotopy equivalence. Mathematische Annalen, Springer Verlag, 2013, 356 (1), pp.23-43. 〈10.1007/s00208-012-0835-8〉. 〈hal-00724729〉

Partager

Métriques

Consultations de la notice

133