An approximation scheme for a Hamilton-Jacobi equation defined on a network

Abstract : An important problem in graph theory is to detect the shortest paths connecting the vertices of a graph to a prescribed target vertex. Here we study a generalization of the previous problem: finding the shortest path connecting any point of a graph (and not only a vertex) to the target. Our approach is based on the study of Eikonal equations and the corresponding theory of viscosity solutions on topological graphs.
Type de document :
Article dans une revue
Applied Numerical Mathematics, Elsevier, 2013, 73, pp.33-47. 〈10.1016/j.apnum.2013.05.003〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00724768
Contributeur : Estelle Bouzat <>
Soumis le : mercredi 22 août 2012 - 15:33:13
Dernière modification le : mercredi 27 juillet 2016 - 14:48:48

Identifiants

Citation

Fabio Camilli, Adriano Festa, Dirk Schieborn. An approximation scheme for a Hamilton-Jacobi equation defined on a network. Applied Numerical Mathematics, Elsevier, 2013, 73, pp.33-47. 〈10.1016/j.apnum.2013.05.003〉. 〈hal-00724768〉

Partager

Métriques

Consultations de la notice

132