Higher order variational time discretization of optimal control problems

Abstract : We reconsider the variational integration of optimal control problems for mechanical systems based on a direct discretization of the Lagrange-d'Alembert principle. This approach yields discrete dynamical constraints which by construction preserve important structural properties of the system, like the evolution of the momentum maps or the energy behavior. Here, we employ higher order quadrature rules based on polynomial collocation. The resulting variational time discretization decreases the overall computational effort.
Type de document :
Communication dans un congrès
20th International Symposium on Mathematical Theory of Networks and Systems, 2012, Melbourne, Australia. MTNS, 2012, Proceedings of the 20th International Symposium on Mathematical Theory of Networks and Systems. 〈http://www.mtns2012.conference.net.au/Full%20Paper/MTNS2012_0086_paper.pdf〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00724946
Contributeur : Estelle Bouzat <>
Soumis le : jeudi 23 août 2012 - 13:31:41
Dernière modification le : mercredi 27 juillet 2016 - 14:48:48

Lien texte intégral

Identifiants

  • HAL Id : hal-00724946, version 1
  • ARXIV : 1204.6171

Citation

C. M. Campos, O. Junge, S. Ober-Blöbaum. Higher order variational time discretization of optimal control problems. 20th International Symposium on Mathematical Theory of Networks and Systems, 2012, Melbourne, Australia. MTNS, 2012, Proceedings of the 20th International Symposium on Mathematical Theory of Networks and Systems. 〈http://www.mtns2012.conference.net.au/Full%20Paper/MTNS2012_0086_paper.pdf〉. 〈hal-00724946〉

Partager

Métriques

Consultations de la notice

99