Numerical construction of LISS Lyapunov functions under a small gain condition

Abstract : We provide a homotopy algorithm that computes a decay point of a monotone operator, i.e., a point whose image under the monotone operator is strictly smaller than the preimage. For this purpose we use a fixed point algorithm and provide a function whose fixed points correspond to decay points of the monotone operator. This decay point plays a crucial role in checking, in a semi-global fashion, the local input-to-state stability of an interconnected system numerically and in the numerical construction of local input-to-state stability (LISS) Lyapunov functions. We give some improvements of this algorithm and show the advantage to an earlier approach based on the algorithm of Eaves.
Type de document :
Communication dans un congrès
50th IEEE Conference on Decision and Control, 2011, Orlando, United States. pp.6967-6972, 2011, 〈10.1109/CDC.2011.6160908〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00724979
Contributeur : Estelle Bouzat <>
Soumis le : jeudi 23 août 2012 - 15:03:13
Dernière modification le : lundi 21 mars 2016 - 11:34:46

Identifiants

Collections

Citation

Roman Geiselhart, Fabian Wirth. Numerical construction of LISS Lyapunov functions under a small gain condition. 50th IEEE Conference on Decision and Control, 2011, Orlando, United States. pp.6967-6972, 2011, 〈10.1109/CDC.2011.6160908〉. 〈hal-00724979〉

Partager

Métriques

Consultations de la notice

124